AMATH 351 Summer 2011 Midterm

Friday, July 22

Name: _____

Problem	Points	Score
1	15	
2	20	
3	15	
4	15	
5	20	
6	15	

Total

1. (15) Solve the initial-value problem

$$x\frac{dy}{dx} = x + 2y, \qquad y(1) = 0. \qquad (x > 0)$$

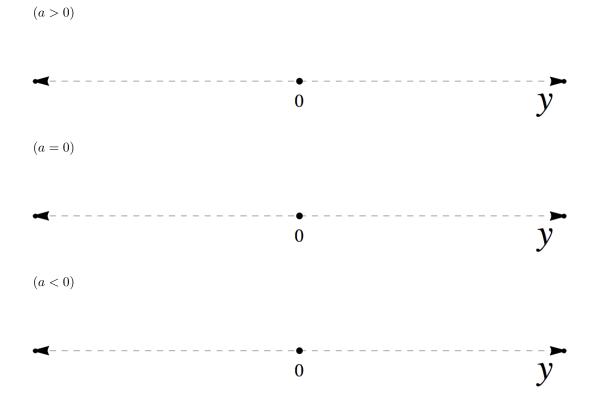
2. (20) Solve the initial-value problem

$$(y')^2 - 2y' + 1 = y - x, \qquad y(1) = 1,$$

using the substitution v = y - x. Hint: Factor first!

- 3. (15) Consider $(4y^3 nx^3y)y'(x) + (-6x^2y^2 + 12x^2 + 1) = 0.$
 - (a) (5) For what value of n is this an *exact* equation?

(b) (10) Using the value of n that you found in part (a), solve this equation. Write it in the form f(x, y) = c.


- 4. (15) Consider the DE $y''(t) 3y'(t) 4y(t) = 5e^{4t}$.
 - (a) (10) Find the general solution.

(b) (5) Even though this is the general solution, what can you say about $\lim_{t\to\infty} y(t)$?

5. (20) Consider the equation

$$\frac{dy}{dt} = y(y-a).$$

(a) (15) Sketch the phase-line (labeling the equilibrium points, if any) below in the cases when a > 0, a = 0 and a < 0.

(b) (5) For each case above, classify the equilibria as asymptotically stable, semi-stable or unstable.

6. (15) Consider the equation

$$\frac{1}{2}y'' + xy' - x^2y = 0.$$

Assume y_1 and y_2 are solutions such that

$$y_1(0) = 1,$$

 $y'_1(0) = 0,$
 $y_2(0) = 0,$
 $y'_2(0) = 1.$

Determine $W(y_1, y_2)$ so that no unknown constants are present.