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Abstract
Double strand breaks (DSBs) are widely accepted as the main type of DNA
damage responsible for cell killing in the range of doses and dose rates relevant
to radiation therapy. Although the standard linear–quadratic (LQ) model
with one first-order repair term often suffices to explain the results of some
radiobiological experiments, converging lines of evidence suggest that DSBs
are rejoined at two or more distinct rates. A two-lesion kinetic (TLK) model has
been proposed to provide a direct link between biochemical processing of the
DSBs and cell killing. A defining feature of the TLK model is that the family
of all possible DSBs is subdivided into simple and complex DSBs, and each
kind may have its own unique repair characteristics. Break-ends associated
with both kinds of DSB are allowed to interact in pairwise fashion to form
irreversible lethal and non-lethal chromosome aberrations.

This paper examines the theoretical and practical linkages between the
TLK and LQ models. The TLK formalism is used to derive an LQ formula
with two first-order repair terms (dose protraction factors) and to relate the
intrinsic radiosensitivity parameters used in one model to the parameters used
in the other. Two extensive radiobiological datasets, one for CHO 10B2 cells
and one for C3H 10T1/2 cells, are analysed using the TLK and LQ models.
The LQ with two repair terms and the TLK are equally capable of explaining
the CHO 10B2 and C3H 10T1/2 cell survival data. For the doses and dose
rates most relevant to radiation therapy, tests of model equivalence indicate that
an LQ formula with two first-order repair terms is an excellent approximation
to the TLK model. We find the LQ and TLK models useful complementary
tools for the analysis and prediction of radiobiological effects.
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1. Introduction

The linear–quadratic (LQ) formalism is the most prevalent model used to predict the radiation
killing of cells in clinical applications. The mechanistic basis for the standard LQ model has
been discussed extensively in the literature (reviewed in Brenner et al 1998, Sachs et al 1997).
A particularly attractive feature of the LQ formalism is that trends in the cell surviving fraction
as a function of dose and dose rate can be explained using a minimum number of adjustable
parameters. Other more mechanistic models use systems of ordinary differential equations
to link the formation and repair of double strand breaks (DSBs) to cell killing. The lethal–
potentially lethal (LPL) model (Curtis 1986) and the repair–misrepair (RMR) model (Tobias
1985) are two outstanding examples of such kinetic models. In the LPL and RMR models, DSB
rejoining is modelled using first-order (linear) and second-order repair mechanisms. Second-
order repair is also termed binary misrepair or pairwise damage interaction. Alternatives and
extensions to the LPL and RMR models have been reviewed by Sachs et al (1997).

Others (Curtis 1986, Sachs et al 1997, Brenner et al 1998) have shown that the LPL and
RMR models can be used to derive the standard LQ formula (one first-order repair term) in
the limit of small doses and dose rates. The standard LQ is also an approximate solution
for kinetic models that postulate saturable repair mechanisms instead of non-saturable first-
and second-order repair mechanisms (Brenner et al 1998). However, as a model to link the
biochemical processing of the DSB to cell killing, the LPL is not completely satisfactory. That
is, the LPL model cannot directly link the formation and repair of DSBs to cell killing without
invoking additional ad hoc hypotheses about the nature of the initial damage responsible for
cell killing, e.g., only a small subset of the initial DSBs is potentially lethal (e.g., see Stewart
(2001)). Similar arguments apply to the RMR and standard LQ model because of their close
theoretical linkages to the LPL model.

The two-lesion kinetic (TLK) model has been proposed to make a better link between
biochemical processing of the DSB and cell killing (Stewart 2001). A defining feature of the
TLK model is that the family of all possible DSBs is subdivided into simple and complex DSBs,
and each kind of DSB may have its own unique repair characteristics. Break-ends associated
with both kinds of DSB are allowed to interact in pairwise fashion to form irreversible lethal and
non-lethal chromosome aberrations. Although the TLK model may suffice to link biochemical
processing of the DSB to cell killing (Stewart 2001), the number of parameters used in this
model can be prohibitive for some applications, if the parameters are treated as purely ad hoc.
Through the use of biologically meaningful equality and inequality constraints, the number of
free parameters used in the TLK can be effectively reduced to a level comparable to the LQ
or other models.

An alternative to applying equality and inequality constraints to TLK parameters is to
derive an LQ formula that approximates the TLK in the limit of small doses and dose rates, as
has been done for the LPL and RMR kinetic models3. In effect, the LQ formalism reduces the
number of adjustable parameters to a minimum by aggregating some of the TLK parameters
together. The LQ formula derived from the TLK model uses five parameters to characterize
intrinsic radiosensitivity, compared to three for the standard LQ model (α, β and λ) and 16 for
the most general form of the TLK. The two first-order repair-rate constants of the TLK model
result in two protraction factors compared to one for the standard LQ model. LQ models with
two first-order repair processes have been successfully applied to the analysis of survival data
in mouse lung (Van Rongen et al 1993, Millar and Canney 1993), pig skin (Millar et al 1996),
mouse kidney (Millar et al 1994) and spinal cord (Ang et al 1992).

3 Sachs et al (1997) used a two-lesion model similar to the TLK to derive an LQ formula with two first-order repair
terms.
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The main purpose of this paper is to test the equivalence of the LQ formula as an
approximation to the TLK model. The paper also examines some of the theoretical
and practical linkages between the TLK and LQ models. The relationship between the
radiosensitivity parameters used in the LQ and TLK models can be used to better understand
the linkages between LQ parameters and biochemical processing of DSBs and to help integrate
information on DSB formation and repair into estimates of LQ radiosensitivity parameters
(e.g., to derive biologically based constraints on α and β). Alternatively, the relationship
between the LQ and TLK model parameters can be used to identify constraints on the TLK
parameters that reflect the wealth of empirical LQ radiosensitivity information available in the
literature.

Section 2 summarizes the key equations relating the TLK model to the LQ model(s).
Biologically plausible constraints on the TLK parameters and the numerical methods used to
solve the TLK model are presented in section 3. In section 4.1, two extensive radiobiological
datasets, one for CHO 10B2 cells (Stackhouse and Bedford 1993) and one for C3H 10T1/2
cells (Wells and Bedford 1983), are analysed using the TLK. Section 4.2 uses the TLK
parameters obtained from this analysis to examine the accuracy of the LQ formula as an
approximate solution to the full TLK model. As expected, the LQ is a good approximation to
the TLK model for low doses and low dose rates. In section 4.3, the LQ formula is treated as
an independent model, and an alternate set of LQ parameters is obtained by directly fitting the
model to the survival data. When treated as a stand-alone model, the LQ fits the survival data
as well as the TLK model, regardless of dose, dose rate and intrinsic radiosensitivity.

2. Relationship between the LQ and TLK models

An LQ formula can be derived from kinetic models such as the LPL, RMR and TLK using
perturbation theory or other methods (Curtis 1986, Sachs et al 1997 and Brenner et al 1998).
The following two subsections briefly outline the TLK model and the key equations relating
the TLK to the LQ. Because the LQ formula derived from the TLK model uses two first-order
repair terms to describe the DSB rejoining rate, we will henceforth call this formula the LQ2

model.

2.1. TLK model

The most general form of the TLK model (Stewart2001), which uses 16 biologically significant
parameters to relate biochemical processing of the DSB to mutagenesis and cell killing, can be
reduced to the LPL (Curtis 1986) or RMR (Tobias 1985) models by applying various equality
constraints to the TLK parameters. Here, we briefly summarize a variant of the TLK that
retains most of the central features of the full model while reducing the number of parameters
from 16 to 10. An analysis of DSB rejoining kinetics and CHO-cell survival for a large
range of single-dose and split-dose exposure conditions suggests that this model may suffice
to directly link biochemical processing of DSBs to cell killing (Stewart 2001)4.

The following pair of nonlinear differential equations models the time-dependent rate at
which DSBs are created and then repaired, misrepaired or fixed:

dL̄1(t)

dt
= 2Ḋ(t)Y�1 − λ1L̄1(t) − ηL̄1(t)[L̄1(t) + L̄2(t)] (1)

dL̄2(t)

dt
= 2Ḋ(t)Y�2 − λ2L̄2(t) − ηL̄2(t)[L̄1(t) + L̄2(t)] (2)

4 The formalism of the TLK model does not explicitly account for cell-cycle and other proliferation-related
phenomena that are relevant to the analysis of some radiobiological experiments.
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where Ḋ(t) is the instantaneous absorbed dose rate at time t (Gy h−1), L̄1(t) is the expected
number of simple (type 1) DSBs per cell at time t and L̄2(t) is the expected number of complex
(type 2) DSBs per cell at time t. The total number of DSBs expected per cell at time t is
L̄1(t) + L̄2(t). As a working hypothesis, simple DSBs are assumed to be a section of the DNA
10 to 20 base pairs (bps) in length that contains a break in both strands of the DNA. A complex
DSB is a simple DSB that contains additional elementary damage sites (base damage, strand
breaks, base deletion, etc) within the same section of DNA (Stewart 2001).

The initial DSB yield (Gy−1 cell−1) is characterized by the number of bps per cell Y
(the factor of 2 converts bp to number of nucleotides) and the formation probabilities �1 and
�2. The parameters λ1, λ2 and η characterize the rate at which break-ends are rejoined by
enzymatic processes. The biophysical interpretations of these parameters are discussed in
more detail elsewhere (Stewart 2001). For the special case of η = 0 (no binary misrepair) the
expected number of DSBs per cell decreases exponentially with time after irradiation. For
the first-order unsaturated rejoining kinetics, the rate constants λ1 and λ2 can be related to the
expected amount of time required for a cell to remove half of the initial DSBs created by an
acute dose of radiation. That is, the so-called repair half-time for the ith kind of DSB, denoted
τ i, equals ln(2)/λi.

The time-dependent rate at which DSBs are converted into lethal genetic alterations (point
mutations or chromosome aberrations) is modelled by

dL̄f (t)

dt
= (1 − a1)ϕ1λ1L̄1(t) + (1 − a2)ϕ2λ2L̄2(t) + γ η[L̄1(t) + L̄2(t)]2 (3)

where a1 and a2 represent the fidelity of the linear misrepair mechanism (e.g., ai = 1 indicates
correct repair). The probabilities ϕi and γ partition misrepaired damages into lethal and non-
lethal genetic alterations (ϕi = 1 means that linear misrepair of a DSB always produces a fatal
lesion). The equation describing the accumulation of non-lethal genetic alterations is

dL̄m(t)

dt
= [(1 − a1)(1 − ϕ1)λ1L̄1(t) + (1 − a2)(1 − ϕ2)λ2L̄2(t)] + (1 − γ )η[L̄1(t) + L̄2(t)]

2.

(4)

2.2. LQ2 approximation for the TLK model

To derive the LQ2 solution, the TLK system of differential equations is integrated using a
perturbation theory approach, under the assumption that the binary misrepair probability η is
small. The expected number of fatal lesions per cell as time goes to infinity is given by

L̄f (∞) = αD + (β1G1 + β2G2)D
2 (5)

where

Gi = 2

D2

∫ ∞

−∞
dt Ḋ(t)

∫ t

−∞
dt ′ Ḋ(t) e−λi (t−t ′) i = 1, 2. (6)

The dose protraction factors, Gi, can be derived and expressed in several ways (see Sachs
et al (1997) and references therein). The coefficients α and β i are related to the TLK model
parameters as

α = (1 − a1)ϕ12Y�1 + (1 − a2)ϕ22Y�2 (7)

β1 = δ + [γ − (1 − a1)ϕ1]
(2Y�1)

2

2χ1
(8)
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β2 = δ + [γ − (1 − a2)ϕ2]
(2Y�2)

2

2χ2
(9)

δ ≡ [2γ − (1 − a1)ϕ1 − (1 − a2)ϕ2]
(2Y�1)(2Y�2)

2(χ1 + χ2)
(10)

with χ i ≡ λi/η. Expressions for the expected number of non-lethal mutations L̄m(∞) can be
derived by substituting ϕi → (1 − ϕi) and γ → (1 − γ ).

The standard, three-parameter LQ model can be mimicked using the TLK formalism by
imposing the equality constraints: ai = a, ϕi = ϕ, λi = λ, 2�i = �. For these constraints, G1 =
G2 → G and β = (β1 + β2) so that equation (5) reduces to L̄f (∞) = D[α + βGD] with

α = 2Y�(1 − a)ϕ (11)

β = η(2Y�)2[γ − (1 − a)ϕ]/2λ. (12)

Equations (7)–(12) relate the radiobiological parameters of the LQ, LQ 2 and TLK models.
In equation (7), each type of DSB contributes to the LQ 2 radiosensitivity parameter α with a
term directly proportional to the yield of DSBs per cell per Gy and to the fraction of DSBs
that becomes fatal due to incorrect repair, (1 − ai)ϕi . According to equations (8)–(10),
the parameters β i are related to the square of the individual yields and their cross product,
indicating the interaction among DSBs. There is also a correlation between β i and the ratios
η/λi and η/(λ1 + λ2). These relationships are important regarding the question of whether
the repair mechanisms postulated by the TLK are a good description of cellular recovery
kinetics. For example, a positive correlation between the values of α and β has been reported
(Peacock et al 1992) and a correlation between β and the repair time is also known to exist
(Brenner 1992). Equations (7)–(10) show that the TLK predicts a positive correlation between
α and β since they both depend on the yields of DSBs and equations (8)–(10) demonstrate a
proportionality of β to the repair time.

The validity of the LQ 2 formula as an approximation to the TLK model ultimately hinges
on the relative numbers of DSBs removed by first- and second-order repair. Others have shown
that the standard LQ model is a low dose, low dose-rate approximation for kinetic models such
as the LPL and RMR models (Tobias 1985, Curtis 1986, Sachs et al 1997, Brenner et al 1998).
Similarly, the LQ 2 is a low dose, low dose-rate approximation of the TLK. The standard LQ
is a good approximation to the LPL and RMR models for doses less than about α/β and dose
rates less than about λα/β (Sachs et al 1997, Brenner et al 1998). The accuracy of the LQ 2

model as an approximation to the full TLK also improves as α/β increases.

3. Methods

3.1. Numerical solution of the TLK model

A virtual cell (VC) radiobiology computer program5 has been developed to solve the
TLK model for an arbitrary dose-rate function Ḋ(t). In this software, Visual Numeric’s
(http://www.vni.com) IMSL R© DIVPAG routine is used to integrate the TLK system of
differential equations forward in time using Gear’s backward differentiation algorithm (Gear
1971, Shampine and Gear 1979). Prior to irradiation, cells are assumed undamaged so that
L̄1(0) = L̄2(0) = L̄f (0) = 0. The expected fraction of the cells capable of producing viable
progeny at time t is given by S(t) = exp{−L̄f (t)} (Sachs et al 1997, Stewart 2001). The VC
5 R D Stewart, virtual cell (VC) radiobiology software. PNNL-13579, July 2001 (update 1.10J released March
2002). Available online at http://www.pnl.gov/berc/kbem/vc/.
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software includes an automated (least-squares) procedure to identify an optimal set of TLK
parameters from cell survival data. Details of this procedure are described elsewhere (Stewart
2001).

3.2. Biological constraints on TLK model parameters

Effective strategies to calibrate the TLK model require the judicious application of equality
and inequality constraints. For mammalian cells irradiated in vitro, analysis of cell survival
data using the LQ formalism often yields values of α (Gy−1) in the range [0, 1] and values of
β (Gy−2) in the range [10−3, 0.2] (Deschavanne et al 1990, Peacock et al 1992). Reasonable
biophysical considerations (Stewart 2001) suggest the following constraints on TLK model
inputs:

γ = 0.25

0 � ai � 0.995

0 � ϕi � 2.5 × 10−2

0 � (1 − ai)ϕi � 2.5 × 10−2

(13)
0.02 � τ1 � τ2 � 25 h

0 h−1 � η � 10−2 h−1

Y�1 = 3Y�2

20 Gy−1 cell−1 � 2Y (�1 + �2) � 80 Gy−1 cell−1.

This set of constraints provides a relatively high degree of flexibility for the analysis of
cell survival data, imposes some reasonable restrictions on the allowed range of values, and
effectively decreases the number of ‘adjustable’ TLK parameters from ten to six or less. Of
course these constraints should be adjusted to reflect any extra, cell-specific information that
may be available.

4. Results and discussion

The main purpose of this paper is to test the equivalence of the LQ 2 formula as an
approximation to the full TLK model. Presentation of the results and equivalence tests is
organized as follows. First in section 4.1, representative TLK parameters for CHO 10B2 and
C3H 10T1/2 cells are identified. The CHO 10B2 and C3H 10T1/2 datasets are used because
these two cell lines have very different intrinsic radiosensitivities and because survival data
are available for a wide range of exposure conditions. As discussed in section 2.2, the
accuracy of the low dose and dose-rate approximation used to derive the LQ 2 formula
from the TLK depends on intrinsic radiosensitivity. CHO 10B2 cells have an intrinsic
radiosensitivity representative of late-responding tissues (small α/β), and C3H 10T1/2 cells
are more representative of early-responding tissues (large α/β). The TLK parameters obtained
are converted to equivalent LQ 2 parameters using equations (7)–(10). Section 4.2 tests the
equivalence of the LQ 2 and TLK models by comparing surviving fractions as a function
of dose and dose rate. Section 4.3 compares the TLK-derived LQ 2 parameters to the LQ 2

parameters obtained from a global fit to the CHO 10B2 and C3H 10T1/2 cell datasets. For
comparison to the LQ 2 parameters, the standard LQ model is also fit to the CHO 10B2 and
C3H 10T1/2 survival datasets.
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4.1. Representative TLK parameters for CHO and C3H 10T1/2 cells

Analysis of the cell survival data as a function of dose, dose rate, and dose fractionation
indicates that the following set of TLK parameters are optimal for CHO 10B2 cells (Stewart
2001): 2Y(�1 + �2) = 25.09 DSB Gy−1 cell−1, 2Y�2 = 5.09 DSB Gy−1 cell−1 (20% of the
DSBs are ‘complex’), τ 1 = 1.03 h, τ 2 = 15.8 h, a1 = 0, a2 = 0, ϕ1 = 1.52 × 10−3, ϕ2 = 0,
γ = 0.25 and η = 1.18 × 10−4 h−1. Although this set of parameters provides an optimal fit
to an extensive set of cell survival data, other parameter sets can be identified that provide an
equally good fit to the survival data (discussed in Stewart (2001)). Even if the specific values
of the individual TLK parameters are not unique, the collection of parameter values may still
be considered a robust characterization of intrinsic radiosensitivity. That is, the family of
TLK parameter sets that gives the best fit to the survival data yield about the same LQ model
parameter values.

Wells and Bedford (1983) published C3H 10T1/2 cell survival data for a large range of
doses delivered at dose rates of 0.06 Gy h−1, 0.17 Gy h−1, 0.29 Gy h−1, 0.49 Gy h−1, 2.4 Gy h−1

and 55 Gy h−1. To identify a suitable TLK model calibration, the parameters 2Y�1, τ 1, τ 2, a1

and η were treated as adjustable parameters, and the remaining parameters were set a priori to
biologically plausible values (i.e., 2Y�2 = 15 Gy−1 cell−1, a2 = 0, ϕi = 2.5 × 10−3 and γ =
0.25). Wells and Bedford (1983) allowed 12 to 24 h for repair before the cells were trypsinized
and resuspended in a fresh medium. This period of time was sufficient to minimize the impact
on the survival assay of time-to-plating.

We found that several combinations of 2Y�1, τ 1, τ 2, a1 and η gave equally good fits to the
C3H 10T1/2 surviving fraction data. This indicates that the dataset does not contain sufficient
information to identify a truly unique best-fit model calibration. The identification of a suitable
set of DSB rejoining-rate parameters (τ 1, τ 2 and η) was especially problematic. The best fits
to the surviving fraction data were obtained with values of τ 1 in the range from ∼0.5 h to
1.5 h, τ 2 from ∼3.5 to 15 h and η in the range from 10−6 to 5 × 10−5 h−1.A representative
set of TLK parameters that gives a good fit to the surviving fraction data is: 2Y(�1 + �2) =
60.8 DSB Gy−1 cell−1, 2Y�2 = 15 DSB Gy−1 cell−1 (25% of the DSBs are complex), a1 =
0.297, a2 = 0, ϕi = 2.5 × 10−3, τ 1 = 0.489 h, τ 2 = 3.91 h, γ = 0.25 and η = 2.57 × 10−5 h−1.

4.2. Test 1: equivalence of the LQ 2 and TLK models using identical parameters

For CHO 10B2 cells, the best-fit TLK parameters identified in section 4.1 correspond,
according to equations (7)–(10), to the following LQ 2 parameters: α = 3.04 × 10−2 Gy−1,
β1 = 1.29 × 10−2 Gy−2, β2 = 1.28 × 10−2 Gy−2, τ 1 = 1.03 h and τ 2 = 15.8 h. The ratio
α/(β1 + β2) = 1.18 Gy. For C3H 10T1/2 cells, the LQ 2 parameters are: α = 0.118 Gy−1,
β1 = 7.47 × 10−3 Gy−2, β2 = 6.79 × 10−3 Gy−2, τ 1 = 0.489 h and τ 2 = 3.91 h. The ratio
α/(β1 + β2) = 8.27 Gy. It is interesting to note that for both cell lines the values for β1 and
β2 are within 10% of each other. For other representative combinations of TLK parameters,
β1 and β2 may differ by as much as a factor of 2 (not shown).

Figure 1 shows the per cent difference in the LQ 2 and TLK predicted surviving fractions
as a function of dose and dose rate. For the entire range of doses and dose rates considered,
the LQ 2 formalism tends to predict higher levels of cell killing than the TLK model. The LQ 2

model predicts higher levels of cell killing because the rate of DSB rejoining is slower than that
predicted using the TLK model. That is, the same value for τ 1 and τ 2 are used to model first-
order rejoining kinetics, but the TLK model also removes some DSBs through second-order
repair processes. At 2 Gy, the maximum per cent difference (i.e., at Ḋ = 10 5 Gy h−1)
between the LQ 2 and TLK solutions is 0.01% for C3H 10T1/2 cells and 0.16%
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C3H 10T1/2 cells
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Figure 1. Per cent difference, (STLK − SLQ)/STLK, between the surviving fractions predicted by
the LQ 2 and full TLK solutions. Results are for a single dose of radiation delivered at the indicated
dose rate. See main text (section 4.1) for TLK parameters. Left panel: CHO cell result. LQ 2

parameters are: α = 3.04 × 10−2 Gy−1, β1 = 1.29 × 10−2 Gy−2, β2 = 1.28 × 10−2 Gy−2, τ 1 =
1.03 h and τ 2 = 15.8 h. Right panel: C3H 10T1/2 cells. LQ 2 parameters are: α = 0.118 Gy−1,
β1 = 7.47 × 10−3 Gy−2, β2 = 6.79 × 10−3 Gy−2, τ 1 = 0.489 h and τ 2 = 3.91 h.

for CHO 10B2 cells. For a 5 Gy dose of radiation, the maximum per cent difference increases
to 0.27% and 2.37% for C3H 10T1/2 and CHO 10B2 cells, respectively. At 10 Gy, the
maximum per cent difference between the TLK and LQ 2 solutions is 2.11% and 16.8% for
C3H 10T1/2 and CHO 10B2 cells, respectively. For higher doses, the per cent differences
between the LQ 2 and TLK predicted surviving fractions continue to increase.

The per cent difference between the LQ 2 and TLK results are consistently smaller for
the C3H 10T1/2 cells than for the CHO 10B2 cells, as was expected on the basis of their
radiosensitivity. The LQ 2 formalism is a better approximation to the full TLK model for cells
with a large α/β ratio (e.g., C3H 10T1/2 cells) than for cells with a smaller α/β ratio (e.g.,
CHO cells). For CHO 10B2 cells, the per cent difference between the LQ 2 and TLK solutions
increases rapidly in the dose-rate range from 0.1 to 1 Gy h−1 (figure 1, left panel). For C3H
10T1/2 cells, similar changes occur in per cent differences for dose rates in the range from 1
to 5 Gy h−1 (figure 1, right panel).

For most of the doses and dose rates of interest in radiation therapy (i.e., doses less than
about 2 to 5 Gy), the results shown in figure 1 clearly demonstrate that the LQ 2 and TLK
predict surviving fractions which are within a few per cent of each other (i.e., the LQ 2 formula
is an excellent approximation to the full TLK model). The good agreement between the LQ 2

and TLK surviving fractions for lower doses and dose rates indicates that first-order repair
processes are responsible for rejoining most of the DSBs. For higher doses, second-order
repair processes remove a larger fraction of the DSBs, and the differences in the LQ 2 and TLK
predicted surviving fractions become more apparent (figure 1).

4.3. Test 2: comparison of direct-fit and TLK-calculated LQ parameters

The LQ 2 parameters derived from the best-fit TLK parameters may or may not provide the
optimal values to predict cell survival. As an independent way to identify a set of best-fit
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Table 1. Summary of LQ and LQ 2 model parameters for CHO 10B2 and C3H 10T1/2 cells.
Estimates of the parameters are derived from global (least-squares) fits to survival data for all
doses and dose rates. For numerical purposes only, the parameter estimates are reported to three
significant digits.

CHO 10B2 parameters C3H 10T1/2 parameters
LQ 2 model LQ model LQ 2 model LQ model

TLK Direct Direct TLK Direct Direct
Parameter predicted analysis analysis predicted analysis analysis

α (Gy−1) 0.0304 0.0418 0.0474 0.118 0.112 0.124
β1 (Gy−2) 0.0129 0.0109 0.0103 0.007 47 0.0136 0.006 75
β2 (Gy−2) 0.0128 0.0113 0.0103 0.006 79 0.001 80 0.006 75
β = (β1 + β2) (Gy−2) 0.0257 0.0222 0.0206 0.0143 0.0154 0.0135
α/β (Gy) 1.18 1.88 1.90 8.27 7.27 9.12
τ 1 (h) 1.03 0.990 6.20 0.489 0.970 1.62
τ 2 (h) 15.8 13.9 6.20 3.91 15.8 1.62

LQ 2 parameters and as a second method of testing the equivalence of the LQ 2 and TLK
models, we used the NLINFIT function from MATLAB R© 6.0 to perform a global fit of the
LQ 2 model to the CHO 10B2 and C3H 10T1/2 datasets. The NLINFIT function is a nonlinear
(Gauss–Newton), least-squares algorithm. For comparison, the standard three-parameter LQ
model was also fit to these two datasets. Table 1 summarizes the results of the least-squares
analysis. The predicted LQ 2 parameters calculated from the best-fit TLK model inputs are also
listed.

For CHO 10B2 cells, the different methods of LQ parameter estimation yielded estimates
of α that varied by 56%, i.e., from 3.04 × 10−2 Gy−1 (TLK predicted) to 4.74 × 10−2 Gy−1

(LQ direct analysis). The ratio α/(β1 + β2) obtained from the LQ direct analysis was higher
by a factor of 1.61 than the TLK predicted value of 1.18 Gy. The estimates of τ 1 and τ 2

obtained from the TLK parameters and direct LQ 2 are within 5 to 10% of each other. Both
LQ 2 and TLK analyses indicate that CHO 10B2 cells repair some DSBs quickly (τ 1 ∼ 1 h) and
some very slowly (τ 2 ∼ 13–15 h). In contrast, the LQ analysis suggests an average first-order
repair half-time of 6.2 h. This repair half-time is very similar to the 5.68 h repair half-time
determined from a global LPL-model fit to this same dataset (Stewart 2001).

Figure 2 compares the measured surviving fractions to the LQ and LQ 2 surviving fractions
(direct-fit radiosensitivity parameters). The estimates of the surviving fraction obtained with
the LQ 2 model are almost indistinguishable from those obtained using the full TLK model (not
shown). Despite the relatively large differences in the model inputs (table 1), the surviving
fractions predicted by the LQ and LQ 2 models are strikingly similar for the single-dose
exposure conditions (figure 2, left panel). However, the LQ 2 model does better at predicting
the surviving fractions for the split-dose exposures than the LQ model (figure 2, right panel).
Two first-order repair terms evidently provide a better explanation for the survival data than
a single first-order term. A direct examination of the measured CHO cell survival and DSB
rejoining-rate data using the TLK provides even more compelling evidence for (at least) two
distinct rates of DSB repair (Stewart 2001).

For C3H 10T1/2 cells, the estimates for α varied by 11% (i.e., from 0.112 Gy−1 to
0.124 Gy−1). The ratio α/(β1 + β2) ranged from 7.27 Gy (LQ 2 direct analysis) to 9.12 Gy (LQ
model), a 25% difference. With the TLK model, we found that several different sets of DSB
rejoining-rate parameters gave equally good fits to the C3H 10T1/2 survival data. Several
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Figure 2. Survival of plateau phase CHO 10B2 cells irradiated by 137Cs gamma-rays. Solid
lines: LQ model (α = 4.74 × 10−2 Gy−1, β = 1.25 × 10−2 Gy−2 and τ = 6.2 h). Dashed lines:
LQ 2 model (α = 4.18 × 10−2 Gy−1, β1 = 1.09 × 10−2 Gy−2, β2 = 1.12 × 10−2 Gy−2, τ 1 =
0.99 h and τ 2 = 13.9 h). Left panel: cell survival after a single dose of radiation; measured data
(Stackhouse and Bedford 1993) are shown with an estimated standard error of 10% (J S Bedford,
personal communication). Right panel: cell survival following split-dose irradiation (8 Gy +
8 Gy); measured data (Stackhouse and Bedford 1993) are shown with an estimated standard error
of 30% (J S Bedford, personal communication).

different attempts at model calibration suggested that τ 1 must lie in the range from ∼0.5 h
to 1.5 h and τ 2 in the range from ∼3.5 to 15 h. For comparison, the LQ 2 analysis gave a
95% confidence interval of [0.54 h, 4.94 h] for τ 1 and [5.72 h, >25 h] for τ 2. The confidence
intervals on τ 1 and τ 2 obtained from the LQ 2 analysis overlaps the estimated range of values
obtained from the TLK analysis. The results shown in figure 3 illustrate that, even with
dramatically different first-order rate constants, the LQ 2 and TLK models predict essentially
the same levels of cell killing for a wide range of single-dose exposure conditions. The LQ
model also does an adequate job at predicting the surviving fraction data using the parameters
listed in table 1 (not shown).

The analyses of the CHO 10B2 and C3H 10T1/2 cell survival datasets illustrate some
of the practical difficulties associated with the extraction of accurate biological parameters
from even large experimental datasets. The uncertainties associated with the repair half-times
obtained from the LQ 2 and TLK analyses are quite large for C3H 10T1/2 cells (τ 1 ∼ 0.5 h–5 h
and τ 2 ∼ 3.5–25 h). For CHO 10B2 cells, the first-order repair rates determined from the
LQ 2 and TLK analyses are nearly the same (τ 1 ∼ 1 h and τ 2 ∼ 13–15 h). This observation
suggests that reliable estimates for τ 1 and τ 2 cannot always be determined from single-dose
survival data. This difficulty arises because survival data for low and high dose rates contain
very little information about the rates of DSB rejoining. When the exposure time is short
compared to τ i (high dose rates), a negligible amount of repair occurs during the exposure and
the dose protraction factor is close to unity. When the exposure time is large compared to τ i

(low dose rates), the dose protraction factor is close to zero. To probe first-order repair rates
in an effective manner, the experimental design should include exposure conditions that give
intermediate values of the dose protraction factor (i.e., Gi ∼ 0.25–0.75).
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Figure 3. A comparison of measured, LQ 2 and TLK surviving fractions as a function of dose and
dose rate (0.06 Gy h−1, 0.17 Gy h−1, 0.29 Gy h−1, 0.49 Gy h−1, 2.4 Gy h−1 and 55 Gy h−1). Filled
symbols: measured data (Wells and Bedford 1983). Solid lines: TLK model (2Y(�1 + �2) =
60.8 Gy−1 cell−1, a1 = 0.297, τ 1 = 0.489 h, τ 2 = 3.91 h and η = 2.57 × 10−5 h−1). Other parameters
set a priori to biologically plausible values; see main text. Dashed lines: LQ 2 model (α =
0.112 Gy−1, β1 = 1.36 × 10−2 Gy−2, β2 = 1.8 × 10−2 Gy−2, τ 1 = 0.973 h and τ 2 = 15.79 h).

5. Summary and conclusions

This paper examines the theoretical and practical linkages between the LQ and TLK models.
The TLK formalism is used to derive an equivalent LQ 2 formula and to relate the intrinsic
radiosensitivity parameters used in one model to the parameters used in the other. Two
extensive radiobiological datasets, one for CHO 10B2 cells (Stackhouse and Bedford 1993)
and one for C3H 10T1/2 cells (Wells and Bedford 1983) are analysed using the TLK and
LQ models. As a first test of model equivalence, predictions of the surviving fraction as a
function of dose and dose rate are compared using LQ parameters derived from the best-fit
TLK parameters. Equations (7) through (10) are used to covert the TLK parameters into an
equivalent set of LQ 2 parameters. As expected, the LQ 2 formula is a good approximation to
the full TLK for low doses and dose rates.

As a second test of model equivalence, parameters for the LQ 2 model are obtained by
performing a global fit to the CHO 10B2 and C3H 10T1/2 datasets. Both the LQ 2 and TLK
models are equally capable of explaining the CHO 10B2 and C3H 10T1/2 datasets. The LQ 2

parameters calculated from the best-fit TLK parameters differ noticeably from the direct-fit
parameters (table 1). The direct-fit LQ 2 parameters provide a better fit of the survival data than
the TLK-calculated ones. However, for the doses and dose rates most relevant to radiation
therapy, the LQ 2 model with the TLK-calculated parameters and the full TLK model give
surviving fractions that are within a few per cent of each other (figure 1). We find that the LQ 2
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formula is generally an excellent approximation to the full TLK model, and the direct-fit and
TLK-derived LQ 2 parameters should both be acceptable for doses below about 5 or 10 Gy.

The extraction of rate constants associated with DSB repair was found to be problematic,
especially if only single-dose survival data are available. Both LQ 2 and TLK analyses indicate
that CHO cells repair some DSBs quickly (τ 1 ∼ 1 h) and some very slowly (τ 2 ∼ 13–15 h).
In contrast, the LQ analysis suggests an average first-order repair half-time of 6.2 h. This repair
half-time is very similar to the 5.68 h repair half-time determined from a global LPL-model
fit to this same dataset (Stewart 2001). The comparison of split-dose survival data in figure 2
(right panel) and a previous TLK analysis (Stewart 2001) of both the CHO-cell survival and
DSB rejoining data strongly suggest that DSBs are repaired at two or more distinct rates. The
TLK and LQ 2 analysis of the C3H 10T1/2 cell survival data also tends to support two rates of
DSB repair, although the evidence is much less compelling because of the lack of split-dose
(and DSB rejoining-rate) data to test the models against.

Recently, Fowler (1999) proposed a second-order repair model as an alternative to multi-
exponential repair. In principle, such model can be recovered from the TLK by setting
λ1 = λ2 = 0. However, with the present formulation of the TLK, the assumption λ1 = λ2 = 0
gives only a term linear in the dose for the expected number of fatal lesions, independent of
the exposure conditions. Some additional hypothesis is needed to obtain an LQ formula for
the expected number of fatal lesions when linear repair terms are absent. Nevertheless, Dale
et al (1999) developed an incomplete repair model based on Fowler’s second-order repair
hypothesis. Using the Dale et al (1999) model, we performed a global fit to the CHO dataset
and found an excellent description for both the single fraction and split-dose data (not shown).
The issue of whether the rate of DSB rejoining is predominately first- or second-order cannot
be decided from an analysis of cell survival data alone.

Biological models are playing an increasingly important role in the design, optimization
and evaluation of radiation treatment plans (e.g., see Mohan et al 2000, Brahme 2001,
Buffa et al 2001, Ling et al 2000). The theoretical linkages among the LQ and TLK models
could be exploited to improve the design and optimization of radiation therapy in a number of
ways. By exploiting the relationship between the TLK and LQ model parameters, it may also
be possible to devise a mechanism-based strategy to estimate distributions of radiosensitivity
parameters (e.g., to reflect inter-patient variability in radiation sensitivity). The TLK formalism
could be used to explore how uncertainties associated with specific biological mechanisms
affect LQ radiosensitivity parameters. In vitro data on DSB formation or repair could be used
to identify plausible constraints on LQ parameters, using equations (7) to (12). Conversely,
empirical knowledge of the LQ parameters can be used to identify plausible constraints on
the TLK parameters (e.g., see section 3.2). Equations (7) through (12) could also be used to
develop scaling rules that integrate different kinds of in vitro data into a single biomarker of
response (i.e., a multi-endpoint predictive assay). We find that the LQ, LQ 2 and TLK models
are all useful, complementary tools for the analysis and prediction of radiobiological effects.
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