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Conclusions
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= Captures many of the guantitative and qualitative

features of cdal survival curves

» Relative biological effectiveness (RBE), acute hypoxia, dose, dose rate and
fractionation effectsincluded (cellular and sub-cellular effects)

» Bystander effects, adaptive responses, and many other (larger-scale, multi-
cellular and tissue) effects neglected in current simulations

All models are incomplete (wrong) but some are useful...
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Physics - Chemistry — Biology — Clinic
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Advantages of a Multiscale Approach
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o Exploitsideathat different blologlcal endpoints are observable
(measurable) on very different time scales after irradiation

= Proposed system of models ultimately hasjust two

critical cell- or tissue specific adjustable parameters

» 2 parametersrelated to biological processing of DNA damage (critical)

« 1 parameter related to dose rate effects (repair half-time) and one related to the
microdosimetric deposition of energy within the cell nucleus (most important for
short-range, high LET radiations)

 All four adjustable parameters are independent of dose, dose rate, radiation
quality (LET), and oxygen concentration
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Why Might this be Useful?

L I

= Critical biological parameters can beestim rom
survival data for low LET radiations

» Use parameters unchanged in ssimulations for higher LET radiations under
the same or different oxygen concentrations

= Easy toincorporate RBE and O, information from
simulationsinto isoeffect (BED, EUD, ...) and
outcome (TCP and NTCP) calculations
= Hypothesis
 For the endpoint of reproductive death, in vitro and in vivo radiation

sensitivity mainly differ because of differencesin the way cellsin vitro
and in vivo process and/or express the initial sub-cellular damage
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Results-1 Human Kidney T1 Cells (aerobic)
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In vitro irradiation of T1 cells by selected ions (Barendsen circa 1960-1966). Simulation
parameters. 6 = 3.07x10% Gbp/DSB, k = 7.05x10* Gbp/DSB, t = 2 h, ndia=3.5 um.
Equivalent x-ray LQ parameters: o,,=0.265 Gy, a/B=10.1 Gy
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Results-1 Comparison to LQ fits (aerobic)
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In vitro irradiation of T1 cells by selected ions (Barendsen circa 1960-1966). Simulation
parameters. 6 = 3.07x10% Gbp/DSB, x = 7.05x10* Gbp/DSB, t = 2 h, ndia=3.5 um.
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Results-1a Human Kidney T1 Cells (hypoxic)
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In vitro irradiation of T1 cells by selected ions (Barendsen circa 1960-1966). Simulation
parameters. 6 = 3.07x102 Gbp/DSB, k = 7.05x10* Gbp/DSB, t = 2 h, ndia=3.5 um.
Equivalent x-ray LQ parameters: o, =0.265 Gy, a/By=10.1 Gy (aerobic)
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Results 1 - Some Observations

= Direct LQ fitsto survival data arecon mpar ableto

obtained from the multiscale model. But...

o LQfits: 15 x 2 parameters = 30 adjustable parameters (one set for each
particle type, energy and oxygen condition).

« Multiscale model: 2 adjustable parameters (€ and x), which can be
estimated from x-ray cell survival datafor aerobic conditions

= For short-range (higher LET) particles, direct LQ fits
to cell survival data are sensitiveto

o Uncertaintiesin dosimetry
o Experimental artifacts in the measured data (e.g., “floaters’)

= Global (smultaneous) fits of the multiscale model are
possible but produce modest improvementsin quality
of fit.

fi4
LS
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Results-2 V79 Cells (protons and “He?")
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In vitro irradiation of V79 cells under aerobic and hypoxic conditions by selected ions (Prise
et al. IJRB 58, 261-277 1990). Simulation parameters. 0 = 3.71x102 Gbp/DSB, « = 2.32x10%
Gbp/DSB, t =2 h, ndia= 4 um.
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Results 2 - Some Observations
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hypoxic data for one or more particletypes
e For the smaller, often noisy, datasets common for higher LET radiations
simultaneous fits to multiple particle types provide more accurate estimate of

parameters than fitsto datafor a single particle type.

= Anecdotal testing of the model suggeststhat estimates
of x parameter (relatedto 3 inthe LQ) aremore
accur ate when survival datafor low LET radiations
available

» Dosimetry more accurate for low LET radiations than for high LET radiations
 Low LET radiations not so sensitiveto “floaters’ and other experimental artifacts
» Datasets usually larger for low LET radiations than high LET radiations
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Results 3a - Dose Rate and Hypoxia (low LET)
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In vitro irradiation of V79 cellsby 10 MV x-rays or 13’Cs y-rays under aerobic and hypoxic
conditions by selected ions (Spiro et al. BJR 58, 357-363 1985). Simulation parameters. 6 =
1.48x10% Gbp/DSB, x = 5.42x10* Gbp/DSB, t = 0.523 h, ndia= 3.5 um.
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Results 3b - Dose Rate and Hypoxia (low LET)
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In vitro irradiation of V79 cellsby 10 MV x-rays or 13’Cs y-rays under aerobic and hypoxic
conditions by selected ions (Spiro et al. BJR 58, 357-363 1985). Simulation parameters. 6 =
1.48x10% Gbp/DSB, x = 5.42x10* Gbp/DSB, t = 0.523 h, ndia= 3.5 um.
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Results 3c - Dose Rate and Hypoxia (low LET)
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Poor agreement for extreme
hypoxia may be dueto a slowing
of repair process (acute vs chronic
hypoxia) or modulation of cell
death modes not related to DNA
damage induction (plating
efficiency substantially reduced
under extreme hypoxia)

In vitro irradiation of V79 cellsby 10 MV x-rays or 13’Cs y-rays under aerobic and hypoxic
conditions by selected ions (Spiro et al. BJR 58, 357-363 1985). Simulation parameters. 6 =
1.48x10% Gbp/DSB, x = 5.42x10* Gbp/DSB, t = 0.523 h, ndia= 3.5 um.
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Overall Summary of Results
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survival for other types of radiation and oxygen conditions

= Accuracy of model predictions can be improved
somewhat by fitting the model to data for multiple

particletypesand/or O, conditions

e Such datasets are available in vitro but scarcefor in vivo models
(including humans ;)

= May need to incorporate a model for the effects of
reduced oxygen on therate of damage repair and/or
modulation of cell death modes (e.g., apoptosis vs
mitotic death)
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Methods
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« Effectsof LET and Oxygen on DNA damage induction
o I\/Imrgdvg“ metrv ( lined energy frequency mean Speclf c energy, CSDA
range)

= Repair-Misrepair-Fixation (RMF) Model
« Motivated by the breakage and reunion theory of chromosomal aberrations

 DNA damage induction linked to cell killing through a couple system of
deterministic non-linear differential equations
+ Céll survival curvesare LQ for low doses and become linear at high dose

« RMR (CA Tobias) and LPL (S Curtis) models (circa 1985) are special
cases of the RMF
+ Compound Poisson distribution for damage induction (RMF) instead of Poisson

ﬂleﬁ ~ h\ :f\ ~~ ra\y.\ f\l’\f\’\ 'Y d II\IA'
I'\bVVIl.II LIIC I'(IVII'(CIIIU LI"L lIICIIIICClI L]UdUIa‘-lIb\LV} bd.lUVV Uuvoc Ul TUVY

dose rate approximation for the RMF.
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Clustered DNA lesions

Groups of several DNA lesionswithin one or two turnsof the
DNA aretermed clustered DNA lesions*

lesion = damage to the sugar, base or phosphate
group of a single nucleotide

* Clustered DNA lesions are also referred to aslocally multiply damaged sites
(LMDS), multiply damaged sites (M DS) or just “clusters’

Interesting Trivia: Over 10'2 (1) possible types of clustered DNA lesion, i.e., the number of possible ways a 10 bp segment of DNA (20 nuclectides)
can be damaged ison the order of 420 = 10%2 possible types of cluster. Most of the DNA cluster s formed by ionizing radiation, including single- and
double-strand breaks, are composed of 3 or more individual lesions.



© University of Washington Department of Radiation Oncology Slide 20

MCDS — General Features and Capabilities (1)

Developed to smulate number and small-scale spatial distribution of
lesions for ming clusters (“ nucleotide-level maps’)

LoAL LLLLLLLLELELLLL  adbd ' bhadd dhbd
N8 A O A O A

Simple DSB (2 lesions) Complex DSB (5 lesions)

O (]
1 1

{1 [

:
1

bl
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= Individual particlesor arbitrary mixtures of charged

particlesup to and including *°Fe (newin 2011)

o Simulate damage from neutral particles using the distribution of secondary
charged particles (e.g., see Hsaio and Stewart, PMB 53, 233-244, 2008)

Additional Information and Software Available at

http://faculty.washington.edu/trawets/mcds/

“trawets’ = “stewart” backwards
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MCDS — General Features and Capabilities (2)

= Simulatesthe effects on cluster formation of O, fixation
and chemical repair (newin 2011) —* oxygen effects’

Chemical

1Gy~1in 10
10°s Repair -
o O, fixation \> ;35@
",\/V\/\’ ) lonization X- m;g,ﬁ&
. ‘ Excitation 106s %3~
Radiation N ,f;?-*
-18 -10 o
10°t010*°s DNA damage

First and only (at present) M C simulation to account for the
effects of oxygen concentration on clusters
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MCDS — General Features and Capabilities (3)

= Particleand Dosimetric Information (newin 2011

» Stopping power in water, CSDA range, absorbed dose per unit fluence, mean specific
energy, energy imparted per radiation event, and lineal energy

Particle  Kinetic Energy S-S, FC;:EAG Z. (Gy)

Type  Mev  Meviu (keVigm) (W?) MCDS Analytic
e 256x10° — 2113  2x10° <10" 017
'H  6.47x10° 6.47x10°  34.2 028  <10" 029

‘He® 0.294 7.35x10° 186 2.70 0.14 1.53

2t 14.8 1.23 612 21.13 5.32 5.08

e 38.1 2.38 711 42.03 6.01 5.86

ONe™ 78.4 3.92 792 73.14 6.60 6.50

¥ 1750 31.3 1148 963.7 9.35 9.34

Analytic Formula: Z. = 0.204[S—S |/ pd*
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Chemical Basis of the Oxygen Effect

Competition between oxygen fixation and chemical repair modeled in
the MCDS using a scheme that mimics the pathways suggested by von
Sonntag (2006)

(1) DNA + ionizing radiation — DNA lesion (biochemical repair required)
(2) DNA + ionizing radiation — DNA. (various)

Lesions and DNA radicals formed through direct and indirect interaction mechanisms

(3) DNA- + O, - DNA-O, (“ oxygen fixation” — biochemical repair required)
(4) DNA- + RSH — DNA (“ chemical repair” —restoration of the DNA")
(5) DNA: — DNA lesion (biochemical repair required)

* Von Sonntag notesthat donation of a proton to a DNA radical may or may not restore the original chemical structure
of the DNA. But, the chemical repair process evidently convertsthe DNA radical (or cluster of radicals?) into a form that
iIsmore amenable to biochemical repair and reduces the number of strand breaks.

Clemens von Sonntag, Free-Radical-Induced DNA Damage and its Repair — A chemical perspective. Springer-Verlag, New York, NY (2006)
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RBE and HRF (induction of DNA damage)

Relative Biological Effectiveness Hypoxia Reduction Factor (HRF) for
(RBE) for theith type of cluster theith type of cluster
5, () %, (100%0,)

RBE, (q) = HRF, ([O,]) =

2 (Q) %, ([G,])

Y. = Measured or MC simulated number of the ith type of cluster Gy-* Gbp-* (or per cell),
g denotesradiation quality of the particle of interest (e.g., a proton or neutron), and g,
denotestheradiation quality of thereferenceradiation (typically high-energy x-rays or
y-rays from 6°Co or 137Cs)

In general, the RBE and HRF varies with endpoint (cell killing vs
DNA damage) and even the type of damage (e.g., SSB vs DSB). For
DNA damage induction up to doses of at least a few hundred Gy, little
If any good evidencethat the RBE or HRF depend on dose or dose
rate.
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DSB induction in human skin fibroblasts
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Frankenberg D, Brede HJ, Schrewe UJ, Steinmetz C, Frankenber g-Schwager M, Kasten G, Pralle E. Induction of DNA double-strand breaks by 1H and 4He
ionsin primary human skin fibroblastsin the LET range of 8 to 124 keV/microm. Radiat Res. 151(5), 540-549 (1999).
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DNA Damage and Hypoxia

Presence of oxvaen within a cdll
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Figure adapted from Frankenberg D, Frankenber g-Schwager M, Blocher D, Harbich R. Evidence for DNA double-strand breaksasthe
critical lesionsin yeast cellsirradiated with sparsely or densely ionizing radiation under oxic or anoxic conditions. Radiat Res. 88(3), 524-532
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RBE for DSB Induction

Slide 27
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Many of the published experimental studies (symbols, right panel) detect a subset of
the total number of DSB because not all DNA fragments counted
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DNA Fragmentation Analysis

Size Markers Non Rad [Rad 5 Gy
inKb | PLIR W C

Agarose plug containing irradiated —+ - +
DNA isolated from cells 5700 | W
l ‘l‘ _ 3300 '
Fragments migrate out of the gel
l because of the negative charge 2200 .
carried by the sugar-phosphate 1600
backbone of DNA
1125
Short fragments quickly migrate
-

L arger fragments slowly migrate e

N r—
o

Quantify number and sizes of fragments

2.1

Courtesy A. Geor gakilas (ECU)
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Fragment size distributions
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Holley WR, Chatterjee A. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. |. Theoretical modeling. Radiat Res. 145(2):188-99 (1996). Rydberg B. Clusters of
DNA damage induced by ionizing radiation: formation of short DNA fragments. |1. Experimental detection. Radiat Res. 145(2):200-9 (1996).
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Fragment size distributions
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Holley WR, Chatterjee A. Clusters of DNA induced by ionizing radiation: formation of short DNA fragments. |. Theoretical modeling. Radiat Res. 145(2):188-99 (1996). Rydberg B. Clusters of
DNA damage induced by ionizing radiation: formation of short DNA fragments. |1. Experimental detection. Radiat Res. 145(2):200-9 (1996).
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HRF for DSB Induction

e 7 T ] ForlowLET radiations, DSB
; 1 induction isabout 3-fold lower under
i Ve 1 maximally hypoxic conditionsthan in
_ well oxygenated cdlls (i.e.,, HRF = 3).
§ Y
© [ o LOWLET HRF decreases towards unity
S 25} .
S (O, concentration has no effect)
o | asparticle LET increases.
N 20 F
) i v
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rx | ° -
T b2 = 1  Filled symbols are data from PFGE
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HRF for Cell Survival and DSB Induction

HRF
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Solid Black Line HRF for DSB
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Symbols. HRF derived from published
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Effect of Oxygen Concentration on the HRF
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Low Dose Approximation to the RMF

Trendsin DSB induction with radiation quality and oxygen concentration are
closely related and predictive of general trendsin Linear-Quadratic (L Q) survival
parameterso and o/B (e.g., Carlson et al. 2008)

Intra-track chromsomal
aberrations /

o 2
a=E+xzY’  f=23* —==(0/K)+2Z
Unre_pairal?leanu 2 IB Z
misrepaired | nter-track

aberrations

0, ¥ are adjustable cell- or tissue-specific parametersrelated to biological
processing of DNA damage (independent of LET and O, concentration)

Y isthe number of DSB Gyt Gbp! (or per cell) and isestimated usingthe MCDS
(strong function of LET and O, concentration)

Z_isthe frequency-mean specific energy (in Gy) for the cell nucleus (strong
function of LET but independent of O, concentration) — estimate with the MCDS or
other Monte Carlo code(s)

D.J. Carlson, R.D. Stewart, V.A. Semenenko and G.A. Sandison, Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing. Rad. Res. 169, 447-459 (2008)
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Strategies to estimate 6 and x measured data

(1) Non-linear regression analysis of LQ to survival data for particles
of one or moreradiation quality and one or more O, concentrations

S(D) =exp{-aD — fGD?} = exp{—(HZ +KZ.2%) D —%ZZGDZ}

EstimateX and za priori usng MCDSor other methods. Potentially most accurate. BUT...

can be senditiveto uncertainties in microdosimetry for short-range (high LET) radiations

(2) Use analytical formulasto estimate 6 and k from published LQ
parametersfor areferenceradiation (clinical, animal, in vitro)

1 2

19=—(0(—K‘7F22)Eg Kzgzzalz

2 2 > (al p)

Estimate X and z- a priori using MCDS or other methods.
In practice, insensitiveto uncertaintiesin microdosimetry — > KZZ‘
because for most low LET radiations 2
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Importance of Good Dosimetry (high LET)

100

Surviving Fraction

103 3

10+

10t

102 3

(]

B 28.6 MeV *He®" (24.9 keV/um)
B 25 MeV “He® (26.3 keV/um)
¢ 5.2 MeV *He®* (89 keV/um)

200/250 kVp x-rays (1.3-1.5 keV/um) 4

0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15

Absorbed Dose (Gy)

LQ fitsto data for each particle type
relatively insensitive to systematic
dosimetry errors— it’s the product of
oD and BD? that matters!

But when attempting to predict effects
for high LET radiations from lower
LET radiations, good absolute
dosimetry is important — rejoice
physicists!

oD =(E+xZ.X°)D

macrodosi metry T

microdosimetry
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Cellular and Sub-cellular Dosimetry

Dose per Unit Fluence (nGy per cmz)

Particle Range (um) Entrance Exit Average

1.9 MeV p 67.90 26.90 27.70 27.20
1.15 MeV p 30.00 39.00 41.70 40.00
0.76 MeV p 15.90 52.90 59.40 54.60

3.8 MeV o 25.30 174.20 189.30 179.50
< 2-3% differencein entrance vs exit dose for G1 phase cell

25-35 Um

G1 phase M phase “floater”
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Microdosimetry —» oD=(&+xZ.X*)D
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Analytic formula neglects changes in stopping power while particle passes through
target. Also assumesparticle passesall the way through target. M CDS accountsfor
“stoppers’ and changesin stopping power within tar get
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Predicted Tends in LQ Parameters

25 —mMmMm ———m——————————————— 0.4 ]
[ / : - / High LET |
O 200 & 250 kVp x-ray / _ i / ]
L ! _ - 1
[ oy /
200 0, i

15t

o (Gy™)
B (Gy™)

10 f

0.5_- :
High LET
0.0 i e e 1 - : -3 .4
101 102 103 10% 10 10 10 10

(Zerd B)® (Zerd B)”

(1) Contrary to conventional wisdom, RMF predictsthat 3 tendsto
Increase with increasing LET. (2) Multiple combinationsof LQ
parametersfit measured data about equally.



© University of Washington Department of Radiation Oncology Slide 40

Future Direction

s Additional tectina and raefinement of M C D <S4 -
rA\uUUUuI LI Vil 1l L\AJLIIIH CAITU T UllITIGUITIGLIIL Ul VIV JIT I N\LVI
« Numerical solution of the RMF system of differential equations instead of

low dose LQ approximation
 Effects of chronic hypoxia (?)

= Combine MCDS+RM F modd with MCNPX
radiation transport code

 RBE and O, effectsin pristine and spreadout proton and carbon ion Bragg
peaks (see also Frese et al. IJROBP, 83, 442-450. 2012).

 RBE and O, effectsin the fast neutron beamline at UWMC

+ Estimate neutron tolerance doses from first principles
« Compare to clinical experience and RBE estimates from in vitro experiments

« Dosimetry and biological modeling support for small animal proton
irradiation facility under development at UWMC
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