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Learning Objectives

« Rationalefor BGRT

= Areexisting biological models “ good enough” for

clinical applications?

« Some of the challenges

 Limitations and applicability of BED and EUD concepts with afocuson
intra- and inter-patient heterogeneity

= Examples
« Equivalent prescriptions
 Plan ranking and comparison with EUD

= ThisPresentation and Supplemental Slides
* http://faculty.washington.edu/trawets/

Presenter has no conflicts of interest to disclose
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Why isn’t EBRT more successful?

= Uncertainty in boundary of primary tumor
= |nability to delivery atumoricidal dose
= Migration of diseased cellsto other body parts

: . Subclinical
Dose escalation not always possible Disease
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Motivation for BGRT

35 Frostate Mister

How do we get the most
bang for our buck (dose)?

Outcome Prediction
or
“Biological Metrics’

A way to rank therelative efficacy of
alternate and competing treatments

When local control cannot be achieved through dose escalation,
only RT option isto movethe dose around in space and/or time.
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Four R’s of Radiobiology (conventional wisdom)
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Physics - Chemistry — Biology — Clinic
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The LQ In Radiation Therapy

| naccurate and too simplistic (compared to known biology)

Dose-r ate and dose-fractionation
effects (“ dose protraction factor”)

S(D) = exp(—aD — SGD?)
one-hit damageJ L inter-track damage interaction
Parameters (e.g., o and B) derived from analysis of clinical

outcomes are uncertain and averaged over a heterogeneous
tumor and patient population

JF Fowler, R Chappell, M Ritter, JZ Wang, M Guerrero, XA Li,
|lJROBP 50, 1021-1031 (2001) |lJROBP 55, 194-203 (2003)
o = 0.039 Gy o =0.15Gy?! (4Xhigher)
o/ = 1.49 Gy WB=31Gy  (2Xhigher)

S=1.159 x 103 (37 x 2 Gy) S=2.677 x 108 (10*smaller)
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SF for a Heterogeneous Cell Population
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] Can’t useasingle (average) set of

| LQ radiation sensitivity parameters
] (o, o/B) to predict overall shape of

| dose-response curve

S# exp(-aD-BGD?)

Five Reasons (many others possible)

Genomic | nstability
Repair

Repopulation
Reassortment

Reoxygenation
0

But may bereasonable to extrapolate from a known point?
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Poisson Tumor control probability (TCP)

Most widely used model assumesthat the distribution of the
number of tumor cellssurviving a treatment is adequately
described by a Poisson distribution

TCP=exp{-pVS(D)}
Chance no tumor cells survive a treatment that ddliverstotal dose D

p = number of tumor cellsper unit volume (< 10° cells cnmr3)
V = tumor volume (GTV?CTV?PTV?)

product pV = pre-treatment number of tumor cells

Typical uncertainty? Factorsaslarge as 102 to 10°!

Eradication of some cells, such as cancer stem cells, may be far more
Important than the eradication of others (effective p << 10° cellscm3?)
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Prediction of Local Tumor Control

Tumor Control Probability
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Even small levels of uncertainty in the biological parameters (o and /) have a
big impact on our ability to predict the chance we achieve tumor control
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Outcomes for a Patient Population?
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Equivalent Prescriptions (tumor)

What dose should be delivered to achieve the same level of
biological damage as another treatment?

Reference Treatment Alternate Treatment
TCP( DR) = TCP( D)

exp(—pVS(Dg)) =exp(—pVS(D)) Poisson TCP model

p = cell density (#cm3) V= tumor volume (cm?d)

When comparing or ranking plansin the same patient, p and V may be
considered modality and plan independent constants (same number of
diseased cellsregardless of modality and plan).

S(D.) = S(D) Two biological parameters (p and V) eliminated from
R modeling process (uncertainty in pV doesn’'t matter!)

For individual patients, iso-TCP = iso-survival
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Equivalent dose derived from the LQ

Reference Treatment = Alternate Treatment o and B (or o/B) char acterize
S(Dg) =S(D) intrinsic radiation sensitivity

exp(—aDg — SGD,?) = exp(-aD - SGD?) G isthe dose protraction factor

Take logarithm, apply quadratic formula
and rearrangeterms

D:a/ﬂ 14 o 4GInS(Dy) :a/ﬂ 14 114 4GD, 14 G D

2G a(al fB) 2G (! B) ol f
D isthetotal treatment dose needed to achieve same biological effect as
areferencetreatment that deliverstotal dose Dy

Deter mined by the value of o/ and the dose protraction factor for the
reference and alternate treatments (G and G)
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Equivalent Treatment Schedules

5_alB _1+\/1+ 4GD,, (1+ GRDRj G=ln
2G (@ A" alB)| G=un,

Deter mine biologically equivalent dose D by adjusting the
physical parameter n

N\

n 4D D
D=—(a/fB){-1+ [1+—R |14——R ||
2 N(a ! ) n.(al f)
Reference Treatment New (alternate) Treatment
(“clinical experience”) n = desired number fractions
D = total dose (Gy)
Nk = number fractions Uncertainty in D mainly arisesfrom

ds = Dg/n, (fraction size) uncertainties associated with o/f.
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Biologically Effective Dose (BED)

How is an iso-effective physical doserelated to BED?

D:a/ﬂ
2G

al B
2G

al
2G

D =

< —1+\/ —
=1+ \/1+

—1+\/1+ 4G

4GInS(Dy)
a(al )
4G d )
(OK/IB) DR (1_'_ a/R ] ( No repopulation effects
D, {1+ d:  7(Tg —T)} >
0(/,B 0(/,3 aDR

Correction for exponential repopulation without time lag —/
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Equivalent Treatments (prostate cancer)
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Inter-Patient Heterogeneity

D:D(a/ﬂ){—l+\/l+ 4Dr (1+ Dr j}
2 n(a! f)\  nglalp)

When applied to a patient population, we areimplicitly assuming that
o/B isthe samefor all patientsfor the reference and alter nate treatment —
an assumption that issurely incorrect!

| nter-Patient Heterogeneity

Thought Experiment: All patients (tumors) have a different effective a/f (unknown
distribution). BUT ... same value of o/ isappropriate (as a first approximation) in the same
patient for competing plans and modalities

How does inter-patient heter ogeneity influence our ability to
deter mine equivalent prescription dose?

How sensitive are estimates of D to uncertaintiesin o/f?
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Effects of Inter-Patient Heterogeneity
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reasonable — even for a very heterogeneous patient population
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Equivalent Uniform Dose (EUD)

Concept of an EUD introduced by A. Niemierko in 1997

“Itisintuitively logical that, for any inhomogeneous dose distribution
delivered to a volume of interest (VOI) according to a certain
fractionation scheme, there existsa unique uniform dose distribution
delivered in the same number of fractions, over the sametotal time,
which causes the same radiobiological effect.

Theimportant feature of this equivalent dose distribution would beits
unifor mity, which allows one to use a single number to describe the entire
VOI dosedistribution. Of cour se, the equivalent dose dependson the
considered effect.”

A. Niemierko, Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys.
24(1), 103-110 (1997).
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EUD for tumor control and cell survival

N

exp(—aEUD — BEUD?) = pin:vipi exp(-a;D, - BD7)

i=1

To solvefor EUD, take logarithm and apply quadratic
formula |

1 .. |, 4InS | 1 B 4BED e
EUD—Za/,B[ 1+\/ a(a/,B)J 20:/,6{ 1+\/1+ (0!/,5)}

8]

N

_ 1 E:V 2

= 1% eXp(_OfiDi - D )
PV i1

Delivery of dose = EUD to all i regionswill produce same surviving
fraction and level of tumor control as heterogeneous dose distribution
(array of D; values)
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EUD for a heterogeneous cell population

EUD/Dose

0.5

0.6 1

.................................................

Individual filled symbols denote Monte
Carlo sampling of the radiation
response char acteristics of 1000 cells
given a uniform dose of radiation (x-
axis).

Open circles. & sampled from 0.1 Gy
to 0.2 Gy, (a/f), sampled 2to 4 Gy
(population-average: ar= 0.15 Gy?, o/ 8
=3 Gy).

Filled Triangles: ¢ sampled from 0.05
Gy1t00.5Gy!and (a/f), sampled
from1t010Gy (= 0.275 Gy, a/f=
5.5 Gy).
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Effects of intra-tumor heterogeneity

44 x 1.80 Gy (original) 39 x 1.95 Gy (o/B = 1.5 Gy) 20 x 2.94 Gy (/P = 1.5 Gy)

o/B sampled from a
uniform pdf (1 to 10 Gy)
on a voxel by voxel
basis

>
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EUD for large dose per fraction

So-called “ generalized” geUD neglectsthe BGD?

component of cell killing

« Most of our knowledge of the effects of radiation on normal tissues
comes from conventional (low dose) fractionation

Step 1. Convert 3D dose distribution for hypofractionated (n; < 3-5) treatment
into equivalent conventional (n < 30-45) 3D dose distribution

d:(a/'B) —1+\/1+ Ady r]R(1+ A j Apply on voxel by
2 (! f) n al )| voxd bass

Step 2. Convert 3D dose distribution U
for conventional treatment into gEUD = ZV D.
gEUD

a =1 (average dose), a — +eo (maximum dose), a — -eo (Minimum dose)
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Summary

= Absolute quantitative prediction of tumor control,
complication ratesand cell survival very sensitive to even
small uncertaintiesin biological parameters

» Such models are (and always will be) a highly non-linear function of dose

= For aheterogeneous patient (or cell) population, shapes of
dose-response curve cannot be accurately modeled using
the LQ and a single set of (average) radiosensitivity
parameters

o Usefulness of alternate mathematical models usually offset by introduction of additional
ad hoc biological parametersinto modeling process

= Direct useof TCP, NTCP modelsto compare and rank
alter nate plans and modalities may result in the selection of

Inappropriate or suboptimal treatments
» Also need to specify large number of biological inputs
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Robust BGRT — Key Points

= Many (all?) clinical questions can be usefully tackled using
biological metrics (doses) derived from existing models
» Semi-quantitative relative plan ranking and comparison
= Biological metricsderived by equating acceptable
treatmentsto alternate ones

» Need to incorporate corrections for relevant biology into biological
metrics (repopulation effects, LET effects, oxygen effects, low-dose
hyper-radiation sensitivity, bystander effects, ...)

» | soeffect calculation areremarkably insensitiveto

uncertaintiesin biology parameters

» Assessthe impact of uncertainties associated with biological parameters through
Monte Carlo sampling (or other methods)

» Uncertaintiesin biology offset by clinical judgment (i.e., the use of a“reference
treatment”)
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Future of BGRT — Individualize and Adapt

= Patient imaging first part of treatment
» Estimate of one or two key biological parameters from patient imaging

» |ndividualized 1soeffect calculations

» Sample other biological parameters from probability distributions for an
appropriate patient population

= |ndividualize and adapt 2"d stage of tr eatment

« Compare and rank alternate plans and modalities for individual patients
+~ Boogt, alter modality (e.g., protons), re-size GTV or PTV, ...

 Patient-specific cost-benefit analysis of adapted treatment
+ |sit worthwhileto alter the original plan?
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Supplemental Slides

= Repopulation Effectsin External Beam Therapy
= Brachytherapy | soeffect Calculations
= Derivation of EUD formula

This presentation along with the supplemental
sidesavailable at

http://faculty.washington.edu/trawets/
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Equivalent dose — repair and repopulation

Reference Treatment = Alternate Treatment
S(Dg) = S(D)

exp(-aDg — BGD.? + ¥T; ) = exp(-aD — SGD? + 4T

Take logarithm, apply quadratic formula
and rearrangeterms

r

N _alB _1+\/1+ 4GD, {1+ GeD, 7T, —T)}

Vo

N

2G al al oDy

J

D isthetotal treatment dose needed to achieve same biological effect as
areferencetreatment that deliverstotal dose Dy

Determined by the value of o/ (in Gy), y/o. (in Gy/day) and the dose
protraction factor for thereference and alternate treatments (G and Gg)



© University of Washington Department of Radiation Oncology Slide 29

Repopulation Effects — Fast and Slow
Growing Tumors

Total Dose (Gy)

N

15t

85 |
80
75 E
70 F
65 F
60 F
55 F
50
a5
a0
35 F
30
25

20F

Total Dose (Gy)

(0=0.15Gy?, o/ =3.1Gy)

Number of Fractions Number of Fractions

Repopulation effects are negligible for ow growing tumors but
potentially very significant for fast growing tumors
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Are gains in tumor control significant?

Slide 30

Total Dose (Gy)
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n = 20 (6.4% gain)

Number of Fractions

Reference: 44 x 1.8 Gy

Total Dose (Gy)

0 5 10 15 20 25 30 35

Number of Fractions
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Key Point #2: Clinical significance of potential gains (or losses) are easily judged

when expressed in terms of physical dose.

50
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Prescription dose for competing modalities?
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Fractionated Exter nal
Beam Radiation Therapy
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Fractionated EBRT — Brachytherapy

Slide 32

Dose for a brachytherapy procedure (again) deter mined by

D= “’ﬂ<—1+\/1+ 4CDx

{H

GRDR _ 7(TR _T)

|

N

~N

2G ol B ol oD,
Reference Treatment Brachytherapy Procedure
(“clinical experience”) (1+ %) 5
Dy, = total dose (Gy) =G, { (1— %) - (1>:XX)2 [1— g it ]}
Nk = number fractions
dr = Dg/n, (fraction size) G.=ul(u+1) Xx=exp(—uT)

Te=(ng-1) + 2int[(ng - 1)/9]

T relates to T

T = effective treatment time

y=2ul(4-u)
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Brachytherapy — Isotope Selection and Dose
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100 10! 102

Isotope Half-Life (days)
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EUD Motivation — which 1s better?

Region 1 Region 2 Region 3

Distribution 1 Distribution 2
D,=74
D —78% ol
D= 760G —>EUD EUDZ(_ D,=75Gy
- y D; =80 Gy
Davg 76 Gy Davg =76 Gy

EUD =thedose applied to all threeregionsthat would
produce the same overall level of biological damage

In general, EUD # D, (because cell killing isa non-linear function of dose)

Biological damage increaseswith increasing EUD
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EUD for tumor control (3)

N

exp(—aEUD — BEUD?) = pin:vipi exp(-a;D, - BD7?)

i=1

To solvefor EUD, takelogarithm and apply quadratic

!

EUD:la/ﬁ[—l+\/l— 4InS ]:ialﬂ(—l+\/1+ 4@]
2 el ) ) 2 (el B)

0p]

N

_ 1 E:V 2

= 1% eXp(_OfiDi - pD )
PV i1

Delivery of dose = EUD to all i regionswill produce same surviving
fraction and level of tumor control as heterogeneous dose distribution
(array of D; values)
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EUD for tumor control (1)

N
Ter(eup) = | [ rer
i=1

eXp{_ZVipi 3 EUD)} = exp|:_ZVipi S(D, )jl

=1 i=1

Neglect repopulation effects

N N

Zvipi [exp(—ai EUD - 5 EUDZ)] = Z"ipi exp(-a,D, - AD?)

=1 i=1
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EUD for tumor control (2)

N N

Zvipi [exp(—ai EUD - 5 EUDZ)] = Z"i”i exp(-a,D, - AD?)

i=1 i=1

Solvefor EUD - in principle, formula applicable to any
dosedistribution

Assume ok to replace o and B, on the left-hand-side
(LHS) with tumor-averaged parameters o and 3

N

eXp(—OtEUD _'BEUDZ) :inZVipi eXp(_ai D -4 Di2)

i=1
N N

1
ngvandps—zv..
| V |p|

=1 i=1
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EUD for tumor control (3)

N

exp(—aEUD — BEUD?) :pin:vipi exp(-a;D, - BD7)
To solvefor EUD, takelogarithm and apply
quadratic }

EUD =1alﬁ[—1+\/1— AInS J
2 ool )

0p]

N

_ 1 E:V 2

= 1% eXp(_OfiDi - pD )
PV i1

Delivery of dose = EUD to all i regionswill produce same surviving
fraction and level of tumor control as heterogeneous dose distribution
(array of D; values)



