
Damage formation and repair data for radiations commonly used in microbeam 
studies of low-dose radiation biology 
  
During the last several years charged-particle microbeams proved themselves as powerful tools in radiobiological 
research (for review see [1]).  Currently two microbeam facilities are routinely used for radiobiological 
experiments. These are the Radiological Research Accelerator Facility (RARAF) at Columbia University [2] and 
the Gray Cancer Institute (formerly Gray Laboratory) microbeam [3, 4].  The Special Microbeam Utilization 
Research Facility (SMURF) at Texas A&M University is based on microbeam equipment relocated from Pacific 
Northwest National Laboratory [5] and is also available for radiobiological studies. 
  
We used a Monte Carlo excision repair (MCER) model [6, 7] to generate damage formation and repair data for 
particles that have been used in various microbeam studies.  The DNA damage portion of the MCER model is 
based on the Monte Carlo damage simulation (MCDS) algorithm proposed by us [8, 9].  The MCDS algorithm is 
capable of generating data for protons and α particles of different energies and for 4.5 keV electrons considered 
representative of low-LET radiation.  The MCDS model parameters for heavy-charged particles (protons and α 
particles) are identical with the exception of one parameter, nseg, which is dependent upon the particle LET (refer 
to Fig. 5 in [8]).  This property allows one to determine the algorithm parameters for other heavy-charged 
particles of the same LET.  Using this approximation, damage formation and repair data for 4 MeV α particles, 
which have LET of approximately 100 keV/µm, can be used in place of data for 3He2+ ions that have been 
extensively used in studies performed with the Gray Cancer Institute microbeam. 

Columbia University 
  
The Columbia University microbeam is designed to deliver helium or hydrogen ions with different energies that 
cover the range of LET from 30 to 220 keV/µm [2].  To date, all the studies that utilized this microbeam have 
been performed with 5.3 MeV α particles that have LET of approximately 90 keV/µm (for examples of studies 
with this microbeam system, see [10–21]). 

5.3 MeV α particles (input file, output file) 

Gray Cancer Institute 
  
The Gray Cancer Institute microbeam was initially configured to irradiate cells with protons of energies <3.5 
MeV [3].  Later a change has been made to also deliver 3He2+ ions.  The majority of studies performed using the 
Gray Cancer Institute microbeam used 3He2+ ions with LET of ~100 keV/µm [22–26].  1 and 3.2 MeV protons 
have also been utilized in some experiments [27, 28]. 

4 MeV α particles; equivalent to 100 keV/µm 3He2+ ions (input file, output file)
 

1 MeV protons (input file, output file) 
3.2 MeV protons (input file, output file) 

PNNL/Texas A&M University 
  
The Texas A&M University microbeam is capable of producing α particles and protons with energies up to 6 
MeV and up to 4 MeV respectively.  Also available is a 100 keV electron microbeam.  The predecessor of 
TAMU's microbeam, the microbeam at Pacific Northwest National Laboratory, has been applied in one study that 
utilized 3.2 MeV α particles [29]. 

3.2 MeV α particles  (input file, output file)
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