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Abstract:  Public forests have many conflicting uses.  Designing forest management schemes that 3 

provide the public with an optimal bundle of benefits is therefore a major challenge. Although a 4 

capability to quantify and visualize the tradeoffs between the competing objectives can be very useful 5 

for decision makers, developing this capability presents unique difficulties if three or more conflicting 6 

objectives are present and the solution alternatives are discrete. This study extends four multi-objective 7 

programming methods that generate spatially-explicit forest management alternatives that are efficient 8 

(non-dominated) with respect to three or more competing objectives.  The algorithms were applied to a 9 

hypothetical forest planning problem with three timber and wildlife-related objectives.  While the ε-10 

Constraining and the proposed Alpha-Delta Method found a larger number of efficient alternatives, the 11 

Modified Weighted and the Tchebycheff methods provided a better overall estimation of the timber and 12 

non-timber tradeoffs associated with the test problem. Additionally, the former two methods allowed a 13 

greater degree of user control and are easier to generalize to n-objective problems. 14 

Keywords: multi-objective forest planning, spatial optimization, integer programming, tradeoffs 15 

Introduction 16 

Management planning problems with conflicting objectives occur frequently in forestry.  The 17 

public expects more from forest resources than merely timber production, including watershed 18 

protection, wildlife habitat management, aesthetics, recreation and carbon sequestration.  Stakeholder 19 

groups such as the timber industry and environmental organizations often hold strongly conflicting 20 

values related to these uses, and conflicts between timber and non-timber objectives are common.  21 

Harvesting can fragment sensitive habitats, obstruct the movement of wildlife, increase fire risk, and 22 

reduce the aesthetic value of the forest.  On the other hand, eliminating timber production from public 23 
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forests in industrialized nations, as many suggest, would only increase the pressure on forest resources 1 

in less developed nations, where environmental controls may be less effective (Thomas 2000).  2 

Moreover, other uses, such as recreation, can also stress forest ecosystems.  However, the tradeoffs 3 

between conflicting goals can often be balanced effectively within a landscape or forest through careful 4 

planning (Rosenbaum 2000).  In most cases, quantifying the tradeoffs to determine the degree of 5 

incompatibility between competing forest uses can help decision makers (DM) select the best 6 

compromise management alternatives.   7 

The spatial layout of forestry operations such as harvesting or road construction can have a 8 

profound impact on many non-timber objectives.  Spatially-explicit forest management planning models 9 

are useful for efficiently designing the location and timing of these operations while also addressing 10 

wildlife habitat concerns (e.g., Rebain and McDill 2003a, 2003b).  These models, usually formulated as 11 

integer programs (IPs), are used to determine when specific harvest units should be cut and when and 12 

where other site-specific management interventions should be performed in order to balance various 13 

forest uses.  Most often, these models have been formulated as single objective problems, where one 14 

forest use is optimized subject to a range of restrictions (e.g., Leuschner et al. 1975; Mealey and Horn 15 

1981; Cox and Sullivan 1995; Bettinger et al. 1997; Rebain and McDill 2003a, 2003b).  Some of these 16 

restrictions ensure that minimum requirements on both timber and non-timber objectives are met.  One 17 

example would be to maximize timber output or the discounted net revenues from a forest subject to 18 

constraints requiring a balanced ending age-class distribution, a smooth flow of timber production over 19 

time, and maintaining a minimum amount of mature forest habitat in large compact patches while never 20 

exceeding a maximum harvest opening size.  Alternatively, the amount of mature forest habitat could be 21 

maximized subject to minimum net present value or minimum timber output constraints. 22 

In these types of formulations, the DM(s) is required to specify the minimum requirements on 23 

some forest uses prior to the optimization process.  Defining harvest targets might be relatively 24 

straightforward, but setting limits on the amount of mature forest habitat patches, for instance, might not.  25 
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Without knowing what habitat requirements are feasible and which are too modest, specifying such 1 

limits is typically guesswork and can lead to poor decisions.  Furthermore, better decisions can be made 2 

if the DM(s) understand the tradeoff structure between competing objectives before setting requirements 3 

on various objectives.  Another frequently used approach, goal programming (Charnes et al. 1955), does 4 

not completely overcome this problem either, as it requires the DM to set up targets on the objectives 5 

that, unlike constraints, do not have to be met.  Goal programs (GP) minimize the deviations from the 6 

targets in either an order of preference (preemptive GP) or in line with a set of weights assigned to each 7 

objective (non-preemptive GP).  Either way, the DM has to specify both the targets and the weights or a 8 

preference list for the objectives prior to formulating the model. 9 

When possible, generating and visualizing the complete – or an effectively filtered – set of 10 

efficient (a.k.a., Pareto-optimal, Pareto 1909) solutions to forest planning problems should help the 11 

DM(s) acquire a holistic view of the problem and enable a more informed decision when selecting a best 12 

compromise management alternative.  As opposed to dominated solutions, efficient alternatives are 13 

those whose objective achievements cannot be further improved without compromising at least one 14 

objective. This unique set of solutions defines the so-called efficient frontier.  Studying this frontier can 15 

be valuable to the DM(s) for two reasons.  First, the efficient frontier separates the region where 16 

additional solutions do not exist from the region where dominated solutions might exist (Tóth et al. 17 

2006).  Thus, the DM can assess the limits of simultaneously achieving several conflicting objectives.  18 

In other words, the efficient frontier answers the question: what is possible?  Second, by moving along 19 

this frontier (i.e., by moving between Pareto-optimal solutions), one can also assess the amount of one 20 

objective that must be forgone in order to achieve a given increase in the amount of another objective.  21 

Thus, the efficient frontier identifies the structure of the tradeoffs between the competing objectives 22 

represented by the axes of the efficient frontier space. 23 

Since in spatial forest planning many management decisions are binary, such as whether or not a 24 

certain forest unit with predefined boundaries should be cut within a given time interval, the set of 25 
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feasible model solutions is discrete (Tóth et al. 2006).  As a result, the set of attainable objective 1 

function values, and hence the efficient frontier itself, is also discrete, and therefore non-convex.  This 2 

property makes it computationally challenging to generate the efficient frontiers for spatially-explicit 3 

forest management planning problems. 4 

Tóth et al. (2006) evaluated and tested four traditional methods of generating the efficient 5 

frontier for a bi-objective spatially-explicit forest management planning problem.  The four approaches, 6 

(1) the Weighted Objective Function method (Geoffrion 1968), (2) the ε-Constraining method (Haimes 7 

et al. 1971), (3) the Decomposition method based on the Tchebycheff-metric (Eswaran et al. 1989), and 8 

(4) the Triangles method (Chalmet et al. 1986), were tested on a 50-management unit hypothetical forest 9 

planning problem.  Tóth et al. (2006) also proposed a new approach called the “Alpha-Delta” method 10 

that performed well compared to the other approaches.  The two objectives of interest in their test case 11 

were to maximize the net present value (NPV) of the forest and to maximize the minimum amount of 12 

mature forest habitat in large patches over the planning horizon. 13 

Most forest planning problems involve more than two competing objectives.  A limited number 14 

of theoretical studies on generating the set of efficient alternatives for three- or more objective IPs have 15 

been documented.  One primary area of research has been the family of the so-called reference point 16 

methods (Ehrgott and Wiecek 2005).  The concept is simple: an efficient solution can be found by 17 

minimizing the distance between a reference point, which can be any unattainable solution in the 18 

objective space, such as the ideal solution or goal programming targets, and potential non-dominated 19 

solutions (the ideal solution is a vector of objective function values that are gained by optimizing the 20 

problem for each objective, one at a time, without regard to the rest of the objectives). The distance 21 

measure that is most often used is the weighted (or not) Tchebycheff-metric and its variants.  Different 22 

efficient solutions can be found by changing the weights on the distance metric (e.g., Eswaran et al. 23 

1989). Moreover, the reference points themselves can be varied to identify other solutions (e.g., Alves 24 
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and Clímaco 2001).  However, due to the discrete nature of integer programming, different weight 1 

combinations and different reference points can also lead to identical solutions.  Thus, a “smart” 2 

decomposition of the weight space (or the reference point space) into regions that lead to the same 3 

solutions is needed to reduce the time spent finding redundant solutions.  These regions are called 4 

indifferent sets and are convex in the weight space and non-convex in the reference point space (Alves 5 

and Clímaco 2001).  The reference point methods find efficient solutions by determining or 6 

approximating these indifference sets. 7 

An algorithm proposed by Chalmet et al. (1986) finds Z efficient solutions with respect to n 8 

objectives by solving at least 1n Z + IPs.  The efficiency of this approach is questionable given that the 9 

ε-Constraining method (Sadagopan and Ravindran 1982), which appeared to be slow in the bi-objective 10 

case (Tóth et al. 2006), finds the same number of solutions by solving only n Z  IPs. 11 

Case studies assessing the numerical and computational performance of the available multi-12 

objective methods as applied to larger than “illustrative” problem instances are not common.  This is 13 

particularly true for the area of forest resources and wildlife management.  Although efficient frontiers 14 

with respect to two objectives have been studied in (Roise et al. 1990; Holland et al. 1994; Cox and 15 

Sullivan 1995; Arthaud and Rose 1996; Church et al. 1996; Snyder and ReVelle 1997; Williams 1998; 16 

Church et al. 2000; Richards and Gunn 2000), the efficient frontiers of discrete forest management 17 

decision problems with three or more objectives have apparently not been researched. Generalizing 18 

algorithms that work well for bi-objective problems to problems with three or more objectives is 19 

challenging because of the added mathematical and computational complexity. Nevertheless, this task is 20 

important as few forest planning problems involve only one or two competing management objectives. 21 

 The present study builds on Tóth et al. (2006) by extending three of the four traditional 22 

approaches, the Weighted Objective Function method, the ε-Constraining method, and the 23 
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Decomposition method based on the Tchebycheff-metric, and the proposed Alpha-Delta method to 1 

handle three or more objectives.  The same 50-management unit hypothetical forest planning problem 2 

used in Tóth et al. (2006) is used to demonstrate and evaluate the mechanics of the extended methods in 3 

generating the efficient frontier of a tri-objective spatial forest planning problem. Two of the objectives 4 

are the same as in Tóth et al. (2006): (1) maximize discounted net timber revenues, and (2) maximize the 5 

minimum area of mature forest habitat that evolves in large patches over the planning horizon.  The third 6 

is to minimize the total perimeter of the patches (summed over all periods).  The formulation of this 7 

objective was introduced in Tóth and McDill (2008).  Maximizing the area of mature forest habitat 8 

patches while minimizing their total perimeter promotes forested landscapes with several desirable 9 

spatial characteristics.  This approach fosters the development of patches with low perimeter-area ratios, 10 

increases their temporal overlap, and results in fewer and larger patches. 11 

The Model Formulation 12 

This section describes a tri-criteria integer programming formulation that (1) maximizes the net 13 

present value of the forest, (2) maximizes the minimum amount of mature forest habitat in large patches 14 

over the planning horizon, and (3) minimizes the total length of the edges of these patches over the 15 

planning horizon.  The model includes harvest flow constraints, maximum harvest opening size 16 

constraints, constraints that define the minimum area of mature forest habitat patches, and an average 17 

ending age constraint.  The formulation of the mature forest patch criterion is a slightly modified version 18 

of the one presented in Rebain and McDill (2003b).  Formulation of the maximum harvest area 19 

constraints is a generalization of the formulation presented in McDill et al. (2002).   20 

 21 
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where the decision variable is: 8 

mtX   = a binary variable whose value is 1 if management unit m is to be harvested in period t 9 

for t = hm, hm+1,…,T; when t = 0, the value of the binary variable is 1 if management unit 10 

m is not harvested at all during the planning horizon (i.e., 0mX  represents the “do-11 

nothing” alternative for management unit m); 12 

the auxiliary and accounting variables are: 13 

mtO  = a binary variable whose value may equal 1 if management unit m meets the minimum 14 

age requirement for mature patches in period t, i.e., the management unit is old enough to 15 

be part of a mature patch; 16 

ctB  = a binary variable whose value is 1 if all of the management units in cluster c meet the 17 

minimum age requirement for mature patches in period t, i.e., the cluster is part of a 18 

mature patch; 19 

mtBO  = a binary variable whose value is 1 if management unit m is part of a cluster that meets 20 

the minimum age requirement for large mature patches, i.e., the management unit is part 21 

of a patch that is big enough and old enough to constitute a large, mature patch; 22 

{ }0,1mtX ∈
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pq
tΩ  = a binary variable whose value is 1 if adjacent management units p and q are both part of 1 

a cluster that meets the minimum age requirement for large mature patches in period t; 2 

tV  = a continuous variable indicating the total volume of sawtimber in m3 harvested in 3 

period t; 4 

tμ  = the total perimeter of mature forest habitat patches in period t; and 5 

the parameters are: 6 

hm  = the first period in which management unit m is old enough to be harvested; 7 

λ  = the minimum area of mature forest habitat patch over all periods; 8 

M = the number of management units in the forest; 9 

N = the number of pairs of management units in the forest that are adjacent;  10 

T  = the number of periods in the planning horizon; 11 

mtc  = the discounted net revenue per hectare if management unit m is harvested in period t, 12 

plus the discounted residual forest value based on the projected state of the management 13 

unit at the end of the planning horizon; 14 

mA  = the area of management unit m in hectares; 15 

mP  = the perimeter of management unit m in meters; 16 

pqCB  = the length of the common boundary between the two adjacent management units p, q in 17 

meters; 18 

mtv  = the volume of sawtimber in m3/hectare harvested from management unit m if it is 19 

harvested in period t; 20 

Mht = the set of management units that are old enough to be harvested in period t; 21 
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ltb  = a lower bound on decreases in the harvest level between periods t and t+1 (where, for 1 

example, ltb = 1 requires non-declining harvest; ltb = 0.9 would allow a decrease of up to 2 

10%); 3 

htb  = an upper bound on increases in the harvest level between periods t and t+1 (where, for 4 

example, htb = 1 allows no increase in the harvest level; htb = 1.1 would allow an increase 5 

of up to 10%); 6 

P  = the set of all paths, or groups of contiguous management units, whose combined area is 7 

just above the maximum harvest opening size (the term “path,” as used in this paper, is 8 

defined in the following discussion);  9 

pM  = the set of management units in path p; 10 

pMn  = the number of management units in path p; 11 

hi = the first period in which a management unit in path i can be harvested; 12 

mtJ   = the set of all prescriptions under which management unit m meets the minimum age 13 

requirement for mature patches in period t; 14 

C = the set of all clusters, or groups of contiguous management units whose combined area 15 

is just above the minimum large, mature patch size (the term “cluster,” as used in this 16 

paper, is defined in the following discussion); 17 

cM  = the set of management units that compose cluster c; 18 

 cn  = the number of management units in cluster c; 19 

mC  = the set of all clusters that contain management unit m; 20 

T
mtAge  = the age of management unit m at the end of the planning horizon if it is harvested in 21 

period t; and 22 
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T
Age  = the target average age of the forest at the end of the planning horizon. 1 

 2 

Equation (1) specifies one of the three objective functions of the problem, namely to maximize 3 

the discounted net revenue from the forest during the planning horizon, plus the discounted residual 4 

value of the forest.  Equation (2) maximizes the minimum amount of total area in large, mature forest 5 

patches over the time periods in the planning horizon. The rationale behind this objective is to ensure 6 

that the needs of sensitive species that require a minimum area of contiguous old forest habitat at any 7 

particular point in time to survive and to disperse will be met by the solution to the model. Equation (3) 8 

minimizes the sum of the perimeters of these patches over the entire planning horizon with the goal of 9 

promoting patch shapes that contain as much interior habitat versus edge habitat as possible. Our 10 

primary goal with these objective functions was to provide a realistic example that demonstrates the 11 

mechanisms and the utilities of the proposed multi-criteria methods.  12 

Constraint set (4) consists of logical constraints that allow only one prescription to be assigned to 13 

a management unit, including a do-nothing prescription.  To prevent management units from being 14 

scheduled for harvest before they reach a minimum harvest age, harvest variables ( mtX ) are created only 15 

for periods where management unit m is old enough to be harvested. Constraint set (5) consists of 16 

harvest accounting constraints that assign the harvest volume for each period to the harvest variables 17 

( tV ).  Constraint sets (6) and (7) are flow constraints that restrict the amount by which the harvest level 18 

is allowed to change between periods.  In the example below, harvests were allowed to increase by up to 19 

15% from one period to the next or to decrease by up to 3%. 20 

Constraint set (8) consists of adjacency constraints generated with the Path Algorithm (McDill et 21 

al. 2002).  These constraints limit the maximum size of a harvest opening, often necessary for legal or 22 

policy reasons, by prohibiting the concurrent harvest of any contiguous set of management units whose 23 

combined area just exceeds the maximum harvest opening size.  The exclusion period imposed by these 24 
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constraints equals one planning period.  A “path” is defined for the purposes of the algorithm as a group 1 

of contiguous management units whose combined area just exceeds the maximum harvest opening size.  2 

These paths are enumerated with a recursive algorithm described in (McDill et al. 2002).  A constraint is 3 

written for each path to prevent the concurrent harvest of all of the management units in that path, since 4 

this would violate the maximum harvest opening size.  This is done for each period in which it is 5 

actually possible to harvest all of the management units in a path.  (In the initial periods of the planning 6 

horizon, some of the management units in a path may not be mature enough to be harvested.)  7 

Constraint sets (9)–(15) are the mature patch size constraints.  Constraint sets (9)-(10) determine 8 

whether or not management units meet the minimum age requirement for mature patches.  These 9 

constraints sum over all of the prescription variables for a management unit under which the unit would 10 

meet the age requirement for mature patches in a given period.  mtO  is equal to 1 if and only if one of 11 

these prescriptions has a value of 1, indicating that the management unit will be “old enough” in that 12 

period.  One pair of these constraints is written for each management unit in each period. 13 

Constraint sets (11)-(12) determine whether or not a cluster of management units meets the 14 

minimum age requirement for mature patches.  Clusters are defined here as contiguous groups of 15 

management units whose combined area just exceeds the minimum mature patch size requirement.  All 16 

possible clusters are enumerated using a recursive algorithm described in Rebain and McDill (2003b).  17 

A cluster meets the age requirement for mature patches in period t if all of the management units that 18 

compose that cluster meet the age requirement, as indicated by the mtO  variables for the management 19 

units in that cluster. ctB  takes a value of 1 if and only if cluster c meets the age requirement in period t.  20 

These pairs of constraints are written for each cluster in each period. 21 

Constraint sets (13)-(14) determine whether or not individual management units are part of a 22 

cluster that meets the minimum age requirement, i.e., whether a management unit is part of patch that is 23 

big enough and old enough.  Since the clusters may overlap, this constraint set is necessary to properly 24 
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account for the total area of large, mature patch habitat.  These constraints say that a management unit is 1 

part of a patch that meets the minimum age and size requirement for large, mature patches in period t 2 

( mtBO  = 1) if and only if at least one of the clusters it belongs to meets the age requirement in that 3 

period.  Constraint set (15), working in concert with objective function (2), assigns the smallest of the 4 

three total mature patch areas that correspond to the three planning periods to an accounting variable: λ.  5 

This is done by specifying through constraint set (15) that λ cannot be larger than the mature forest 6 

patch area in any period.  Objective function (2) maximizes λ to ensure that it will not take a value that 7 

is less than the smallest of the three total habitat areas. 8 

Constraint sets (16)-(18) also work together. Constraint (16) calculates the total perimeter of the 9 

mature forest patches that arise in each period, and assigns this value to accounting variable tμ  10 

(denoting the total perimeter of the patches in period t).  The sum of the total perimeters over the 11 

planning horizon is minimized by objective function (3).  Constraints (17)-(18) define a new binary 12 

variable pq
tΩ that substitutes for what would otherwise be a non-linear cross-product term 13 

( qtpt
t
pq BOBO=Ω ) in (16).  Constraint set (18) is not necessary if objective function (3) is to minimize 14 

the perimeter.  On the other hand, if the objective was to maximize edge habitat then constraint set (18) 15 

would be necessary and (17) could be dropped. 16 

Constraint (19) is an ending age constraint.  It requires the average age of the forest at the end of 17 

the planning horizon to be at least 
T

Age years, preventing the model from over-harvesting the forest.  In 18 

the example below, the minimum average ending age was set at 40 years, or ½ the optimal economic 19 

rotation.   20 

Constraint sets (20)-(23) identify the management unit prescription, mature patch size, and the 21 

PQ
tΩ  variables as binary. 22 
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Methods 1 

This section describes how the four bi-objective generating techniques tested in Tóth et al. (2006) 2 

can be generalized to identify the efficient set with respect to three or more objectives.  These techniques 3 

are the Alpha-Delta, the ε-Constraining, the Modified Tchebycheff and the Weighted methods.     4 

 The Alpha-Delta Method 5 

The Alpha-Delta Method finds efficient solutions by progressively moving from one end of the 6 

efficient frontier to the other (Tóth et al. 2006).  A slightly sloped weighted objective function is used 7 

with weights that are constant throughout the algorithm. The weights are normalized and the criteria 8 

values are scaled using the ideal solution vector. The relative difference in the weights assigned to the 9 

respective objectives is controlled by the parameter α (slope).  This parameter has to be small enough to 10 

not miss any solutions but must be greater than zero to avoid dominated solutions. At each iteration a 11 

new efficient solution is found and the search space is constrained using the achievement vector 12 

corresponding to the new solution. Constraining the search space for problems with three or more 13 

objectives is not trivial, however. 14 

Suppose that the tri-criteria problem described in Section 2 is solved after the three objectives are 15 

scalarized using the slope parameter (α) of the Alpha-Delta Algorithm.  Let N1, H1, and E1 denote the 16 

achievements on objective function (1), (2), and (3), respectively.  As long as α > 0, the following will 17 

be true for the rest of the efficient solutions: 1 1 2 1( )  and either ( )f x N f x H< >  or 3 1( )f x E− > , where 18 

( )if x  denotes the value of objective function i.  The latter two of these constraints can be used to restrict 19 

the search space for the remaining solutions.  Inequality 1 1( )f x N<  must hold for any solution in this 20 

region, because if 1 1( )f x N≥  was true for any one of the remaining efficient solutions then that solution 21 

would have been found at the first iteration.  As long as α is small enough, we can rule out the region 22 

where 2 1( )  f x H≤ 3 1and ( )f x E− ≤  both hold since if there were a solution in that region that dominates 23 
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(N1, H1, E1), it would have had a higher 1( )f x  than N1 and should have been found at the first iteration.  1 

To ensure that the search space is confined to objective function values of 2 1( )  f x H> 3 1or ( )f x E− >  at 2 

the second iteration, the following set of constraints are added to the original problem. 3 

 4 

1 1( )habH yλ δ≥ +          (24)          5 

1 2( )t edge
t T

E yμ δ
∈

− ≥ +∑         (25) 6 

1 2 1y y+ =           (26) 7 
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 9 

where λ      =  the minimum area of mature forest habitat in patches over all periods; 10 

tμ  =  the total perimeter of mature forest habitat patches in period t; 11 

1H  =  achievement on λ  from iteration one; 12 

1E  =  achievement on μ
∈

−∑ tt T
 from iteration one; 13 

,  hab edgeδ δ  =  user-defined, sufficiently small constants; 14 

1 2, y y  =  binary variables that ensure that only one of the constraints (24) and (25) is enforced. 15 

 16 

Constraints (24)-(27) ensure that either the minimum area of mature forest habitat patches over 17 

all periods (λ ) is strictly greater than 1H  or the total perimeter of the patches ( )μ
∈∑ tt T

 is strictly 18 

smaller than 1E .  The strictly greater (or smaller) requirement is needed to avoid repeatedly picking up 19 

the same solution.  This requirement is achieved by adding sufficiently small constants,  and hab edgeδ δ to 20 

the bounds on habitat area ( 1H ) and perimeter ( 1E− ).  The either-or relationship between constraints (24) 21 
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and (25) is achieved by using constraints (26)-(27), which require that either y1 = 1 and y2 = 0 or vice 1 

versa.  If 1 1y =  then only constraint (24) is enforced, and if 2 1y =  then only constraint (25) is enforced. 2 

The problem is then solved again with these additional constraints. After each iteration, a new 3 

quadruplet of constraints like (24)-(27) is added to the formulation.  The process is repeated until the 4 

problem becomes infeasible. 5 

/Figure 1/ 6 

Figure 1 illustrates the general implementation of this algorithm when applied to n-objective 7 

problems.  In the first step, the ideal solution is identified, as it is needed for scaling and normalization.  8 

In Step 2, the weighted objective function is generated with slope α.  This objective function is then 9 

maximized subject to the original set of constraints ( x X∈ ).  If this problem is infeasible then the 10 

algorithm terminates; there are no solutions to the problem.  Otherwise the problem is solved and the 11 

attainment values on the objectives with the smaller weights ( k
iF , for \ { }i P j∈ ) are used to build and 12 

add a new set of constraints to the original problem (Step 3 and 4).  These constraints will be similar to 13 

(24)-(27), except now there are (n-1) restricted objectives and only one of the n constraints, 14 

( )  (for 1,...,   butk
i i if x F i nδ≥ + =  )i j≠ , must hold.  Step 5 checks whether the newly constructed 15 

constraint set from Step 4 dominates any of the previously constructed sets.  If it does, i.e., if 16 

{ } (for each \m k
i iF F i P j≤ ∈  and for )m k<  then the dominated constraint set (the one that was 17 

generated in Iteration m) can be eliminated from the problem.  After optionally removing the redundant 18 

constraints (we found in test runs that this step did not improve efficiency and therefore we did not use 19 

it), the new IP is solved and the process (Steps 2-5) is repeated until the problem becomes infeasible.  20 

 The ε-Constraining Method 21 

The implementation of the ε-Constraining method is very similar to that of the Alpha-Delta 22 

Method.  The key difference is that at each iteration n IPs are solved, as opposed to one (for an n-23 
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objective problem), to guarantee an efficient solution.  Suppose the following iteration is the kth iteration.  1 

First, one of the n objectives, say 1 ( )kf x  is maximized without regard to the rest of the objectives.  If 2 

this problem is infeasible, the algorithm terminates; no more efficient solutions exist.  Otherwise, the 3 

problem is solved and the resulting objective function value, 1
kF  is recorded.  Next, another objective is 4 

maximized, say 2 ( )kf x  subject to 1 1( )k kf x F≥ .  This problem is feasible since we know there exists at 5 

least one solution with 1 1( )k kf x F= . Call the objective function value of the resulting solution 2
kF . Now, a 6 

third objective is maximized subject to 1 1( )k kf x F≥  and also to 2 2( )k kf x F≥ . The process is repeated until 7 

each of the objectives is maximized. 8 

When the last objective, ( )k
nf x , is maximized, the rest of the objectives are constrained to 9 

1 1( )k kf x F≥ , 2 2( )k kf x F≥ , … , 1 1( )k k
n nf x F− −≥ , where ( 1,2,..., 1) k

iF i n= − is the objective function value 10 

that was obtained by maximizing ( )k
if x .  The resulting objective function value, k

nF , together with the 11 

previously obtained 1 2 1,  ,...,  k k k
nF F F −  constitute the attainment values on the n objectives for efficient 12 

solution k  (Step 3).  Steps 4 and 5, as well as the stopping rule, are exactly the same as in the Alpha-13 

Delta Algorithm. 14 

An important common characteristic of the two methods is that as the solutions are progressively 15 

found along the efficient frontier, the attainment on one objective gradually gets worse at each new 16 

solution while the attainment on the other objectives gradually, although not necessarily monotonically, 17 

improves.  This algorithmic property can be beneficial in decision making as it enables one to find 18 

efficient management alternatives that are similar in achievement values. 19 

 The Weighted Objective Function and the Tchebycheff-metric Based Methods 20 

Both the Weighted and the Tchebycheff methods make use of an efficient decomposition of 21 

weights when applied to bi-objective problems (Tóth et al. 2006).  In the case of the Weighted Method, 22 

these weights are assigned to the competing objectives and the sum of these weighted objectives is 23 
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maximized.  In the case of the Tchebycheff approach, the weights are assigned to the components of the 1 

Tchebycheff Metric, which measures the maximum difference between the attainment values of a 2 

potential solution and that of the ideal solution.  The Tchebycheff Metric is then minimized to obtain 3 

solutions that are as close to ideal as possible. One problem with using the Tchebycheff Metric is that it 4 

may find weak Pareto-optima; solutions that lead to objective values that lie on the efficient frontier but 5 

are not corner points. In other words, at least one of the objectives can still be improved. This problem is 6 

well documented in the literature and can be overcome by using the augmented (Steuer and Choo 1983, 7 

Steuer 1986) or the modified (Kaliszewski 1987) version of the metric. In this study we used the latter 8 

approach. Instead of minimizing the maximum, we minimized the weighted differences between the 9 

attainment values with a much higher weight put on the difference in NPV than on the difference in 10 

minimum habitat area or edge length. This weight allocation, which results in a slightly sloped 11 

Tchebycheff Metric, is kept constant throughout the decomposition process. 12 

Although varying the relative weights on the competing objectives or on the components of the 13 

Modified Tchebycheff Metric will often yield different efficient solutions, it is also possible that two 14 

different combinations of weights result in the same solution.  To minimize the number of redundant 15 

solutions  and the amount of computer time that is needed to find these solutions, Tóth et al. (2006) used 16 

an algorithm that decomposes the set of possible normalized weight combinations into sections (line 17 

segments in the bi-criteria case) that correspond to the same efficient solutions (Eswaran et al. 1989).  18 

The decomposition for bi-objective problems is based on the fact that if two different weight 19 

combinations yield the same solution then any linear combination of these weights will do so as well.  20 

Thus, these linear combinations can be eliminated from further consideration. 21 

The decomposition of the weight space is not as straightforward with three or more objectives.  22 

For three objectives, the set of possible normalized weight combinations can be mapped as a triangle 23 

(Figure 2).  The apexes of the triangle represent the combinations when a weight of one is assigned to 24 

one objective (or to one component of the Tchebycheff Metric) and zeros are assigned to the other two.  25 
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This triangle is illustrated in Figure 2 with apexes (1,0,0), (0,1,0) and (0,0,1).  The proposed procedure, 1 

the Triangles Algorithm, decomposes this triangle into triangular sections (indifference regions) that 2 

correspond to the same efficient solutions. At each iteration one triangle is considered.  If the three 3 

weight combinations that represent the three apexes of the triangle yield the same solution then no 4 

further decomposition of that triangle is necessary.  Any point within the triangle (or, equivalently, any 5 

linear combination of apex-weights) will yield the same solution.  If, however, the weights at the apexes 6 

yield two or three different solutions, the triangle must be divided into four smaller but identically 7 

shaped sub-triangles.  These are: ( )(1/2, 1/2, 0), (0, 1/2, 1/2), (1/2, 0, 1/2) , 8 

( )(1, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2) , ( )(1/2, 1/2, 0), (0, 1/2, 1/2), (0, 1, 0)  and 9 

( )(0, 0, 1), (0, 1/2, 1/2), (1/2, 0, 1/2)  in Figure 2.  The apexes of the sub-triangles are either identical to 10 

one of the apexes of the “parent” triangle ( )(1,0,0), (0,1,0), (0,0,1)  or are constructed as the mean of the 11 

two of those apexes.  If two of the three solutions from the “parent” triangle was the same, e.g., 12 

weights (1,0,0) and (0,1,0) both yielded the same solution, then weight combination (1/2, 1/2, 0), which 13 

is a linear combination of  (1,0,0) and (0,1,0), can be assigned that solution as well.  There is no need to 14 

solve the problem with weights (1/2, 1/2, 0). 15 

/Figure 2/ 16 

At the next iteration, one of the four sub-triangles is selected and the same process is followed as 17 

in the first iteration.  The weights that define the apexes of the sub-triangle are applied to the objectives 18 

of the problem (or to the components of the Tchebycheff Metric, depending on which method is used).  19 

It is entirely possible that one of the weight combinations corresponding to one of the apexes of the sub-20 

triangle has already been applied to the problem and solved at a previous iteration, either as part of the 21 

larger triangle or when an adjacent triangle was explored.  In this case, there is no need to solve the 22 

problem with these weights again.  The solution from the adjacent triangle can be used in the 23 

comparisons needed to determine if the current sub-triangle should be further decomposed.  Those of the 24 
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three problems that have not been solved before or are not linear combinations of other weights that 1 

yield the same solution are then solved and their solutions are compared with the solutions at the other 2 

apexes. The algorithm terminates either when there are no more sub-triangles left to decompose or the 3 

largest difference between the weight combinations that correspond to the apexes of the remaining sub-4 

triangles that could potentially require decomposition is smaller than this predefined limit: a minimum 5 

mesh or triangle size.  6 

 The following notation is used to illustrate the mechanism of the Triangles Algorithm.  Let T be 7 

the set of “active” (unexplored) triangles.  Let 
11 12 13

21 22 23

31 32 33

i i i

i i i
i

i i i

w w w
W w w w

w w w

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

denote the weights associated with 8 

the apexes of triangle i TΔ ∈ , and ( )11 21 11 31,i i i i
i Max w w w wΛ = − − − denote the depth of iΔ .  This latter 9 

metric, ‘depth’ describes the size of a given triangle and is used in the algorithm to identify the largest 10 

triangles.  The greater the value of iΛ , the larger triangle iΔ  is.  The algorithm decomposes the largest 11 

active triangles first.  Lastly, let k
iF  (for k = 1, 2, 3) denote the objective function values that correspond 12 

to the solutions of problems { }1 1 2 1 3 3( ) ( ) ( ) :k i i i
i k k kP Max w f x w f x w f x x X= + + ∈  for k = 1, …, 3, 13 

respectively, where 1 2( ),  ( ),  andf x f x 3 ( )f x are the objective functions. 14 

Step1 and 2 is the initialization phase of the algorithm.  Step 1 is to obtain the ideal solution, 15 

which is needed to scale and normalize the weights for both methods.  The minimum mesh size 16 

parameter, ε is also defined (by the user) to limit the size of the triangles to be decomposed.  At this 17 

point, set T is empty.  Step 2 is to add the first triangle to the list of active triangles (set T).  This triangle 18 

is the so-called ‘parent’ triangle whose apexes represent weight combinations (1,0,0), (0,1,0) and (0,0,1).  19 

The solutions to these single-objective problems have already been obtained in Step1 when the ideal 20 

solution was identified.   21 
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At the beginning of each iteration, set T is checked.  If set T is empty, the algorithm terminates.  1 

If set T is non-empty, then one of the largest triangles, say triangle iΔ  is selected.  If iΔ is smaller than 2 

the predefined ε or the solutions that correspond to the apexes of iΔ  are identical, then iΔ  is removed 3 

from set T.  Otherwise, four new triangles are created ( 1 2 3 4,  ,  ,  T T T T+ + + +Δ Δ Δ Δ ) with the following 4 

weights on the apexes (Step 3): 
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( 1 2 3 4,  ,  ,  and i i i i
T T T TP P P P+ + + + for i = 1, 2, 3) with the weight combinations that correspond to the apexes of 9 

the four triangles (Step 4).  At most, only three of the 12 problems would have to be solved, because the 10 

same weight combinations are assigned to more than one apex (Figure 2).  Furthermore, if any pair of 11 

apexes in the parent triangle led to the same solution, then any linear combination of these apexes will 12 

do so as well. There is no need to solve for a new apex if it corresponds to the linear combination of 13 

parent apexes that led to identical solutions.  Finally, the four new triangles are added to set T (Step 5) 14 

and the process starts all over again by selecting another triangle. 15 

A case study 16 

In order to demonstrate the four methods as they generate the efficient set with respect to three 17 

objectives, a hypothetical forest planning problem, the same as in Tóth et al. (2006), was used.  This 18 
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forest consisted of 50 management units and could be considered slightly over-mature, since 1 

approximately 40% of the area is between 60-100 years old and the optimal rotation is 80 years.  The 2 

average management unit size was 18 ha, and the total forest area was 900 ha.  A 60-year planning 3 

horizon was considered, composed of three 20-yr periods.  The four possible prescriptions for a given 4 

management unit were to harvest the management unit in period 1, period 2, or period 3, or not at all.  5 

The minimum rotation age was 60 years.  A maximum harvest opening size of 40 ha was imposed, and 6 

groups of contiguous management units were allowed to be harvested concurrently as long as their 7 

combined area was less than the maximum opening size.  All management units were smaller than the 8 

maximum harvest opening size.  The wildlife species under consideration was assumed to need habitat 9 

patches that are at least 50 ha in size and at least 60 years old.  Since the minimum patch size was 10 

greater than the maximum harvest size, these patches had to be composed of more than one unit. We 11 

also specified in the IP formulation that at least one habitat patch must develop over the 60 year 12 

planning horizon. This meant that no efficient management alternatives were sought below 50 hectares 13 

of mature forest patch production.  14 

/Table 1/ 15 

The tri-criteria IP described in the Model Formulation section was built for this hypothetical 16 

forest, resulting in a model with 4,794 constraints and 2,412 variables. Table 1 shows the distribution of 17 

the constraints by constraint types. The algorithms introduced in the Methods section were implemented 18 

using a 2-thread CPLEX 11.1 (ILOG CPLEX 2008) on a dual processor Intel® XEON™ CPU 3.00 19 

GHz computer with 3.25 GB RAM under a Windows platform (Microsoft Windows XP Professional 20 

Version 2002, Service Pack 3).  Programs to automate the algorithms were written in Microsoft Visual 21 

Basic 6 and .Net 2005 using the ILOG CPLEX Callable Libraries.  The relative MIP gap tolerance 22 

parameter (optimality gap) was set to 0 and the integrality tolerance parameter was set to 1. 07e −  23 

(0.00001%).  These strict settings were needed to avoid dominated solutions and to make sure that the 24 

numerically sensitive algorithmic constructs, such as the either-or constraints in the Alpha-Delta and the 25 
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ε-Constraining methods and the composite weighted expressions in the other two techniques, would 1 

work properly. The working memory limit was set to default 1MB.  The parameters of the Alpha-Delta 2 

and the ε-Constraining algorithms, hab edge,  ,  and α δ δ were set to 1° , 0.01 ha, and 0.47 m (1 pixel), 3 

respectively (α only applies to the Alpha-Delta Method).  The latter two settings instruct the algorithms 4 

not to look for solutions that simultaneously lead to a less than 0.01ha difference in patch area 5 

production and less than 0.47 m in edge production. We tried smaller values for these parameters but 6 

found no change in the efficient set. The depth parameter in the Triangles Algorithm (ε ) was set to zero 7 

for both the Weighted Objective Functions and the Modified Tchebycheff-metric-based approaches 8 

meaning that running time was the only constraint for these algorithms to find efficient solutions. We set 9 

the parameters for each technique so that the highest number of efficient solutions would be found given 10 

a time limit. Although rigorous parameter-tuning was outside of the scope of this study, we made an 11 

attempt to optimize the performance of the algorithms. Our primary goal was to provide an insight for 12 

the reader about the pros and cons of the mechanisms of the proposed methods.    13 

The experiment addressed the following questions: (1) How many of the efficient solutions can 14 

each algorithm identify within 20 hours of computer time? (2) How evenly are these solutions 15 

distributed along the efficient frontier? (3) How easily can a user filter the solutions in line with the 16 

DM’s interests? and (4) How easily do the methods generalize to the n-objective case?  17 

Results and Discussion 18 

 The number and distribution of efficient solutions 19 

The ε-Constraining Method found the highest number of Pareto-optimal management 20 

alternatives (99) within the preset time interval of 20 hours.  The Alpha-Delta found 97, the Tchebycheff 21 

Method found 76, and the Weighted Method found 35 solutions.  Figure 4 and 5 graph the solutions in 22 

the objective space: Figure 4 in a 3-dimensional rendering while Figure 5 in 2-dimensional projections. 23 
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The solution times are summarized in Figure 6, where the main diagram displays the cumulative 1 

solution times for each method.  The four smaller charts show the individual solution times that were 2 

required to find each new efficient solution. Note that since the ε-Constraining finds each new solution 3 

in three steps, the Alpha-Delta in one step and the Tchebycheff and the Weighted Method finds them in 4 

many steps, the individual solution times do not necessarily correspond to individual IPs. One common 5 

trend that can be seen from the diagrams is that, after a very productive initial phase, finding new 6 

efficient solutions became increasingly time-consuming for each method. We provide an explanation for 7 

this trend in the discussion that follows. 8 

/Figure 4./ 9 

   /Figure 5./  10 

The Alpha-Delta and the ε-Constraining methods found solutions mostly on one side of the 11 

efficient frontier, while the solutions identified by the other two methods were more evenly distributed.  12 

Even though the Weighted and especially the Tchebycheff Method provided a better overall estimation 13 

of the frontier, the ε-Constraining and the Alpha-Delta methods described one part of the frontier in 14 

more detail.  The main reason for the difference is that while the Alpha-Delta and the ε-Constraining 15 

methods worked gradually off of one starting point and found solutions sequentially, the other two 16 

methods found more evenly distributed solutions as they start out with solutions that are as contrasting 17 

with respect to their assigned weights as possible. It is important to point out, however, that both the 18 

Alpha-Delta and the ε-Constraining methods can be instructed to find solutions that are more separated 19 

from each other along the frontier by assigning higher values to parameters hab edge,  and δ δ . 20 

/Figure 6./ 21 

All methods except the Weighted Objectives are capable of identifying non-supported Pareto-22 

optima (non-supported Pareto-optima are efficient solutions that are not corner points of the convex hull 23 
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of the efficient set, Tóth et al. 2006). As a result, the three methods can explore the efficient frontier in 1 

more detail than the Weighted Method.  However, as the Alpha-Delta and the ε-Constraining methods 2 

explore the efficient frontier starting from one end (from the highest levels of NPVs) and they require a 3 

set of either-or constraints with associated binary variables to be added to the problem at each iteration, 4 

the IP that needs to be solved becomes increasingly hard as the algorithms proceed (see bottom charts in 5 

Figure 6).  The structure of the tri-criteria forest management planning problem used in this experiment 6 

might also account for this increasing combinatorial complexity. Optimal solutions that lead to greater 7 

amounts of mature forest habitat in large patches and to lesser amounts of timber revenues might be 8 

harder to identify. This is because a higher number of spatial arrangements of mature forest habitat exist 9 

if larger areas are allowed and this larger set must be evaluated in the optimization process to find 10 

optimal solutions. Depending on when the IP becomes too time-consuming to solve and what time 11 

constraints are imposed, the Alpha-Delta and the ε-Constraining methods might or might not be able to 12 

scan the entire efficient frontier.  One way to mitigate this problem is to run three separate algorithms 13 

each starting from a different end of the frontier.  The Alpha-Delta can be instructed to work its way off 14 

the highest possible level of minimum habitat area or from the lowest possible length of perimeter.  This 15 

way, only the central part of the efficient frontier would have to be explored using a larger burden of 16 

‘either-or’ constraints, and the peripheral solutions might be found relatively easily.  This combined 17 

algorithm can stop once the three sub-algorithms (n sub-algorithms for an n-objective problem) “meet” 18 

somewhere in the middle of the efficient frontier – i.e., when they find an identical efficient solution.  Of 19 

course, there is no guarantee that the IPs would not become intractable before these sub-algorithms meet.  20 

This combined approach, however, should increase the number and diversity of efficient solutions found. 21 

Although the Weighted Method found only 35 solutions, it might still be a preferred alternative 22 

to solve multi-objective IPs if the original problem has a special structure (e.g., total unimodularity: 23 

Wolsey 1998) that would be destroyed by using other methods (e.g., ReVelle 1993).  In these cases, 24 
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destroying this structure in order to find the non-supported Pareto-optima, and thus better describing the 1 

efficient frontier, might not be worthwhile.  Totally unimodular or other special structures are unlikely, 2 

however, in realistic forest planning problems where in most cases a large variety of complicating 3 

constraints need to be imposed in the model (Tóth et al. 2006). 4 

In conclusion, as in the bi-criteria case, a combined approach can be recommended.  The forest 5 

planner could use the Weighted or the Tchebycheff methods to obtain a well-distributed efficient set and 6 

present the results to the DM.  Then, in line with the DM’s interests, one area of the efficient frontier 7 

could further be explored using the ε-Constraining or the Alpha-Delta Method.  This approach would 8 

take advantage of the algorithmic differences in each method. 9 

 Filtering the efficient solutions 10 

Besides using the Weighted or the Tchebycheff methods as initial filters, there are several other, 11 

indirect ways to control the ‘spacing’ of the efficient solutions along the efficient frontier with the 12 

proposed algorithms.  Filtering the efficient set might be advantageous because: (1) it can significantly 13 

reduce computing time, and (2) a well-distributed subset of the efficient frontier might provide a 14 

sufficient pool of alternatives for the DM to choose from or to guide him to further explore a particular 15 

sub-region of interest along the frontier. 16 

Increasing the values of parameters hab edge,   and α δ δ in the Alpha-Delta-, and parameters 17 

hab edge and δ δ  in the ε-Constraining Algorithm will increase the spacing of the efficient solutions in the 18 

objective space.  The settings of habδ and edgeδ will ensure that no two solutions will be found whose 19 

achievements in terms of minimum habitat area and edge length are both within habδ and edgeδ , 20 

respectively.  The spacing of the efficient solutions with the Weighted Objective Functions and the 21 

Tchebycheff-metric-based approaches can be controlled to some extent by adjusting the minimum mesh 22 

size parameter ε in the Triangles Algorithm.  In practice, it might be useful to start with a large mesh 23 
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size and cover the entire weight space, and then focus the search to a sub-region of interest using a 1 

smaller mesh size in that region. How large should the initial mesh size be?  In our test case, both the 2 

Weighted and the Tchebycheff methods were processing triangles at the 1 128  level after 20 hours of 3 

computing time. The Weighted Method decomposed 88%, the Tchebycheff 77% of these triangles.  4 

 Generalization to the n-objective case 5 

One additional advantage of the Alpha-Delta- and the ε-Constraining methods over the other two 6 

approaches is that their generalization to the n-objective case is fairly straightforward – at least from a 7 

technical, integer programming point of view (see Figure 1).  Generalizing the Triangles Algorithm to 8 

the n-objective case is not as straightforward as with the above two methods.  Instead of the triangles in 9 

the tri-objective case, n-dimensional polyhedra (tetrahedra in the 4-objective case) would have to be 10 

decomposed into n-dimensional sub-polyhedra.  Since each n-dimensional polyhedron has n apexes, n 11 

new problems would have to be solved and compared ( !n  pair-wise comparisons) at each iteration.  12 

This increased computational burden, however, might be offset by the fact that the IP sub-problems (the 13 

problems that are solved at the apexes of the n-dimensional polyhedra) are simpler than those of the 14 

Alpha-Delta- or the ε-Constraining methods.  Unlike the feasible region of the latter two methods, the 15 

feasible region of the IP sub-problems in the Triangles Algorithm is constant, only the weights on the 16 

objectives (or the components of the Tchebycheff-metric) change. 17 

 Ecological and management implications 18 

 The tradeoff information generated for the hypothetical test problem demonstrates the utility that 19 

one can expect from the proposed techniques in real applications. Looking at Figure 4 or the diagram in 20 

the center of Figure 5, one can conclude for instance that minimum mature forest habitat patch 21 

production costs roughly $70-100,000 in terms of forgone timber revenues for every 50 ha increase 22 
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between the 50 ha required minimum and the 170 ha potential maximum. An extra $100-200,000 is 1 

needed if minimum boundary patches are desired. 2 

 The vertical clustering of efficient solutions around some minimum habitat area thresholds, such 3 

as 135, 150 or 170 ha (Figure 5 bottom) implies that the forest manager would have some flexibility (as 4 

much as $200,000 at the 170 ha level, Figure 5 top) to simultaneously generate mature forest patches as 5 

well as timber revenues. The potential losses or gains associated with edge production are traded off 6 

against potential gains or losses in timber revenues when one switches between management alternatives 7 

within these clusters. This demonstrates the benefits of the multi-criteria techniques in that they offer a 8 

range of choices, whenever possible and without the DMs’ a priori bias that would otherwise manifest 9 

in the form of targets or hard constraints if alternative approaches such as goal programming were used. 10 

 The vertical clustering around some minimum habitat area thresholds might have landscape 11 

ecological implications as well. Consider for instance the cluster around the 170 ha level one more time 12 

(Figure 5 bottom). Starting at the option that leads to the least amount of NPV, approximately $2M (see 13 

the lowest point in the center diagram in Figure 5), a fair amount of additional harvesting is possible to 14 

achieve as much as $2.18M in timber revenues without having to forgo any of the 170 ha of minimum 15 

mature forest habitat production. The only loss is the increase in perimeter-area ratios of the patches. 16 

Once, however, anything beyond the $2.18M is desired, the extra harvests that would be needed would 17 

cause a significant drop in minimum mature forest habitat production. One would have to switch to the 18 

150 ha cluster to find more profitable alternatives. Are these discrete drops between the clusters 19 

characteristic to this particular problem? The forest planner would benefit from knowing about 20 

thresholds where small amounts of change in harvest intensity can cause significant losses in habitat 21 

structure or cohesion. The techniques proposed in this paper can help in identifying these thresholds. 22 

 Finally, any clustering of solutions in the objective space can carry significant value for the DMs. 23 

Clusters of solutions that are similar in terms of achieving the objectives that are explicitly incorporated 24 

in the model can be analyzed in terms of their contribution to a fourth or fifth objective. Although there 25 
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is no guarantee that any of the points in the cluster would be Pareto-optimal with respect to an additional 1 

criterion, this criterion might help the DMs eliminate some solutions from the pool.   2 

 Numerical issues 3 

 It is important to point out that the algorithms proposed in this study build on numerically 4 

sensitive constructs such as the either-or constraints in the ε-Constraining and the Alpha-Delta methods 5 

or the composite objective functions in the other two methods. Some of these constructs do not function 6 

properly if the optimality and integrality tolerance parameters in the IP solvers are not set tight enough. 7 

If a weighted objective function is used for example, the smallest amounts of sub-optimality might lead 8 

to solutions that are totally irrespective of the assigned weights. Consider the example on Figure 7: 9 

although the weighted objective function (dashed line) in this case in maximized at Point A, using a 10 

small optimality tolerance gap could easily lead to Point D. It is easy to see how this loss of optimality 11 

can make the triangular decomposition process dysfunctional. The assumption that the linear 12 

combination of two sets of weights that lead to identical solutions would also lead to the same solution 13 

does not hold anymore. Another obvious consequence of sub-optimality is that the multi-objective 14 

techniques might produce dominated solutions. The only way to avoid this situation is to set the 15 

optimality tolerance gap as small as possible, which has the associated cost of increased computing time. 16 

Conclusions 17 

The primary value of generating the set of efficient solutions to forest management problems is 18 

to help decision makers acquire a more holistic understanding of the problem by providing information 19 

about the tradeoffs, the production possibilities, and the degree of incompatibility between competing 20 

objectives.  This understanding should facilitate selecting the best compromise management alternatives. 21 

We presented four ways to generate the set of Pareto-optimal solutions to spatial forest planning 22 

problems with three or more competing objectives.  While generalizing the bi-objective algorithms to 23 
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three objectives is not trivial, generalizing the proposed tri-criteria algorithms to handle problems with 1 

four or more objectives is methodologically straightforward.  The results from one test of the four 2 

algorithms suggest that there is no clear winner in terms of computational performance: each method has 3 

positives and negatives. Given the algorithmic differences behind the techniques and the snapshot of 4 

computational results, we can conclude that a combined utilization of the beneficial properties of either 5 

the Weighted or the Modified Tchebycheff methods and either the ε-Constraining or the Alpha-Delta 6 

methods would probably work the best in practice. Using one of the former two methods to generate an 7 

initial rough estimate of the tradeoffs can be followed up by one of the latter two techniques to find 8 

further solutions in the decision makers’ regions of interest.  9 

 Applying the four methods to larger problems might be computationally expensive if, as in this 10 

study, truly optimal solutions are sought. Reducing the optimality tolerance, i.e., accepting sub-optimal 11 

solutions is certainly an option if computing time is a constraint: the efficient frontier could be 12 

approximated in a fraction of the time that would be needed to provide an exact representation. Due to 13 

the numerically sensitive nature of multi-objective programming, however, some of the proposed 14 

techniques might exhibit adverse algorithmic behaviors leading to dominated solutions or to too few 15 

efficient solutions. How much optimality can be forgone while still providing a meaningful 16 

representation of the tradeoff frontier for the DMs? This question can only be answered by 17 

comprehensive computational experiments that explore the tradeoffs between solution times and Pareto-18 

optimality on larger forest planning problems. In the meantime, small-scale, pilot applications of the 19 

techniques with real decision makers still remain important as they can answer questions such as (1) 20 

how important it is to find non-supported Pareto-optima, (2) how to visualize and present the 21 

alternatives to the DMs, and (3) to what extent can these methods promote consensus between multiple 22 

stakeholders.  By the time these questions are answered, our computational capabilities might improve 23 

to such a degree that allows us to solve large problems to desired levels of optimality. In the last three 24 
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years alone, optimization technology improved so drastically that we could run the experiments 1 

presented in this study in 20 hours in 2008 instead of the three weeks we needed in 2005.  2 

Finally we emphasize that finding the best ways to visualize the efficient management 3 

alternatives and optimizing the interaction with the DMs are key issues that need to be addressed in 4 

future research in order to successfully apply these methods. Visualizations with the potential to display 5 

three or more management objectives have already been proposed in the past (e.g., Schilling 1976 or 6 

Lotov et al. 2004) and recent improvements in computer aided 3-dimensional rendering and animation 7 

could significantly enhance the viability of these tools in natural resource decision making. 8 
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 1 
Table 1. 2 

Constraint Type 
(equation 
number) 

(4) (5) (6,7) (8) (9,10) (11,12) (13,14) (15,16) (17,18) (19) Total 

Number of 
Constraints 50 3 2 248 150 1,617 150 3 324 1 4,794 

 3 
 4 


