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Wildlife corridors are often used to connect critical habitat for species protection. Mixed integer program-

ming models have been used in the past to create wildlife corridors, but they lack the capacity to control

corridor geometry. We propose an approach that employs path planning techniques from artificial intelligence

to account for and control corridor geometry, such as width and length. By combining path planning with

network optimization, our approach allows the user to control and optimize the geometric characteristics

of wildlife corridors. We illustrate our approach on two realistic landscapes and present numerical results

on several computer-generated landscapes. The computational results indicate that this approach is effi-

cient and can address problems controlling corridor geometry that were previously thought intractable. The

approach has potential applications in such areas as the selection of routes or barrier construction problems,

an example of which is fire break design.
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2. Introduction

As human activity expands across the landscape, natural areas dwindle. From 1963 to 1997, six

million hectares of forest land in the United States were lost to development, and an additional

9.4 million hectares are projected to disappear by 2050 (Alig et al. 2003). As human activity

encroaches on previously undisturbed natural areas, large, contiguous patches of habitat areas

shrink and become disconnected. These newly formed “islands” are often inadequate for sustaining

the existing wildlife, which, in many cases, results in the loss of entire wildlife populations.

Habitat fragmentation separates critical resources and reduces the amount of available space for

wildlife populations to grow, move and disperse. One method to reduce fragmentation and increase

connectivity is to create wildlife corridors (Beier and Noss 1998). Wildlife corridors provide paths
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for species in need of protection to move freely between conserved areas that are otherwise separated

by human activity. They facilitate access to resources, migration, dispersal and population mixing

(Beier 1993). Major wildlife corridors include the Paso del Jaguar, a corridor for jaguars stretching

from the southern United States to Argentina; the European Green Belt, a corridor for a variety of

species running from Norway to Turkey; and the Siju-Rewak Corridor in India, which protects over

139 species of mammals, including Asian elephants, Bengal tigers, clouded leopards and Himalayan

black bears (Panthera.org, EuropeanGreenBelt.org, WorldLandTrust.org).

Wildlife corridors are often designed on a two-dimensional landscape. Property lines and natural

boundaries (such as rivers or cliffs) typically partition the landscape into polygon-shaped parcels

(see Figure 1). The core reserves (dark parcels in Figure 1) may be connected via a collection of

other parcels (lightly shaded parcels in Figure 1) - a wildlife corridor. To be successful, wildlife

corridors must be conducive to travel. In particular, corridors cannot be too narrow or too long

(Soule and Gilpin 1991). Narrow corridors do not provide adequate buffer from the surrounding

unsuitable habitat, and long, winding corridors are difficult to negotiate for some species. Given

the spatial configuration of the landscape and corridor width and length requirements, it is not

obvious which set of parcels will create an ideal corridor. The combinatorial nature of the problem

makes corridor selection difficult for even small landscapes. Mixed integer programming (MIP)

models have been used for corridor design in the past, but lack the capacity to explicitly control

corridor geometry (e.g. width or length) without making assumptions about parcel shape and size.

We introduce a new approach that combines techniques from path planning (artificial intelli-

gence) with network optimization models in order to calculate and control geometric characteristics

of corridors, such as width and length. This approach allows the user to optimize corridor construc-

tion by selecting parcels in landscapes of any spatial configuration. By borrowing concepts from

path planning, we introduce models that can explicitly control geometric characteristics that were

not incorporated in previous spatial optimization studies. Our method can extend beyond wildlife

corridors to other problems involving connectivity in spatial optimization, such as constructing fire
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Figure 1 A landscape with a corridor.

breaks and planning emergency escape routes subject to budget constraints. In this paper, we first

discuss the state-of-the art in corridor design and provide a brief introduction to the field of path

planning to motivate its use in spatial optimization. We then describe our proposed approach and

present an illustrative case study. We also conduct numerical experiments on computer-generated

landscapes to demonstrate the computational efficiency of the approach. Lastly, we discuss the use

of the method in potential applications beyond reserve design.

3. Background

3.1. Wildlife Reserves and Corridors

In land management, decision makers can create wildlife reserves by preserving or restoring parcels

on the landscape that contain critical habitat. Along with habitat conservation, habitat connectiv-

ity is crucial to the vitality of some wildlife populations. One method for increasing the connectivity

of wildlife reserves is to create spatial linkages called corridors (Beier and Noss 1998). A corridor

should have certain spatial attributes to be successful. Some of these attributes are specific to the

target population (such as width), while others are universally important, such as habitat area.

To be of use to wildlife, corridors must contain suitable habitat. Many species have specific

needs as to what type of terrain and vegetation they need to survive and disperse. For prey species

and birds that prefer interior forest habitat, a patchy corridor may not offer sufficient protection

against predation (Soule and Gilpin 1991). Grizzly bears in British Columbia show preference for
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high elevation Douglas fir forests and abundant vegetation (Proctor et al. 2008), while transient

chipmunks like to travel along fence rows through farmland (Bennett et al. 1994). Lastly, the

structure of habitat such as tree or shrub density within corridors can also pose obstacles to

movement, as was the case with migrating reindeer in Sweden. Such structural obstacles can be

modeled with “resistance” coefficients, as in Le Bras et al. (2013), whereby the shortest resistance-

weighted paths are sought between designated habitat patches.

Corridors cannot be too narrow either (Beier and Loe 1992, Williams et al. 2005). Animals that

benefit from wildlife corridors prefer to avoid human interaction and areas of exposure. Anderson

et al. (1977) studied birds in corridors of various widths, and found strong positive correlation

between corridor width and the abundance of several species. In addition to birds, some mam-

mals are also sensitive to corridor width. Simulation studies conducted by Soule and Gilpin (1991)

show that the probability of corridor success increases with width until it reaches an asymptote.

Harrison (1992) reviewed studies on seven different mammal populations and compiled a list of

minimum corridor widths. The author highlights the critical research need to determine “the min-

imum width of effective corridors.” Coster et al. (2014) proposed a method for calculating habitat

width requirements and demonstrated the use of the method with migrating amphibians in Maine.

Lastly, corridors cannot be too long. If the distance between two resources is too great, or the

corridor itself winds around the landscape, making an unnecessarily long path, animals will be less

likely to use it. For slow-moving prey species, long corridors can be counter-productive as they

can give fast-moving predators an advantage (Soule and Gilpin 1991). Brodie et al. (2015) identify

length as a critical attribute of wildlife corridors. Long and narrow corridors are poor connectors.

3.2. Mathematical Programming for Reserve Selection

Reserve selection models select a subset of parcels that best meet certain conservation goals. In

spatial reserve design, some of these goals are best met if the spatial configuration of the resulting

reserve networks are as conducive to the survival of species in need of protection as possible. These

spatial attributes include area, compactness, contiguity and shape. See Williams et al. (2005), or



St John, Tóth, and Zabinsky: Optimizing the geometry of wildlife corridors in conservation reserve design
6 Article submitted to Operations Research; manuscript no. tbd

more recently, Billionnet (2013) for detailed reviews on spatial reserve design. In some projects,

including wildlife corridors, the subset of sites to be selected must be spatially connected to encour-

age the movement and immigration of species in need of protection. Sessions (1992) was among the

first authors to model these problems as graphs, where each parcel is represented by a node, and

the adjacencies among the parcels are represented by edges (Fig. 2). Sessions posed the connected

reserve selection problem as a Steiner network problem in which one must find the minimum-cost

path that connects a given set of nodes. Williams (1998) was the first to use integer programming

to solve the Steiner network problem for wildlife corridors and later used primal-dual graphs to

represent continguous land acquisition problems as minimum spanning trees of a predetermined

size (Williams 2002).

Shirabe (2005)’s network flow model, in which a single parcel is preselected, and all other parcels

in the reserve must be spatially linked to it, is another example of a mathematical programming

formulation for full connectivity. Önal and Briers (2006) introduced the first exact, integer pro-

gramming model to create an “unrooted” connected reserve where the number of selected parcels

is minimized and none of the parcels need to be preselected. The authors use linear inequalities

and a tail function to break network cycles thereby ensuring full connectivity. In order to improve

computational performance, a two step preprocessing technique was introduced to reduce problem

size. While addressing the unrooted connectivity problem, their model can be extended to the case

of rooted corridors as well.

More recently, Conrad et al. (2012) built an exact, integer programming-based network flow

model to determine fully connected reserves. They introduced a two-phase method for improving

solution time where a minimum-cost Steiner tree is found first (if one exists), and then it is used

as an initial solution in the MIP-based optimization model. As in Önal and Briers (2006), extra

constraints can be added to accommodate corridors with specific sinks. Jafari and Hearne (2013)

present yet another example of unrooted connectivity optimization. Dilkina and Gomes (2010)

compare a Steiner network formulation to single and multi-commodity network flow formulations.
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Figure 2 A landscape and its graph-theoretical representation.

They report that using their algorithm, the Steiner network model could be solved two orders of

magnitude faster than the network flow formulations. Lastly, Álvarez-Miranda et al. (2013) present

three new integer programming models for connectivity using only node variables. The authors

compare their models and theoretically show that one of the formulations guarantees LP bounds

as tight as those in Dilkina and Gomes (2010).

The need for continuous canopy corridors, or corridors of forest stands above a certain mini-

mum age often arises in managed forest ecosystems as well. For example, Carvajal et al. (2013)

introduced a model that uses only node variables and implemented a cutting-plane approach to

achieve computational tractability on large scale harvest scheduling problems requiring connected

reserves.

Several closely related reserve design studies proposed alternative approaches that relaxed either

the exact optimality or absolute connectivity requirements. Heuristic approaches for connectivity

optimization include Brás et al. (2013), that finds a minimum Steiner Tree approximation, and

Cerdeira et al. (2005), that finds an approximately optimum solution for the connected set covering

problem. Some models minimize spatial discontinuities within the reserve by minimizing the gaps

between reserve fragments (Önal and Briers 2005, Önal and Wang 2008). Others maximized the

size of contiguous habitat patches (Tóth et al. 2009).

While the problem of connectivity has been addressed with integer programming, little has been

done to explicitly incorporate width and length of wildlife corridors into the models. The issue is
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either not addressed, or it is assumed that corridors that are one parcel wide are sufficient (Williams

1998). Although the model proposed by Conrad et al. (2012) allows corridors to be multiple parcels

wide, there is no guarantee that the actual width of these corridors would meet a given threshold

because the parcels can take various shapes and sizes. Unless the landscape is partitioned into a

square grid, as was done for the Grizzly bear corridors in Conrad et al. (2012), the actual width of

multiple adjacent parcels put together may be too narrow. In practice, the landscape might not be

easily partitioned into a grid. Boundaries such as mountains, coastline and property lines result in

parcels that can be highly irregular in shape, and may even have holes due to lakes or developed

areas (e.g., Figure 1). On landscapes such as these, it is not clear how to create optimal corridors

with geometric requirements or goals. When the landscape is translated to a network graph, such

as in Figure 2, much of the information on parcel geometry is lost. Thus, analysts must either

ignore characteristics such as width and length, or superimpose grid partitioning on the irregularly

partitioned landscape, leading to a suboptimal solution.

Current tools in mathematical programming cannot control geometric characteristics on an irreg-

ularly partitioned landscape. Without constraints on spatial configuration, characteristics such

as width and length cannot be measured. Also, the current graph-theoretical representation of

the landscape does not allow for incorporation of such characteristics into an integer program.

We require a means to calculate geometric characteristics of landscapes, as well as a new graph-

theoretical interpretation of the landscape. For measuring geometric characteristics, we adopt

techniques from an area of study arising in artificial intelligence called path planning, discussed

in the next section. We use these techniques to account for the width and length of corridors on

landscapes of any spatial configuration.

3.3. Path Planning

Path planning is an area of study within the field of artificial intelligence. It has applications in

areas such as robotic surgery (Kiraly et al. 2004), unmanned bomb disposal (Jian-Jun et al. 2007),

video game artificial intelligence (Demyen 2007) and molecular motion (Cortés et al. 2005). The
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classic problem of path planning is called the “piano mover’s problem” (LaValle 2006), where

an agent (the piano) is to be placed in an enclosed area (a room) filled with obstacles such as

furniture. One must determine an optimal path that could move the piano without colliding with

the obstacles. The optimal path may be the shortest path, the widest path or the path with fewest

turns. Geometric characteristics of the path such as width, length (Demyen 2007), turn angle

(Pinter 2001), and steepness (Roles and ElAarag 2013) are explicitly controlled by partitioning the

area into a set of convex polygons (e.g., triangles) called a navigation mesh. A search algorithm is

then used to determine the optimal path. Here, we adapt a technique proposed by Demyen (2007)

who used a triangular navigational mesh to find the maximum width of an agent that can travel

collision-free from a starting to an ending point. We integrate Demyen’s method with optimization

to calculate the width and length of wildlife corridors.

4. Overview of the Optimal Corridor Construction Approach

We introduce the Optimal Corridor Construction Approach (OCCA) that allows analysts to create

optimally connected reserves by explicitly controlling geometric characteristics on a landscape of

any spatial configuration. We demonstrate the OCCA by controlling the width and length of a

wildlife corridor. The concepts and the framework can be applied beyond wildlife corridors.

The approach involves five steps, as outlined in Table 1. First, the corridor objectives and

constraints are to be defined (Step 1). For example, analysts may wish to find the minimum-length

corridor that satisfies a minimum width requirement. Alternatively, they may want to maximize

the width of the corridor while limiting the length. In Step 2, the building blocks of the corridor,

called polygons, must be defined. Polygons consist of one or more contiguous parcels. For more

detail, see Section 5.2.

In Step 3, the polygons are used to create a new graphical interpretation of the landscape (see

Figure 3 for an example). Instead of defining parcels as nodes and adjacencies between parcels

as edges, the nodes now represent transitions between polygons called gates, and edges represent

optimal routes (for example, the route of maximal width or minimal length) through polygons

from one gate to the next.
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Table 1 Proposed approach.

The Optimal Corridor Construction Approach

1. Specify corridor objectives and constraints

2. Select eligible polygons for corridor construction

3. Find gate pairs for each triplet of non-overlapping contiguous polygons

4. For each triplet and each of its gate pairs, find the optimal route and associated width and length

5. Create and solve an optimization problem for optimal corridor construction

Figure 3 New graph-theoretical representation.

In Step 4, path planning techniques (Demyen 2007) are applied to calculate the geometric char-

acteristics of the routes between gates to be used as edge weights in the graph (Fig. 3). This

step involves solving a computationally trivial optimization problem for each triplet of polygons.

Finally, Step 5 solves a network flow model on the new graph to generate the optimal corridor on

the landscape. Each step of the approach is described in detail in Section 5.

The OCCA allows analysts to obtain a set of parcels from the landscape that form a corridor

of maximum width subject to length restrictions, or of minimum length subject to minimum

allowable width constraints. This novel integration of path planning techniques and mathematical

programming allows for control over geometric aspects (such as path width, length, steepness,

angle) that were previously beyond the capacity of spatial optimization.
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5. Methodology of the Optimal Corridor Construction Approach

Terminology

For consistency, upper case letters denote sets, objective function values and bounds, while lower

case letters denote decision variables, and objective- and constraint coefficients. We consider a

landscape Ω that is composed of a set of polygons. A polygon may consist of a single parcel, or

a cluster of contiguous parcels. Let V = {vi} be the set of vertices on the Cartesian plane, and

an edge e = (vi, vj) be a straight, closed line segment connecting two vertices. A polygon p is a

continuous region enclosed by a set of at least three edges ε(p) = {e} which we call the boundary

of p. Every edge e ∈ ε(p) shares each endpoint with exactly one other edge in ε(p) and does not

intersect any other edge in ε(p). In this study, we consider polygons with holes. Let ps be a polygon,

and let p0, . . . , pk be a set of non-intersecting polygons within the boundary of ps. Then, the polygon

p∗ = ps \ p0 \ . . . \ pk is a polygon with holes, with boundary ε(p∗) = ε(ps)∪ ε(p0)∪ . . .∪ ε(pk). Two

polygons pi and pj are non-overlapping if (pi \ ε(pi))∩ (pj \ ε(pj)) = ∅. Two polygons pi and pj are

adjacent if they are non-overlapping and ε(pi)∩ ε(pj) 6= ∅. A vertex, edge or polygon a is contained

in a polygon p if a∩ p= a. An edge or polygon b is partially contained in a polygon p if b∩ p 6= b,

b∩ p 6= p and b∩ p 6= ∅.

In this study we consider only contiguous landscapes, that is, landscapes such that Ω =
⋃n

i=0 pi

is a polygon. Given a landscape Ω, a corridor C = (p0, p1, . . . , pω) is a sequence of non-overlapping

polygons in Ω where pi, pi+1 are adjacent for all i < ω, and polygons p0, pω represent the pre-existing

reserves or specific landscape features such as lakes or seashores that we wish to connect.

In order to give “width” and “length” formal definitions, we first introduce the concept of

“agent”. An agent is a circular region of a given diameter whose location is defined by its center-

point. An agent moves through a corridor C by beginning in p0, travelling on a continuous curve

called a path through p1, p2, . . . , pω−1 without intersecting ε(
⋃

pi∈C
pi) \ {ε(p0)∩ ε(p1)} \ {ε(pω−1)∩

ε(pω)}, and ending in pω. Note that the possible number of paths through a corridor is infinite.

The width of a path is the maximum diameter an agent can have and still follow the path. The

length of a path is the distance the agent travels following the path.
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Figure 4 a) A landscape, a corridor and a route; b) a corridor with two routes.

In this study, we are interested in centered paths which we call routes. We assume the populations

of interest are edge averse in that they typically travel through the interior of the corridor (Soule

and Gilpin 1991). The route is a proxy for the average path that the population is likely to follow.

Note that the route may not necessarily be the shortest path (Figure 4a).

Given a corridor, we calculate the width and length of each route in a corridor to determine

whether it is usable, and if it is, whether it is optimal for wildlife. A corridor with holes has many

potential routes. For example, in Figure 4b, the corridor has two routes. Depending on the needs

of the populations of interest, the best route through a corridor may be different. In Figure 4b, r1

is the optimal route if we want a route of maximum width, but if we wish to minimize length, the

optimal route is r2. For a given landscape, a corridor that contains the optimal route is called the

optimal corridor.

Given a landscape Ω, and polygons p0 and pω, our objective is to find an optimal corridor that

connects these polygons containing a route of maximum width or shortest length subject to a

budget constraint.

5.1. Specifying Corridor Objectives and Constraints

The first step of the Optimal Corridor Construction Approach is to specify the corridor objectives

and constraints (see Table 1). Given a landscape partitioned into parcels available for corridor use,

a wildlife corridor is to be created by selecting parcels that will connect two areas of habitat (e.g.,

Figure 1). Often, not only must corridors be connected, but they must also be comprised of suitable

habitat, meet budget requirements, and contain routes that are neither too narrow nor too long.
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An optimal corridor may be a corridor with the widest route or a corridor with the shortest route.

If the analyst chooses to maximize corridor width, a constraint with an upper bound on length

may be added. Alternatively, if the analyst minimizes corridor length, a minimum width threshold

can be specified.

5.2. Selecting Eligible Polygons for Corridor Construction

Once we have determined the characteristics of an optimal corridor, we create a set of eligible

polygons. Typically in corridor selection MIPs, the corridor is one parcel wide. These corridors

may be suboptimal if width is of concern. We allow the corridor to be multiple parcels wide by

defining polygons, sets of one or more contiguous parcels. These potentially overlapping polygons

are analogous to clusters in area restriction models, introduced by McDill et al. (2002), and also

used by Goycoolea et al. (2005), Könnyű and Tóth (2013), and Tóth et al. (2013). In these models,

constraints ensure that overlapping and adjacent clusters cannot be selected, thus ensuring that

contiguous areas selected for harvest do not exceed a predefined threshold. For wildlife corridors,

using polygons rather than single parcels allows us to control geometric characteristics of corridors

that are several parcels wide.

Theoretically, the number of possible combinations of contiguous parcels can be large and

unwieldy. For large landscapes of thousands of parcels, there would be a combinatorial explosion

in the number of potential polygons leading to computationally expensive, or even intractable,

models. Thus, our approach requires that the set of eligible polygons is restricted based on the

landscape and/or the computational resources at hand. For example, the set of eligible polygons

may only include contiguous clusters of parcels whose total area is less than 50 hectares.

5.3. Find Valid Gate Pairs for Each Triplet of Polygons

The width and length of a corridor depends on the width and length of the route through each

polygon in the corridor. In order to determine the width and length of a route through a polygon,

we determine how the route travels through the polygon. We use gate pairs to specify where a route
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Table 2 Procedure for finding gates given adjacent polygons.

Gate Finding Procedure

Let pi, pj be adjacent polygons.

1. Let Ec be a set of contiguous edges in ε(pi) ∩ ε(pj) such that no other edge in ε(pi) ∩ ε(pj) is

contiguous to the edges in Ec.

2. For a given Ec, let v1, v2 be the endpoints of the contiguous edges in Ec, and construct a pseudo-edge

ẽcij = (v1, v2).

(a) If ẽcij is contained in pi ∪ pj, ẽcij ∈Gij,

(b) else, if ẽcij is partially contained in pi ∪ pj, define {ẽc0ij , ẽc1ij , . . . , ẽctij} as the segments of ẽcij

partitioned by ε(pi ∪ pj). Then ẽc0ij , ẽ
c1
ij , . . . , ẽ

ct
ij ∈ Gij and all contiguous combinations of

{ẽc0ij , ẽc1ij , . . . , ẽctij} are in Gij,

(c) else, if ẽcij ∩ (pi ∪ pj) = ∅, so ẽcij is not a gate.

3. Repeat steps 1 and 2 for all Ec.

enters and exits the polygon. Valid gate pairs also depend on the previous and subsequent polygons

in the corridor. For example, in Figure 5a, the width and length of an optimal route through corri-

dor (p2, p3, p4) is different than that of the optimal route through corridor (p1, p3, p4). We let a triplet

be a sequence of three non-overlapping polygons (pi, pj, pk) such that pi and pj are adjacent and pj

and pk are adjacent. Note that pi and pk may be the same polygon (for example, in Figure 4b, route

r1 crosses triplet (p2, p1, p2)). In Figure 5a, there are nine triplets with p3 as the middle polygon:

(p1, p3, p1), (p1, p3, p2), (p1, p3, p4), (p2, p3, p1), (p2, p3, p2), (p2, p3, p4), (p4, p3, p1), (p4, p3, p2), (p4, p3, p4).

Note the width and length of corridor (pi, pj, pk) is equal to the width and length of its reversed

corridor (pk, pj, pi).

Given a triplet (pi, pj, pk), a valid gate pair consists of two gates, an entering gate representing

the transition from pi to pj and an exiting gate, representing the transition from pj to pk. We

define Gij as the set of gates between pi and pj, where pi and pj are adjacent. Note that the set
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Figure 5 a) A set of polygons, b) their associated pseudo-edges, c) gates, d) gates and core polygon for (p2, p3, p4)

and e) gates and core polygon for (p1, p3, p2).

Gij has the same elements as the set Gji. We generate gates between pi and pj by constructing

pseudo-edges that represent where a route may enter pj from pi. The midpoint of a gate serves as

a transition point for a route moving from polygon pi to polygon pj. To find Gij, we introduce a

gate finding procedure (see Table 2).

The gate finding procedure starts by identifying contiguous sets of shared edges between adjacent

polygons pi and pj. For example, in Figure 5a, p2 and p3 share one set of contiguous edges and p3

and p4 share two sets of contiguous edges. For each set of contiguous edges, construct a pseudo-edge

ẽcij that connects the endpoints of the contiguous edge set, where c indexes the contiguous edge

sets. For example, in Figure 5b, the pseudo-edge between p1 and p3 is ẽ0
1,3, the pseudo-edge between

p2 and p3 is ẽ0
2,3 and the pseudo-edges between p3 and p4 are ẽ0

3,4 and ẽ1
3,4.

If ẽcij is contained in pi∪pj, then it is a gate. Since ẽ0
1,3 is contained in p1∪p3, it is a gate, denoted

g0
1,3, shown in Figure 5c. Similarly, ẽ0

3,4 and ẽ1
3,4 are gates, denoted by g0

3,4 and g1
3,4, respectively. If

no part of ẽcij is contained in pi ∪ pj, then it is not a gate. A route using such an edge as a gate

may not be contained in the corridor.

If ẽcij is partially contained in pi ∪ pj, we partition ẽcij at each point it crosses ε(pi ∪ pj). Each

partition of ẽcij is a gate, as well as any contiguous combination of partitions. In Figure 5b, ẽ0
2,3

is partially contained in p2 ∪ p3, so we partition it into two gates, g0
2,3, g

1
2,3, and we also have the
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combination gate g2
2,3 = g0

2,3∪g1
2,3. In Figure 5c, we have gate setsG1,3 = {g0

1,3},G2,3 = {g0
2,3, g

1
2,3, g

2
2,3}

and G3,4 = {g0
3,4, g

1
3,4}. Notice that g0

2,3 is not contained in p2 ∪ p3, however it is a possible gate for

triplet (p1, p3, p2). Note that gates do not have direction, so gi,j = gj,i.

For each triplet (pi, pj, pk), we use its corresponding gate sets, Gij,Gjk to create the set of gate

pairs, Φijk. Each gate pair (gmij , g
n
jk) is comprised of one gate from Gij that is contained in pi∪pj∪pk

and one gate from Gjk that is also contained in pi ∪ pj ∪ pk. In Figure 5d, the gate pairs for triplet

(p2, p3, p4) are Φ2,3,4 = {(g1
2,3, g

0
3,4), (g1

2,3, g
1
3,4)} and in Figure 5e, the gate pairs for triplet (p1, p3, p2)

are Φ1,3,2 = {(g0
1,3, g

0
3,2), (g0

1,3, g
1
3,2), (g0

1,3, g
2
3,2)}.

Next, for every gate pair, we find the optimal route through its core polygon by embedding

pathfinding techniques into a network optimization model.

5.4. For Each Triplet and Each of its Valid Gate Pairs, Find the Optimal Route and

Associated Width and Length

Given a triplet (pi, pj, pk) and one of its gate pairs, (gmij , g
n
jk), Step 4 of the OCCA is to find the

optimal route from gmij to gnjk. The optimal route from gmij to gnjk must remain within pi ∪ pj ∪ pk.

We define the core polygon, p̃ijk, as the polygon contained in pi ∪ pj ∪ pk where ε(p̃ijk) includes all

gates from all gate pairs in Φijk. In Figure 5d, p̃2,3,4 is indicated with crosshatching, as is p̃1,3,2 in

Figure 5e.

For each gate pair (gmij , g
n
jk) and its core polygon p̃ijk, we find the optimal route from the midpoint

of gate gmij , denoted mid(gmij ), to the midpoint of gate gnjk, mid(gnjk), through p̃ijk. We proceed by

using the following path planning technique (Demyen 2007) to determine the widths and lengths

of route segments, which we then use to construct the optimal route via network optimization.

5.4.1. Triangulating p̃ijk Following Demyen (2007), we first use Constrained Delaunay Tri-

angulation (Kallman et al. 2003) to create a navigational mesh by decomposing p̃ijk into triangles.

A Delaunay Triangulation (see de Berg et al. 2008) is a triangulation in which no vertex in V lies

inside the circumcircle of any other triangle. As an example, Figure 6a shows a set of vertices, and
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Figure 6 (a) A set of vertices V and (b) its Delaunay Triangulation. (c) A set of vertices V and edges E and (d)

its Constrained Delaunay Triangulation.

Figure 7 (a) Core polygon p̃ijk, (b) CDT of p̃ijk and (c) CDT ′(p̃ijk).

Figure 6b shows its Delaunay Triangulation. A Constrained Delaunay Triangulation (CDT) is a

Delaunay Triangulation that is formed with preexisting edges1. Given the vertices and edges in

Figure 6c, the corresponding CDT is shown in Figure 6d. There are several algorithms for finding

CDTs including Chew (1989) or Sloan (1993).

Given p̃ijk (Fig. 7a), consider the CDT of p̃ijk (Fig. 7b). Notice some edges of the CDT may not

be contained in p̃ijk; they either lay outside the outer boundary of p̃ijk or they are in a hole. Let

CDT ′(p̃ijk) be the set of all edges of the CDT of p̃ijk that are internal to p̃ijk (Fig. 7c). We have

now decomposed p̃ijk into triangles.

1 Aside from a trivial case, the Constrained Delauney Triangulation produces a unique triangulation. A case where

there exist multiple triangulations is when four vertices form a perfect square that does not contain any other vertex.

In this example, there are two different triangulations that are valid CDTs. For more details, see Chapter 2 and

Theorem 2.11 in Cheng et al. (2012).
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Figure 8 Triangle edge pair routes.

5.4.2. Calculating the Width and Length of Triangle Edge Pairs We define a triangle

edge pair (a, b) as an ordered pair of edges from CDT ′(p̃ijk) ∪ {gmij , gnjk} that share a vertex and

(mid(a),mid(b)) does not intersect any other edge in CDT ′(p̃ijk)∪{gmij , gnjk}. The set of all triangle

edge pairs associated with gate pair (gmij , g
n
jk) is denoted as Tmn(p̃ijk).

Given a valid gate pair (gmij , g
n
jk) and its core polygon p̃ijk, a route from mid(gmij ) through

p̃ijk to mid(gnjk) can be represented by the sequence of triangle edge pairs it crosses:

(gmij ,1), (1,2), . . . , (s, gnjk) (see Figure 8 for example). The width and length of the route is deter-

mined by the width and length of each triangle it crosses, entering the triangle at mid(a) and

exiting the triangle at mid(b).

We calculate the width of the route from a to b, denoted by ψab using Demyen (2007). This

algorithm determines the width using: 1) the angle created by the triangle edge pair, 2) the lengths

of a and b, and 3) whether the third edge of the triangle is in the boundary of p̃ijk. Based on these

triangle edge pair attributes, the algorithm determines whether the maximal width route from a

to b is curved (such as the route from gmij to 1 in Figure 8), then calculates the narrowest width of

the route.

For wildlife corridors, knowing the exact route length through a triangle edge pair is not nec-

essary. The route represents the estimated preferred path, and there is no guarantee that wildlife

will follow it exactly. When the route through the triangle edge pairs curves, calculating route

length requires integration and may be computationally expensive. Since an exact length is not
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a priority, a quickly calculated proxy will suffice. We use the distance between the midpoints of

a and b, δab = ‖mid(a)−mid(b)‖, as a linear approximation of route length. If the information

on precise wildlife movement is available, such as movement among watering holes on the African

savannah, the model can easily be modified to account for such information by replacing our linear

approximation.

5.4.3. Network Optimization for Optimal Route. Given a gate pair (gmij , g
n
jk) and p̃ijk,

we have now identified each triangle edge pair (a, b) ∈ Tmn(p̃ijk) with associated width ψab and

length δab. A binary decision variable yab is defined for each triangle edge pair (a, b) to indicate if

it is included in the optimal route through p̃ijk. To find the widest route from mid(gmij ) to mid(gnjk)

through p̃ijk, with a maximum length threshold, Lmax, we formulate a network optimization prob-

lem as (1) - (7).

maxZ (1)

subject to:

Z −M ≤ (ψab−M)yab ∀ (a, b)∈ Tmn(p̃ijk) (2)

∑
(a,b)∈Tmn(p̃ijk)

δabyab ≤Lmax (3)

∑
(gmij ,b)∈Tmn(p̃ijk)

ymb = 1 (4)

∑
(a,gn

jk
)∈Tmn(p̃ijk)

yan = 1 (5)

∑
(a,b)∈Tmn(p̃ijk)

yab−
∑

(b,c)∈Tmn(p̃ijk)

ybc = 0 ∀ b∈CDT ′(p̃ijk) (6)

yab ∈ {0,1} ∀ (a, b)∈ Tmn(p̃ijk) (7)

The objective (1) is to maximize Z (≥0), a number which cannot exceed the minimum edge pair

width in the route, as enforced by constraint (2). Constraint (3) ensures the length of the optimal
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route does not exceed a limit, Lmax. Constraint (4) requires that the route starts at gmij , whereas

Constraint (5) requires that the route ends at gnjk. Constraint (6) is the network flow preservation

constraint. Together, these constraints ensure a connected route. Lastly, Constraint (7) requires yab

to be binary. Note that this form is equivalent to a network flow problem, for which very efficient

algorithms exist.

Alternatively, if the shortest route with a minimum width Wmin is sought, the model takes the

form of a shortest path problem:

min
∑

(a,b)∈Tmn(p̃ijk)

δabyab (8)

subject to:

(ψab−Wmin)yab ≥ 0 ∀ (a, b)∈ Tmn(p̃ijk) (9)

and Constraints (4) to (7)

The objective (8) is to minimize route length. Since we are finding corridors with nonzero widths,

it is reasonable to assume that there is a minimum width requirement, Wmin, which is enforced in

Constraint (9). Alternatively, we can define yab only for a, b : ψab ≥Wmin. We use Constraints (4)

through (6) to ensure a connected route. Even though the decision variables yab are constrained to

be binary in Constraint (7), there are efficient algorithms for the shortest path problem.

After solving the appropriate network optimization problem, we can use the optimal solution

y∗ab to calculate the width for the optimal route between the gate pairs, wmn
ijk = min

a,b:y∗
ab

=1
ψab and the

length is `mn
ijk =

∑
a,b:y∗

ab
=1

δaby
∗
ab.

To summarize, we start by formulating a graph representation of landscape Ω in which each

node is the midpoint of a gate gmij and each edge connects a valid gate pair, (gmij , g
n
jk). For each

gate pair, we determine the width and length of the optimal route from gmij to gnjk through p̃ijk

by finding triangle edge pairs Tmn(p̃ijk). A network optimization model is then used to find the

optimal route across the network. The widths and lengths of the gate pairs are assigned as the

widths and lengths of the corresponding edge weights in the landscape graph. In the final step of

the OCCA, we use this graph to construct the optimal corridor.
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5.5. Formulate and Solve the Optimal Corridor Construction Problem

The final step in the Optimal Corridor Construction Approach (Step 5 in Table 1) is to use the

gate pair route widths wmn
ijk and lengths `mn

ijk to create and solve yet another network optimization

problem; this time to find the optimal corridor.

The Optimal Corridor Construction Problem is analogous to the network optimization models

introduced earlier for finding optimal routes between gate pairs. Rather than selecting triangles to

traverse a polygon, this time polygons are selected to traverse the landscape. The resulting set of

polygons forms a corridor containing optimal routes.

Let xmn
ijk ∈ {0,1} be the binary decision variable that indicates whether the route from gate gmij

to gate gnjk through polygon p̃ijk is included in the corridor and let the set of all gate pairs on the

landscape Ω be ΦΩ. Let p0, pω denote the polygons we wish to connect. Again, these polygons could

represent lake-, or seashores or other landscape features. Recall that the landscape was originally

partitioned into parcels Q, which we used to create polygons. For each parcel q, let Λq be the set

of polygons that contain q. Also let D be an upper bound on all widths wmn
ijk . Let cj be the cost

associated with including polygon pj in the corridor, and let B be the total budget. If our objective

is to create a maximal width corridor with an upper bound on corridor length Lmax and a budget

constraint, the network optimization problem is as follows:

maxW (10)

subject to:

W −D≤ (wmn
ijk −D)xmn

ijk ∀ (gmij , g
n
jk)∈ΦΩ (11)

∑
(gmij ,g

n
jk

)∈ΦΩ

`mn
ijkx

mn
ijk ≤Lmax (12)

∑
(gm0j ,g

n
jk

)∈ΦΩ

xmn
0jk = 1 (13)
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∑
(gmij ,g

n
jω)∈ΦΩ

xmn
ijω = 1 (14)∑

(gmij ,g
n
jk

)∈ΦΩ

xmn
ijk −

∑
(gr

hi
,gmij )∈ΦΩ

xrm
hij = 0 ∀ gmij ∈

⋃
i 6=0,j 6=ω

Gij (15)∑
(gmij ,g

n
jk

):pi∈Λq

xmn
ijk ≤ 1 ∀ q ∈Q (16)∑

(gmij ,g
n
jk

):pj∈Λq

xmn
ijk ≤ 1 ∀ q ∈Q (17)∑

(gmij ,g
n
jk

):pk∈Λq

xmn
ijk ≤ 1 ∀ q ∈Q (18)∑

(gmij ,g
n
jk

):pj∈Ω

cj ∗xmn
ijk ≤B (19)

xmn
ijk ∈ {0,1} ∀ (gmij , g

n
jk)∈ΦΩ (20)

As in the model that finds maximum-width routes between gate pairs, the objective (10) here

is to maximize corridor width, W (≥0), which is defined in Constraint (11). Corridor length is

controlled by Constraint (12), while corridor connectivity is enforced by Constraints (13) through

(15). Constraints (16)-(18) ensure that each parcel is in at most one polygon selected for the

corridor. Lastly, Constraint (19) makes sure that the costs do not exceed the budget (B). If the

shortest route with a minimum width threshold Wmin is sought, the model becomes:

min
∑

(gmij ,g
n
jk

)∈ΦΩ

`mn
ijkx

mn
ijk (21)

subject to:

(wmn
ijk −Wmin)xmn

ijk ≥ 0 ∀ (gmij , g
n
jk)∈ΦΩ (22)

and Constraints (13) to (20)

Analogous to finding the minimum-length route between gate pairs, this model selects minimum

length corridors by using an objective function (21) that minimizes the total length of the route.

Constraint (22) ensures that the corridor satisfies the minimum width requirement. The rest of

the constraints ensure that the corridor is connected. To simplify inequality (22), we can define

xmn
ijk only for gate pairs satisfying the property wijk ≥Wmin. Due to the budget constraint (19)

and Constraints (16) - (18), this optimization problem is equivalent to a shortest path resource-

constrained problem, which is known to be NP-hard.
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6. Illustrative Example: Eldorado Dataset

6.1. Methods

To demonstrate the use of the OCCA, we consider a region of the Eldorado National Forest in

California (Fig. 9a). The test dataset was obtained from the Forest Management Optimization

Site, a landscape data repository housed by the University of New Bruncwick (FMOS 2014). The

landscape is assumed to comprise parcels that are both suitable wildlife habitat and available for

sale to be included in a wildlife corridor. The objective is to purchase a subset of the parcels in such

a way so that core habitat patches (represented by dark polygons) are connected with a corridor

of maximal width. The purchase price of each parcel is assumed to be proportional to their size

and the available budget B is sufficient for buying only 15% of the total land area.

Due to computational limitations, it is impractical to consider every contiguous set of parcels as

potential polygons. For this study, we limited the polygon set to all of the 1,282 individual parcels,

plus 527 polygons that comprised multiple parcels not exceeding a combined area of 20 hectares.

The data included 5 polygons with holes. This resulted in a total of 1,814 polygons and 112,000

gate pairs. We used the optimization problem (1) through (7) to determine gate pair widths, and

the model (10) through (20) to construct the corridor. To calculate corridor length, we introduced

an accounting variable Ltot and added the following constraint:

∑
(gmij ,g

n
jk

)∈ΦΩ

`mn
ijkx

mn
ijk≤Ltot (23)

We first solved the Optimal Corridor Construction Problem without maximum length threshold

(Fig. 9(b)). Then, a maximum corridor length restriction of 40 km was used leading to a solution

depicted in Fig. 9(c)).

6.2. Results

All of the experiments were run on a Dell Precision T7500 machine with Intel Xeon CPU,

E5630@2.53Ghz (2 processors) with 4 GB of RAM and 64-bit Windows. All of the optimiza-

tion problems were solved using CPLEX (2011) version 12.4. No special network optimization
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Figure 9 a) Eldorado landscape, b) maximal width corridor with no max length threshold and c) maximal width

corridor with maximum length threshold of 40 km.
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algorithms were used. Python 2.7 was used to generate gate pairs (Step 3) and the constraints

for the route and corridor optimization problems (Steps 4 and 5). The code is available at

https://www.faculty.washington.edu/toths/OCCA.zip.

The gate pair optimization problems (Step 4 of the OCCA) solved to optimality, taking less

than 48 minutes for all 112,000 problems. With no maximum length requirement, the maximal

width corridor optimization problem (Step 5) solved to optimality within 137 minutes and found

the corridor shown in Figure 9(b), which is 309.1 meters wide and 48.0 km long. With the maxi-

mum length restriction, the corridor optimization problem solved to optimality in 12 minutes. The

optimal corridor shown in Figure 9(c) is 299.1 m wide and 39.98 km long.

6.3. Discussion

Although there were over 100,000 gate pairs, all of the gate pair optimization problems solved to

optimality very quickly due to their network model structure. The corridor optimization problem

also proved to be computationally tractable. The length-restricted corridor problem could be solved

within minutes, whereas the problem with no length restriction was solved in approximately three

hours.

In our example, we used the OCCA to select a corridor of maximal width. The first corridor

found maximized width, but was long and winding. When we included a restriction on corridor

length, the resulting corridor was only slightly (3.2%) narrower, but was 8.02 km (16.7%) shorter

than the corridor with no length restriction. Even though the length-restricted corridor is narrower,

it may be a more appealing corridor in cases with low minimum width thresholds because of the

reduction in length.

St John et al. (2016) embedded the OCCA into a forest harvest scheduling model to select rein-

deer corridors in Sweden. The case study consisted of 3,823 management units (1,996 forested and

1,827 non-forested), and yielded 4,461 polygons and 120,572 gate pairs. The gate pair optimization

problems (Step 4 of the OCCA) solved to optimality, taking less than 124 minutes for all 120,572

problems. The full model for harvest scheduling with reindeer corridors was too large to find even a
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feasible solution within a reasonable amount of processing time. Therefore, a procedure was devised

for finding an initial feasible solution to use as a MIP start. The MIP start allowed CPLEX to find

a reasonable solution (with a 3.42% optimality gap) within 30 hours. For more details, see St John

et al. (2016). The case study showed that (1) the OCCA can select corridors of maximum width or

minimum length, and (2) it can be incorporated as a new functionality in large harvest scheduling

models.

7. Computational Experiments with Synthetic Landscapes

Application of mixed integer programs to large datasets, such as those of realistic landscapes,

often results in computational issues. In particular, the number of units (parcels), average (vertex)

degree or valency (the average number of adjacent parcels), and variation in unit area (parcel size)

have been shown to affect computational performance of spatially explicit forest harvest scheduling

models cast as MIPs (McDill and Braze 2000, Constantino et al. 2008, Tóth et al. 2012, Passolt

et al. 2013). In order to test our approach, we created hypothetical landscapes by varying the

values of these three spatial attributes using a Vorronoi Tesselation-based landscape generator

called rlandscape by Passolt et al. (2013).

7.1. Experimental Design

Table 3 provides three levels for each characteristic to be used in generating landscapes, based on

seven realistic landscapes in FMOS 2014 (St John et al. 2016). Each value has a small margin

around it for ease of landscape generation. The number of units in each case (200, 400 and 600

units) was smaller than that of an average realistic landscape (1,557 units). This specification

ensured problem tractability, but is still within the range of the seven landscapes (71 to 5,881

units). Vertex degree ranged between 3.8 and 5.3, with an average of 4.3, while variation in unit

size was between 62 and 139, with an average of 100. In this experiment, five landscapes for each

combination of factor levels were generated, resulting in 33 ∗ 5 = 135 landscapes.

For each landscape, OCCA is run to determine the widest corridor connecting the bottom-left-

most unit to the top-right-most unit. For each landscape, the number of gate pairs and the total run
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Factor Level 1 Level 2 Level 3

Number of Units 200 ± 1 400 ± 1 600 ± 1

Degree 3.9 ± 0.1 4.8 ± 0.1 5.7 ± 0.1

Area Variation 56.0 ± 1.0 98.0 ± 1.0 140.0 ± 1.0

Table 3 Landscape factors and levels for the computational experiment.

time (in CPU seconds) are recorded. The total run time includes the time to determine multiunit

polygons and gate pairs, to formulate and solve gate pair optimization problems, and to formulate

and solve the final corridor optimization problem.

7.2. Experimental Results

For each landscape factor, the distribution of the number of gate pairs is shown in Figure 10, and

the distribution of the total run time is shown in Figure 11. Each of the factors appears to be

positively correlated with total run time. The p-values for the full factorial ANOVA are shown in

Table 4. Based on the ANOVA, the number of gate pairs is strongly related to computational time

with a p-value less than 2.0 ∗ 10−16.

Figure 12 illustrates the relationship between the number of gate pairs and total run time

aggregated across all factors. Since the number of gate pairs appears to have a positive linear

correlation with computation time, we fit a linear model to the data. Figure 12 includes the fitted

line, ŷ=−237.4 + 0.03789x̂, with adjusted R2 = 0.9677, and Figure 13 shows the resulting residual

and Q-Q plots.

7.3. Discussion

The ANOVA results indicate that number of units, vertex degree and variation of area are all

positively correlated with total run time (4). The interaction of vertex degree and variation in area

also impacts total run time, whereas the other pairwise interactions (number of units with vertex

degree and number of units with variation in unit area) and the three-way interaction of all factors

are not significant.
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Factor(s) p-value

num-units 0.0512

deg 0.0522

area-var 0.0136

num-units:deg 0.9731

num-units:area-var 0.6771

deg:area-var 0.0383

num-units:deg:area-var 0.9316

Table 4 ANOVA p-values for the computational experiment.

Figure 10 Distribution of number of gate pairs for each factor.

Figure 11 Distribution of total run time for each factor.
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Figure 12 Number of gate pairs versus total run time.

Figure 13 Residuals and Q-Q plots for the linear fit of number of gate pairs versus total run time.

The number of gate pairs in a problem tends to increase as each landscape factor increases

(see Figure 10). The relationship between the number of gate pairs and total run time appears

to be roughly linear (Figure 12), particularly for smaller problems (less than 100,000 gate pairs).

Knowledge of this relationship can help users predict whether a problem may take a long time to

solve, or even be intractable, based on the number of gate pairs.

In sum, the three landscape factors are statistically significant for computational performance.

In3 addition, it appears that run time is linearly related to the number of gate pairs, which is a

very promising computational result.

8. Conclusions

There are many extensions and variations of the Optimal Corridor Construction Approach to

explore. In this paper, we introduced the OCCA for controlling width and length of wildlife corri-
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dors. However, the OCCA has the potential to control other geometric characteristics as well. For

instance, if analysts want direct control over how straight the corridor must be, a metric for angle

for each gate pairs can be calculated via the gate pair algorithm and included in the model. If a

narrow or long path is desired, rather than a short or wide path, the objectives can be redefined

accordingly.

For ease of presentation, we introduced the OCCA by constructing a corridor that connects two

predetermined polygons. Rather than using the traditional graph interpretation of the landscape

(see Figure 2), our new graph (Figure 3) can be implemented with other connectivity models as

well, such as Jafari and Hearne (2013) or Conrad et al. (2012). In maximal covering problems, our

approach can be used to create constraints and thus a solution where corridor width and length

requirements must be met.

The OCCA can also be used in applications beyond wildlife corridors. In landscape management

problems such as creating firebreaks for wildfires (Davis 1965) and emergency evacuation routes

(Cova and Johnson 2003), connectivity of selected areas is required and controlling the geometric

aspects of the connected area is often important.

As a last caveat, computational tractability can be a concern when OCCA is applied to very large

landscapes, as mentioned in Section 5.2, and demonstrated in Section 7.2. To improve tractability,

the number of eligible polygons used for corridor construction may be restricted at a cost to

optimality. For example, in Section 6, if we increased the area restriction from 20 ha to 30 ha, the

number of gate pairs would explode from 112,000 to over 5.1 million. Careful polygon selection is

clearly critical to maintaining some degree of computational tractability. Further study is necessary

on how to choose eligible polygons in order to reduce losses in optimality.
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Tóth, S.F., M.E. McDill, N. Könnyű, S. George. 2012. A strengthening procedure for the path formulation

of the area-based adjacency problem in harvest scheduling models. Math. Comput. For. Nat.-Resour.

Sci. 4 1-23.
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