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Model IV: Spatially Explicit Harvest Scheduling with Difference Equations  

 

Abstract: 

Spatially explicit harvest scheduling models optimize the layout of harvest 

treatments to best meet management objectives such as revenue maximization 

subject to a variety of economic and environmental constraints. A few exceptions 

aside, the mixed-integer programming core of every exact model in the literature 

requires one decision variable for every applicable prescription for a management 

unit. The only alternative to this “brute-force” method has been a network 

approach that tracks the management pathways of each unit over time via four 

sets of binary variables. Named after their linear programming-based aspatial 

predecessors, Model I and II, along with Model III, which has no spatial 

implementation, each of these models rely on static volume and revenue 

coefficients that must be calculated pre-optimization. We propose a fundamentally 

different approach, Model IV that defines stand volumes and revenues as 

variables and uses difference equations and Boolean algebra to transition forest 

units from one planning period to the next. We show via three sets of 

computational experiments that the new model is a computationally promising 

alternative to Models I and II.  

 

Keywords: forestry; harvest scheduling; integer programming; spatial 

optimization 
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1. Introduction 

The goal of this paper is to introduce a new integer programming model, Model 

IV, for spatial forest harvest scheduling. We show that the new model is 

compatible with three of the existing techniques that can capture maximum 

harvest opening size restrictions and that it can handle intermediate treatment 

decisions. We also provide empirical evidence of the favorable computational 

performance of Model IV relative to that of the benchmarks models (Models I-II). 

Forest harvest scheduling models optimize the spatiotemporal layout of 

harvests to best meet management objectives such as revenue maximization or 

carbon sequestration subject to environmental, logistical or budgetary constraints. 

Due to the combinatorial complexity of assigning harvests to management units 

(contiguous groups of trees with similar silvicultural and operational attributes) 

across large areas and over long time horizons, harvest scheduling problems are 

typically cast as optimization models. The first linear programming (LP) models 

were introduced in the 1960s by Curtis (1962), Loucks (1964) and Kidd et al. 

(1966). These models were aspatial in that they only calculated the areas to cut 

from so called analysis areas in given time periods to maximize timber revenues 

(Johnson and Scheurman 1977). Analysis areas are parts of the forest that share 

key silvicultural characteristics important for management such as forest type, site 

class or initial age. Subsequent LPs can be classified in three categories, the first 

two of which are from Johnson and Scheurman (1977). Model I, first suggested 

by Kidd et al. (1966), is a “brute-force” method that requires the definition of one 

continuous decision variable for each analysis area and planning period 

representing the harvest area. Model II, in contrast, is a network formulation, first 

described by Nautiyal and Pearse (1967), that uses four sets of variables to track 

the management pathways for each analysis area (Fig. 1). The third LP-based 

model, Model III (Berck 1976, Johansson and Löfgren (1985), Gunn and Rai 

(1987), McDill (1989), also tracks forest areas by analysis area, planning period 

and age-class based on the age-classes and harvest decisions in the previous time 

period. The model simply multiplies the area harvested in each age-class and 

analysis area by a static volume coefficient to determine timber yield. 

A common shortcoming of these LP-based harvest scheduling models was 

that they could not account for spatial concerns such as habitat fragmentation 
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(Franklin and Forman 1987) or harvest opening size restrictions (a.k.a., green-up 

or clear-cut size constraints) that are often present in forest regulations (e.g., U.S. 

Congress 1976). That said, the Model I construct is well suited for spatial 

optimization as analysis areas can easily be disaggregated into stands. While Bare 

and Norman’s (1969) very early integer programming model did treat each forest 

stand as an indivisible decision unit, harvest opening size constraints were not 

added as such regulations had not been introduced until the mid 1970s. 

The earliest models to respond to clear-cut size regulations were Kirby et 

al.’s (1980) and O’Hara et al.’s (1989) mixed integer programs (MIPs) that 

assumed that any adjacent pair of units in the forest had a combined area greater 

than the maximum opening size. A similar assumption was made by Snyder and 

ReVelle’s (1996; 1997) network model, the only spatial Model II construct. All 

models using the above adjacency assumption are commonly referred to as Unit 

Restriction Models (URM, Murray 1999) in forestry, and are an instance of the 

Node Packing Problem, a.k.a. the Vertex Packing or the Maximal Weight Stable 

Set Problem in operations research. The Area Restriction Model (ARM, Murray 

1999) is more general in that it allows groups of contiguous management units to 

be harvested concurrently as long as their combined area is below the maximum 

allowable clear-cut size. Apart from the numerous heuristics that have been 

proposed for the ARM (e.g., Lockwood and Moore 1993, Caro et al. 2003, 

Richards and Gunn 2003), so far only a few exact integer programming 

approaches have been documented in the refereed literature. These include McDill 

et al.’s (2002) Path Formulation, McDill et al.’s (2002) and Goycoolea et al.’s 

(2005) Cluster Packing Model, Gunn and Richards’ (2005) Stand-Centred 

approach and Constantino et al.’s (2008) Bucket Formulation. While all of these 

models were introduced using the Model I form, we show that they are also 

compatible with the proposed Model IV construct. 

Model IV is fundamentally different from the spatial versions of Model I 

and II in that it uses difference equations and Boolean algebra to transition the 

states of management units through time. While the use of difference equations to 

model stand development is not entirely new (e.g., Garcia 1979), this article 

presents the first linearized construct imbedded in a spatial harvest scheduling 

model. In Models I and II, unit attributes such as expected merchantable yield or 

harvest revenues were hard-wired in the programs a priori as coefficients. In 
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contrast, the proposed model treats these quantities as variables and calculates 

them only during optimization. This affords a higher level of flexibility in model 

specifications than what had previously been possible. Inspired by Hof et al.’s 

(1995) pest management model that calculates the population of a pest in 

consecutive time periods using the derivative of an exponential invasion function, 

Model IV incorporates a sigmoid growth function to calculate timber volumes (or 

revenues). Sigmoid growth curves, which are standard in forestry (e.g., Pienaar 

and Turnbull 1973), have two distinct segments: an exponential and a tapering 

segment separated by an inflection point (Fig. 2, 3). To formulate Model IV as a 

linear program, we derive the rate of change between discrete time periods for 

both the exponential and tapering segments of the curve and use these linear 

expressions to describe the relations between the volume variables of Model IV. 

A binary switch is in place to track whether the value of a particular volume 

variable is below or above the inflection point. This switch allows the automation 

of the decision whether the difference equation of the exponential or the tapering 

segment should be used to calculate the volume of a management unit as a 

function of its volume in the previous period. If the unit is cut by the model in a 

given period, the harvest volume in the subsequent period is reset to zero, or to a 

small value depending on the length of the planning period. Model IV uses 

Boolean algebra to make sure that the value of the volume (or revenue) variables 

are properly set during optimization. A critical feature of this approach is that both 

the difference equations and the Boolean constructs are linear, enabling the use of 

efficient integer programming solvers.  

 

2. Methods 

After describing the key modeling assumptions, we provide a rigorous 

mathematical definition for Model IV. The benchmark models, Models I and II 

are described in Appendix A. Model III was not included in the tests, as it does 

not have a documented spatial version. The section ends with a description of 

experiments that were used to study the computational performance of Model IV.  

 

2.1   Assumptions 

For simplicity, the only silvicultural activity that we considered in the experiments 

was even-aged management with clear cutting. The incorporation of intermediate 
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treatments such as thinning, pruning or fertilization is described in Appendix C. 

We assumed that clear-cuts occurred only in the midpoint of the planning periods. 

Whenever a management unit was cut, it was immediately replanted with the 

same species incurring a fixed per-hectare cost. As for timber prices and 

management expenses, we assumed they were constant in real terms. We also 

assumed that the goal of management was to maximize discounted net timber 

revenues over the entire planning horizon. Harvest flow constraints are in place to 

provide for a relatively smooth flow of harvest volume over time. 

 

2.2   Benchmark Models 

We used Models I and II for benchmarking Model IV. See Appendix A for the 

detailed mathematical formulations. 

 

2.3 Model IV 

We present Model IV in slightly different way than the benchmark models 

in the Appendix. We first define the difference equations that characterize the 

growth function, which is at the core of the new model, and then show how this 

function can be imbedded in an integer program using only linear inequalities. 

This imbedding plus the usual side constraints, such as harvest volume flow and 

clear-cut size restrictions, constitute Model IV. Given a set of management units 

S , indexed by s, and a set of planning periods T , indexed by t, we define binary 

variable 
stx  as the decision to harvest unit s  in period t : 1stx   if unit s is to be 

cut in period t, 0 otherwise. Finally, we introduce stv as an accounting variable that 

represents the unit area volume (or harvest revenue) in unit s in period t. We 

calculate the values of stv based on the harvest decision and volume in period t-1 

by imbedding the following function in the decision model: 

 

min , 1

, 1 exp , 1 , 1

, 1 taper max taper , 1 , 1

,                                          if  1;

(1 ),                            if   and 0;

(1 ) ,         if   and 

s

s t

s s

st s t s t s t

s s s s

s t s t s t

x

v v v x

v v x



 

   



  

  



   

   

    

0;







       (1) 

 

where parameter 
min

s denotes the unit area volume in unit s one period after it was 

cut, 
max

s
 
denotes the asymptote of the growth curve, the maximum attainable 

volume of unit s, s  the inflection point in terms of unit area volume separating 
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the exponential segment of the curve with rate
exp

s  from the tapering segment that 

has a rate 
taper

s
 
(Fig. 2). To imbed Function (1) in Model IV as a set of linear 

inequalities, we first force the volume of unit s  in period t+1 to be equal to 
min

s if 

it is cut in period t (i.e., if 1stx  ) 

  

 , 1 max min                  1 ,                                    , ,s s

s t stv x s S t T          (2) 

, 1 min                  ,                                                            , .s

s tv s S t T      (3) 

 

Constraints (2)-(3) ensure that , 1 min

s

s tv    if stx =1. Otherwise, if stx =0, neither 

constraint is binding with respect to 
, 1s tv 

 because
min max

s s  . If unit s is not cut in 

period t, then we need to determine the volume of unit s in period t+1 given its 

volume in period t. Since the functional relation between 
, 1s tv 

 and stv  depends on 

whether s

stv  (Eq. 1), we define a binary indicator variable
sty that tells the 

model whether the volume is above or below the inflection point in period t. If 

s

stv  , then 0sty  , 1 otherwise. The behavior of 
sty is defined by the following 

pair of inequalities: 

 

max                  ,                                                 , ;s s

st stv y s S t T        (4) 

                  ,                                                           , .s

st stv y s S t T      (5) 

 

If s

stv  , then, in order to satisfy constraint (4), 
sty must be equal to 1. If 

s

stv  , constraint (5) forces 
sty to be zero.  If s

stv  , neither (4) nor (5) is 

binding with respect to the value of 
sty . If s

stv  , the volume in period t+1 will 

be calculated using the rate of growth associated with the curve above the 

inflection point and the asymptote 
max

s : 

 

   , 1 max taper max taper                  1 1 ,             , 1,s s s s

s t st stv y v s S t T                 (6) 

   , 1 max taper max taper                  1 1 ,      , 1.s s s s

s t st st stv y x v s S t T                  (7) 

 

If the volume of stand s in time t is below the inflection point, i.e., 0sty  , 

Constraints (6)-(7) will always hold because 
, 1 max

s

s tv   by definition and because 
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taper0 1s  . Otherwise, i.e., if 1sty  , , 1 taper max taper(1 )s s s

s t stv v       . Note that if 

unit s is cut in time t ( 1stx  ), then , 1 min

s

s tv   by Constraints (2)-(3). At  1stx  , 

Constraints (4)-(5) are non-binding regardless of what sty  is. Finally, if stv is 

below the inflection point and no harvesting occurred ( 0stx  ), the exponential 

rate is used to calculate the volume: 

 

 , 1 max exp                  1 ,                                , 1,s s

s t st stv y v s S t T            (8) 

 , 1 max exp                  ( ) 1 ,                        , 1.s s

s t st st stv y x v s S t T            (9) 

 

If unit s is cut in period t ( 0stx  ) and stv is below the inflection point, then 

, 1 min

s

s tv  
 
by Constraints (2)-(3) and Constraints (6)-(7) are non-binding. 

Constraints (6)-(7) are also non-binding if the volume in time t is greater than the 

inflection point ( s

stv  ) and unit s was not cut in period t ( 0stx  ). In this case, 

Constraints (4)-(5) become active and Function (1) is enforced.  ■  

The calculation of harvest volumes requires a nonlinear cross-product 

term: st stv x . We linearize this expression in order to avoid the computational 

difficulties that are associated with solving non-linear programs. To this end, we 

replace st stv x  with a new variable,
st , that takes the value of stv

 
if 1stx  , 0 

otherwise. Variable 
st denotes the harvest volume in unit s  in period t . To 

ensure that st stv  iff 1stx  , we add the following inequalities: 

 

max                  ,                                                      , ;s

st stx s S t T       (10) 

                  ,                                                              , ;st stv s S t T      (11) 

 max                   1 ,                                      , ;s

st st stv x s S t T        (12) 

 

If 0stx  , then Constraint (10) will force st  to be 0. Constraints (11)-(12) are 

non-binding. If on the other hand, 1stx  , Constraint (12) will reduce to st stv  . 

This, along with Constraint (11) will force st  to be equal to stv . Constraint (10) 

will be non-binding in this case. 
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With the linearization of st stv x in place, we can formulate the objective 

function with , ,  and s sc a e i denoting the wood price per unit volume, the area and 

the regeneration costs of unit s, and the real discount rate, respectively: 

 

    
,

max 1 .
t

s st s st

s S t T

c a e x i


 

       (13) 

 

 Function (13) maximizes the net discounted timber revenues associated 

with managing a set of units S over T planning periods. Finally, we impose the 

minimum rotation age of k periods with logical constraint: 

'

'

                  1,                                                            ,  1 ;
t

st

t t k

x s S k t T
 

       (14) 

 

and require that the harvest volumes ( th ) for the entire forest in adjacent periods 

stay between a specific upper ( maxf ) and lower ( minf ) bound: 

 

                  ,                                                     ;s st t

s S

a h t T


     (15) 

 min 1                  1 ,                                               1;t tf h h t T       (16) 

 max 1                  1 ,                                              1.t tf h h t T       (17) 

 

Harvest accounting constraint (15) and flow constraints (16)-(17) are analogous to 

constraints (A3)-(A5) in Model I and constraints (A16-18) in Model II. 

Constraints (18)-(19) define stv  and st as positive real and stx  and sty as binary: 

 

                  , ,                                                       , ;st stv s S t T      (18) 

                   ,y 0,1 ,                                                     , .st stx s S t T     (19) 

 

Objective function (13) and constraints (2)-(12) and (14)-(19) define 

Model IV. The five parameters of Function (1) imbedded in Model IV, namely 

min

s , 
max

s , 
exp

s , 
taper

s  and s must be fitted to the original data or to the growth 

function that is to be used prior to optimization. In this study, we used Goal 

Programming (GP: Charnes and Cooper 1961), which is a standard curve fitting 

procedure (Williams 1999). For details about this GP, see Appendix B. 

2.3.1 Simplified Model IV 
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Model IV can be greatly simplified if harvest activities can only begin at a volume 

beyond the inflection point. For example, if the volume at the minimum rotation 

age is greater than the volume at the inflection point, then only the taper segment 

of the logistic-like growth curve is needed (curve BD  in Fig. 2). The volumes 

prior to the minimum rotation age are inconsequential because the management 

unit will not be touched during that time. For this reason, a modified growth curve 

can be used where the volumes prior to the minimum rotation age are set to be 

equal to the volume at the minimum rotation age. Since constraint set (14) in 

Model IV prevents the units from being cut prior to the minimum rotation age, 

this has no ill effects on the behavior of the model. After the minimum rotation 

age is reached, the volume increases according to the taper segment of the original 

logistic-like curve (1). The modified curve has fewer parameters to fit as the 

binary switch ( sty ), the exponential growth rate ( exp

s ), and the seed volume 

parameters (
min

s ) are no longer necessary. This allows for fewer constraints. To 

imbed the modified curve in Model IV, we let 
rot

s  denote the volume of 

management unit s at the minimum rotation age.  Then, Constraints (2)-(3) can be 

modified to ensure that the volume in unit s remains constant at s

rot  until the 

minimum rotation age is reached: 

, 1 max ' max rot

' 1

                 ,                               , 1.
t

s s s

s t st

t t k

v x s S t T  

  

        (20) 

, 1 rot                                                                                  , 1.s

s tv s S t T       (21) 

Since we do not need to consider the curve below the inflection point, Constraints 

(4) and (5) may be eliminated and Constraints (6)-(7) can be simplified to: 

 

 , 1 taper max taper                  1 ,                            , 1.s s s

s t stv v s S t T             (22) 

 , 1 max ' taper max taper

' 1

                  1 ,        , 1.
t

s s s s

s t st st

t t k

v x v s S t T   

  

           (23) 

Notice that if '

'

1
t

st

t t k

x
 

 , then , 1

s

s t rotv    by Constraints (20)-(21) and 

Constraints (22)-(23) are non-binding. If on the other hand '

'

0
t

st

t t k

x
 

 , then 

 , 1 taper max taper1 s s s

s t stv v         by Constraints (22)-(23). 
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 While the above simplification does lead to smaller problem size, it 

precludes the preservation of volume information for units that are younger than 

the minimum rotation age. If such information is necessary, the full Model IV, 

objective function (13) and constraints (2)-(12) and (14)-(19), needs to be used. 

 

2.3.2 ARM Compatibility of Model IV 

 In this section, we demonstrate that Model IV is compatible with three of 

the exact spatial models that are available from the literature: McDill et al.’s 

(2002) Path, Goycoolea et al.’s (2005) Cluster Packing and Constantino et al.’s 

(2008) Bucket Formulation.  

 McDill et al.’s (2002) Path Formulation with Model IV: The Path 

Formulation requires the a priori enumeration of minimal covers of management 

units (or minimally infeasible clusters). After Goycoolea et al. (2005), we let 

 denote this set with C  representing one particular element in  . A cover 

C   is minimal if maxss C
a A


  holds, but 

max\{ } ss C l
a A


  for any 

l C such that set \{ }C l  is still a connected sub-graph. To enforce maximum 

harvest opening size restrictions, we add the following inequality: 

 

                  -1,                                               , .st

s C

x C C t T



     (24) 

 

Since the Path Formulation tracks management units and not clusters of clear-

cuts, it cannot be used to enforce average harvest opening size restrictions. These 

requirements can only be modeled with Cluster Packing (Murray et al. 2004). 

Goycoolea et al.’s (2005) Cluster Packing with Model IV: To capture 

the Cluster Packing approach in Model IV, replacing decision variables stx  

,s S t T   with cluster variables as in Model II (Appendix A2) is not an option 

since the volume coefficients are unique to each unit. While the growth functions 

in Model IV could theoretically be refitted for each feasible cluster, such an effort 

might be costly due to the potentially enormous number of clusters. To avoid this 

scenario, we follow the same mapping approach as in Model I (Appendix A1: A8-

9). The only difference is that here we map the Model IV decision variables, stx , 

rather than Model I’s prescription variables, stx , to cluster variables tu  

, t T   : 
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                  ,                                                       , ;st t

s

x u t T


 


      (25) 

                  1,                                     , ;st st t

s s A

x x u t T





 
 

         (26) 

 

As in (A8)-(A9), Constraint (25) allows, while constraint (26) forces cluster   to 

be “declared” cut in period t if all the units in the cluster, but none adjacent to it, 

are cut in period t. To avoid double-counting the harvested areas, and to ensure 

that the maximum and the maximum average harvest opening sizes are never 

exceeded over the entire planning horizon, we add Model I’s constraints (A10)-

(A11) to Model IV. Note that these constraints are identical in both models since 

they have the same function and use the same cluster variables. For easy 

reference, the full Model IV ARM with Cluster Packing is function (13) and 

constraints (2)-(12), (14)-(19), (A10)-(A11), and (25)-(26).  

 Constantino et al.’s (2008) Bucket Formulation with Model IV: The 

Bucket Formulation requires the definition of a class of clear-cuts, or buckets 

(Goycoolea et al. 2009), say set B , that are initially all empty. The model uses a 

set of assignment variables whose optimal values determine the composition of 

the buckets. Let variable {0,1}b

stz   represent the decision whether management 

unit s should be assigned to bucket b in period t: 1b

stz   if it is, 0 otherwise. Since 

there cannot be more clear-cuts in a forest than there are management units, the 

number of units puts an upper bound on the number of buckets, i.e., B S  which 

in turn restricts the number of assignment variables that are needed to capture 

maximum opening size constraints. To imbed the Bucket Formulation in Model 

IV, decision variables stx  ,s S t T    need to be mapped to assignment variables 

b

stz , ,s S b B t T    . This means that in objective function (13) and in 

constraints (2)-(3), (7), (9)-(10), (12) and (19), the terms stx  and 'stx  need to be 

replaced with b

stb
z  and '

b

stb
z , respectively. All the other constraints in Model 

IV, constraints (4)-(6), (8), (11) and (13)-(18) remain intact since they do not 

carry decision variables. To put a limit of maxA on the total area of management 

units that can be assigned to the same clear-cut, we add: 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

max                  ,                                               , .b

s st

s

a z A b S t T     (27) 

 

Since adjacent clear-cuts can still have a combined area that exceeds maxA , 

Constraint set (27) alone cannot prevent all clear-cut size violations. The Bucket 

Model makes use of two additional constraint sets, (28)-(29), along with a set of 

indicator variables to keep the clear-cuts disjoint. The indicator variables, 

btw  , , ,  b S t T    , take the value of one if at least one unit in 

maximal clique  is assigned to clear-cut b in period t. Then: 

 

                    ,                                                         , ,  ;b

st stz w b s t T        (28) 

                  1,                                                   , .st

b

w t T       (29) 

 

Constraint set (28) defines the behavior of variables 
btw

 
based on the values of the 

assignment variables. Constraint set (29) prevents the management units in each 

clique from being assigned to more than one clear-cut. Finally, we note that 

incorporating maximum average clear-cut size restrictions in the Bucket Model is 

not possible as there is nothing in the formulation that prevents the formation of 

clear-cuts with disjoint management units. 

  

2.4   Computational Experiments 

 The goal of this section is to describe the three experiments that serve to 

illustrate the computational performance of Model IV in comparison with Models 

I and II, with and without maximum and average harvest opening size restrictions. 

The first case study is a Radiata pine plantation in New Zealand where there are 

no clear-cut size restrictions. The second site is Loblolly pine located in the 

southeast United States where both maximum and average clear-cut size 

restrictions are present. The third experiment involves a larger forest, El Dorado 

(FMOS 2012), also located in the United States, that has 1,363 management units, 

and where only maximum harvest opening size restrictions are present. 

We used MS Visual Basic 2008 to formulate and IBM ILOG CPLEX 

version 12.1.0 (64-bit) to solve the 3 models to optimality on a Dell Power Edge 

510 Server with Intel Xeon CPU, X5670@2.93 GHz (2 processors) with 32 GB of 

RAM and a 64-bit Windows Server 2008 Operating System. Each model was run 

for three hours on 24 threads and five repetitions were carried out to account for 
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the non-deterministic nature of parallel processing. For the smaller problems, 

provably optimal solutions were found in seconds, in which case the CPU times 

were recorded.  For those problems that did not solve to optimality within three 

hours, the achieved optimality gaps were recorded. Optimality gaps are 

percentage gaps between the upper and lower bounds on objective function values 

that are established by the solver as it works to find better solutions. Tighter gaps 

indicate a higher likelihood of solution optimality. 

 

2.4.1 Radiata pine, New Zealand 

 The 140-unit, 6132.6 ha Radiata pine plantation is located in the Taranga-

Taupo catchment on the North Island of New Zealand (Fig. 3).  The catchment is 

owned by the local Maori and is managed by New Zealand Forest Managers Ltd. 

The initial age of the management units ranged between 0 and 32 years (see Fig. 

4). We set the length of the planning horizon to 25 years or five 5-year long 

planning periods, which corresponds to the minimum rotation age of Radiata pine. 

Since clear-cut size restrictions are not part of forest regulation in New Zealand, 

none of these constraints were modeled in this case study. For harvest volume 

fluctuations, we used 10% bounds for both the allowable increase and for the 

allowable decrease between adjacent periods. The representatives of the Maori 

owners, the Lake Taupo Forest Trust, and New Zealand Forest Managers Ltd. 

provided the spatial and economic input data such as harvest and silvicultural 

costs, initial ages, and the areas of the management units. 

  

2.4.2  Loblolly pine plantation, Southeast U.S.  

 The second test forest was a 280-unit, 4,884 ha Lolblolly pine plantation in 

the southeastern United States. The initial age of the units ranged between 0 and 

60 years (Fig. 5). Unlike Radiata pine in the New Zealand site, Loblolly pine is 

used for three different timber products in this plantation: pulpwood, sawtimber 

and chip-and-saw. While the volumes of these products do not all individually 

follow logistic-like growth curves, the sum of revenues associated with these 

volumes does (Fig. 3), thereby allowing a Model IV fit to timber revenues rather 

than to volumes. For the flow constraints, we defined the harvest variable th  in all 

models as the harvest revenue generated at time t , rather than the volume 

harvested.  As in the New Zealand case study, we used flow constraints with 10% 
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bounds. This time, however, the bounds were imposed on the maximum allowable 

increase and decrease in revenues from one period to the next instead of volumes. 

 A critical difference between the New Zealand and the U.S. case studies is 

that two different types of maximum clear-cut size restrictions had to be 

incorporated in the latter. The Sustainable Forestry Initiative certification scheme 

in the Southeast United States requires a 97-ha maximum harvest opening size 

restriction, as well as a 48.5-ha maximum average harvest opening size restriction. 

The Loblolly pine plantation in this study must comply with both of these 

regulations. To incorporate these restrictions, we imbedded Goycoolea et al.’s 

(2005) Cluster Packing Formulation in the benchmark models, Model I  and II 

(Appendix A), as well as in Model IV as described in Section 2.3. Cluster Packing 

is currently the only available area restriction model that can account for both 

maximum and average clear-cut size restrictions. As in the Radiata test, the 

harvest allocations were optimized over 25 years or five 5-year planning periods.  

 

2.4.3  El Dorado, U.S. (FMOS 2012)  

Data for the third test forest, the 1,363-unit El Dorado (California, United 

States) was retrieved from a public forest data repository, a site maintained by the 

University of New Brunswick, Canada (FMOS 2012). As in the other test forests, 

the length of the planning horizon was 25 years comprising five 5-year long 

planning periods. A maximum harvest opening size of 120 ac (48.5 ha) and no 

maximum average clear-cut size restriction was present. We used McDill et al.’s 

(2002) Path Formulation to enforce the 48.5 ha maximum opening size. We chose 

the Path Model, as opposed to Cluster Packing, to demonstrate the computational 

viability of Model IV using this particular technique. In addition, there is some 

evidence (Tóth et al. 2012, Tóth et al. In Press) that the Path Formulation 

performs better than other ARMs when only maximum opening size restrictions 

are present. 

3.  Results and Discussion 

3.1. Solution times and optimality gaps 

Table 1 shows the solution times in seconds that were needed for each 

problem instance to reach proven optimality. If the predefined 3-hour time limit 

was exceeded without finding the optimal solution, we listed whatever optimality 

gap was achieved within this timeframe. The data in Table 1 strongly suggest that 

Model IV is a computationally viable approach for spatially explicit harvest 
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scheduling. Of the 15 runs, where each of the three models were repeated 5 times 

for each test forest, Model IV performed the best in 14 instances (93%). While the 

advantage of the new model was less pronounced in the two smaller problems (in 

the Radiata and the Loblolly plantations), it achieved a mean optimality gap of 

0.0168% on the larger El Dorado. Model I and II reached a gap of only 0.0386% 

and 0.035%, respectively, after 3 hours of run time. While these results are very 

encouraging, more extensive testing is necessary to establish if Model IV is a 

statistically superior formulation. Forest characteristics such as the initial age 

class distribution or the spatial configuration of the management units (e.g., 

adjacency) may play significant roles in just how well each model might perform. 

What is clear, however, is that Model IV is computationally tractable within 3 

hours of runtime and that it can perform much better than the other models. In the 

light of this, we recommend that forest planners add Model IV to their list of tools 

that can be used to tackle hard, spatially explicit, forest planning problems. 

Having more options available increases the likelihood of finding a sufficiently 

optimal harvest schedule to the problem at hand even if it is unclear which one, if 

any, would perform the best. 

Finally, we note that some might argue that the superior computational 

performance of Model IV is surprising given the complex logical structures that 

are involved. While the formulation is indeed complex mathematically, we 

suspect that integer programming models rich in Boolean constructs might in fact 

be well suited for the algorithms currently used by commercial solvers  

 

3.2. Caveats 

There are a few caveats in order for those who want to apply Model IV in 

practice. First, as we have already discussed in the Methods section, the Model IV 

construct requires a pre-optimization exercise to fit the parameters of the 

difference equations in Function (1). This is necessary so that the growth and 

yield of the units are properly accounted for. While this exercise has almost no 

computational cost, it does have a side-effect. That is, a perfect fit might not be 

available. As a result, the harvest volume (or revenue) projections associated with 

the solutions that are produced by Model IV might be slightly different from those 

produced by Models I or II where all the volume or revenue data are hard-wired. 

While these differences have little significance given that the original volume or 

revenue projections contain a degree of uncertainty anyway, they can, in the 
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presence of harvest flow constraints, lead to optimal solutions in Model IV that 

are different from those in Models I and II. In fact, a harvest schedule that is 

optimal for Model IV can potentially violate the harvest flow constraints in 

Models I and II, and vice versa. This is due to the hard-fast margins that these, 

typically binding constraints impose on the allowable changes in harvest volumes 

between adjacent time periods. The problem can be eliminated by conducting 

sensitivity analyses on the harvest flow constraints, which we recommend 

regardless of the model being used. Another solution is to use soft instead of hard 

constraints that allow some deviations from the margins in volumes or revenues. 

A second issue that needs to be raised is related to the simplified version of 

Model IV. We mentioned in Section 2.3.2. that the simplified model is applicable 

only if the volume or revenue projections associated with a unit are not needed 

below the inflection point. After reviewing a set of growth functions, however, we 

found that the inflection points were always below the volumes at which the first 

commercial treatments might potentially be applied in practice. While this finding 

does not eliminate the possibility that information about stand volumes might be 

needed below the inflection point even in the absence of silvicultural activities, it 

does suggest that the simplified model is likely to be viable in most practical 

cases.  

Third, while it is relatively straightforward to aggregate multiple products 

or species into one growth curve for M-IV (as in the Loblolly case), modeling is 

more complex when these product flows need to be treated separately. If this is 

the case, additional decision variables are needed, along with additional curves to 

fit and additional constraints. This is a more involved exercise than in Model I 

where the prescription variables can have different coefficients for different 

purposes. 

 

 

5.  Conclusions 

In this article, we introduced a new harvest-scheduling model for spatial forest 

planning.  Model IV is fundamentally different from existing models, Models I 

and II (Johnson and Scheurman 1977), in that it that it uses variables and a set of 

linear difference relations rather than coefficients to carry information about the 

volumes or revenues of forest stands. We demonstrated that Model IV can capture 

a variety of important modeling concerns such as intermediate treatment 
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decisions, and maximum and average clear-cut size restrictions. In addition, we 

described how Model IV is compatible with all three existing methods that can 

enforce maximum harvest opening size restrictions: McDill et al’s (2002) Path, 

Goycoolea et al.’s (2005) Cluster and Constantino et al.’s (2008) Bucket 

Formulation. This compatibility is important because the different formulations 

offer different benefits and there are tradeoffs associated with them. Finally, we 

provided evidence with three experiments that the computational performance of 

Model IV is comparable with that of the existing methods.  
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Table 1.  Solution times and optimality gaps. The problems were solved to 

CPLEX’s default optimality gap of 0.01%. A time limit of 3 hours was imposed 

and if the target optimality gap was not reached during this time frame, then the 

best gap is reported (see El Dorado runs). The cells that correspond to model 

instances requiring the shortest solution times or smallest optimality gaps are in 

grey highlight. 

 

  
Solution times (s) / Optimality gaps (%) 

Run 1 Run 2 Run 3 Run 4 Run 5  Mean 

Radiata pine 

New Zealand 

M-I 0.39s 2.40s 1.31s 2.37s 2.00s  1.69s 

M-II 1.47s 0.45s 2.11s 0.78s 2.03s  1.37s 

M-IV 0.91s 0.93s 0.78s 0.72s 0.97s  0.86s 

Loblolly pine 

United States 

M-I 4.65s 3.15s 6.50s 3.80s 4.52s  4.53s 

M-II 5.55s 3.09s 9.91s 3.62s 3.09s  5.41s 

M-IV 1.69s 1.62s 2.06s 1.90s 1.61s  1.80s 

El Dorado 

United States 

M-I 
0.0408

% 

0.0518

% 

0.0344

% 

0.0294

% 

0.0363

% 

 0.0386

% 

M-II 
0.0323

% 

0.0360

% 

0.0363

% 

0.0428

% 

0.0274

% 

 0.0350

% 

M-IV 
0.0083

% 

0.0158

% 

0.0196

% 

0.0261

% 

0.0143

% 

 0.0168

% 
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FIGURE CAPTIONS 

 
 

Fig. 1:  Network flow representation of spatial Model II where the arrows 

correspond to the binary decision variables whose values define the harvest 

schedule for management unit s. 

 

Fig. 2: An example of a logistic-like growth curve ( ABCD  in black) that was 

fitted using Function (1). The curve describes the merchantable yield of a Douglas 

fir (Pseudotsuga mensiesii) stand in the Pacific Northwest United States, with a 

site index of 42.672 meters (140 ft) and a base age of 100 years (Source: McArdle 

et al. 1961). The fitted values of the five parameters of the curve are listed in the 

five small boxes. Black curve OBCD  corresponds to the simplified Model IV 

where the yield below the inflection point is not accounted for. Black curve 

ABCEF  (or OBCEF ) represents the yield trajectory given that the stand is 

thinned at age 60. Lastly, the original growth curve to which Function (1) was 

fitted is in grey. Please note that the fit in this diagram was not optimized so that 

the two curves can be distinguished. For an optimal fit of Function (1), see Fig. 3. 
 

Fig. 3: The fitted Function (1) for the Loblolly pine experiment. The solid curve 

represents the original growth function and the dashed grey curve represents 

Function (1). The fitted values of the five parameters of the curve are listed in 

boxes. The sum of deviations over time steps 25, 30,…, and 60 years was $128.35, 

or 0.27% of the total revenue. Deviations were minimized only above the 

minimum rotation age (25 yrs). A site index of 21.336 meters (70 ft) and a base 

age of 25 years were used, along with a pulpwood price of US$8.38/ton, a chin-

and-saw price of US$17.64 and a sawtimber price of US$27.62 (Source: Timber 

Mart-South, Q4 2008) to generate the revenue curve. 

 

Fig. 4: The 140-unit Radiata pine (Pinus radiata) plantation in the Tauranga-

Taupo Catchment of New Zealand’s North Island that was used for the first 

computational experiment. Darker shades of grey represent older stands. 

 

Fig. 5: The 280-unit Loblolly pine (Pinus taeda) plantation in the Southeast U.S. 

was used for testing M-IV. Darker shades of grey represent older stands. 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



25 

APPENDIX A: 

Benchmark Models 

We present Model I, the first benchmark model, differently from existing 

literature in that we use a prescription-based rather than harvest timing-based 

formulation. The decision variables denote the choice whether a sequence of 

actions (e.g., harvests) should be applied to a management unit or not. 

Traditionally, integer versions of Model I have been presented with variables that 

represented “cut or not cut” decisions for each unit. The more general, 

prescription-based formulation was needed in our experiments because both 

Models II and IV allow any number of harvests to be applied to a given stand over 

a particular planning horizon. Among other things, one consequence of this 

generalization of Model I is that the prescription variables need to be mapped to 

harvest timing-based cluster variables for the Cluster Packing formulation to work 

(see Constraints A8-A9). Finally, our presentation of Model II is also new in that 

here, an ARM-based extension is used. Snyder and ReVelle’s (1996; 1997) Model 

II construct was URM-based. 

 

A1.   Model I 

To define the integer version of Johnson and Scheurman’s (1977) Model I, 

we let S  denote the set of management units, 1, 2,...,t T  the time periods in the 

planning horizon, and k the minimum rotation age.  We note that based on the 

assumption that harvests can occur only in the midpoints of the planning periods, 

the number of times a unit can potentially be harvested over the planning horizon 

is /T k .  Model I requires the definition of the set of all possible prescriptions that 

can be assigned to a management unit:     0,...,0 , 1,0,...,0 ,...P  , where every 

prescription p P   is a vector of length T . The elements of vector p represent the 

binary decisions of whether the management unit should be harvested in a 

particular planning period or not. The first element of the vector corresponds to 

period 1, the second to period 2, and so on. A value of one indicates that a harvest 

is to occur in the corresponding period, whereas zero indicates that no harvest 

should occur.  Let 0-1 variable spx  represent the decision whether unit s should 

follow prescription p .  If it should, 1spx  , 0 otherwise. Decision variables are 

created only for those prescriptions that would not lead to premature harvests. In 

other words, all prescription variables with first harvests that occur before the unit 
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reaches its minimum rotation age are excluded from the model during pre-

processing. 

  Further, for management unit s S , we let sa denote the area, se  the 

regeneration cost, and 
t

spv the volume per unit area in period t  given prescription 

p . We use th  as an accounting variable for the volume harvested from the entire 

forest in period t , we use c  for unit volume timber price, i  for the real interest 

rate, and 
spr  for the revenues associated with harvesting unit s  according to 

prescription p .  Finally, bounds minf  and maxf  denote the allowable percent 

decrease and increase in harvest volume in consecutive planning periods. Such 

bounds are often used by practitioners to promote some level of operational 

sustainability. Then, 

 

 
,

max sp sp

s p

r x  (A1) 

st: 

                  1,                                                               ;sp

p

x s S    (A2) 

,

                  ,                                              t T;t

s sp sp t

s p

a v x h      (A3) 

 min 1                  1 ,                                                1;t tf h h t T       (A4) 

 max 1                  1 ,                                               1;  andt tf h h t T       (A5) 

                    0,1 ,                                                             ,spx s S p P     (A6) 

 

defines the spatial version of Model I . The objective function (A1) maximizes the 

net discounted timber revenues associated with the entire forest across the 

planning horizon of T periods with the revenue coefficients being 

  

                     1 ,                           , .
tt

sp s sp s

t

r c a v e i s S p P


          (A7) 

 

Constraint (A2) ensures that each unit is assigned exactly one prescription. 

Constraint (A3) calculates the harvest volume in each time period and Constraints 

(A4) and (A5) ensure that the harvest volume in adjacent planning periods does 

not fluctuate by more than a lower and an upper bound, minf  and maxf , 

respectively. Finally, Constraint (A6) defines the decision variables as binary.  
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 Model I can easily incorporate spatial constraints such as maximum or 

average harvest opening size restrictions. All of the three existing ARMs, McDill 

et al.’s (2002) Path, Goycoolea et al.’s (2005) Cluster Packing and Constantino et 

al’s (2008) Bucket formulation, were introduced in the literature based on the 

Model I construct. Goycoolea et al.’s (2005) Cluster Packing is the only ARM, 

however, that can handle maximum average clear-cut size restrictions (Murray et 

al. 2004), which are often present in forest regulations. Cluster Packing requires 

an a priori enumeration of all contiguous clusters of management units whose 

combined area does not exceed the maximum allowable clear-cut size. Formally, a 

set of management units s   that forms a connected sub-graph of graph ( , )G S E , 

where E  denotes the edges representing the adjacency among the units ( S ), and 

for which inequality maxss
a A


  ( maxA = the maximum harvest opening size) 

holds, is called a feasible cluster. Let   denote the set of all feasible clusters that 

arise from a given problem instance. To incorporate Goycoolea et al.’s (2005) 

Cluster Packing approach in Model I, the management unit-based prescription 

variables {0,1}spx  must be mapped to cluster variables to account for the feasible 

clusters. Let {0,1}tu  denote the decision whether all management units in 

cluster   should be cut in period t :  

 

                  ,                                                       , ;
t

sp t

s p P

x u t T





 
 

      (A8) 

                  1,                               , ;
t t

sp sp t

s p P s A p P

x x u t T
  




 
   

          (A9) 

 

where tP  is the set of all prescriptions applicable to cluster   that involve a 

harvest in period t  and A  is the set of management units that are adjacent to 

cluster  . Constraint (A8) allows, while constraint (A9) forces cluster   to be 

“declared” cut in period t if all the units in the cluster, but none adjacent to it, are 

assigned prescriptions that involve a harvest in period t. To avoid double-counting 

the harvested areas, and to ensure that the maximum harvest opening size is never 

exceeded in any of the solutions, one constraint needs to written for each maximal 

clique of management units in each planning period. A set of mutually adjacent 

management units forms a maximal clique if no other unit exists that is adjacent to 

every member of the clique. Let denote the set of all maximal cliques that arise 
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from a problem with   being one such clique. To prevent maximum harvest 

opening size violations, it is necessary that 

  

                1,                                                                , .tu t T








     (A10) 

where   is the set of feasible clusters that contain at least one management unit 

that is also a member of maximal clique  . Constraint (A10) requires that only 

one feasible cluster containing one or more units in clique   is assigned to be 

clear-cut in period t. This precludes harvest arrangements where adjacent units are 

cut as parts of two or more feasible clusters of units whose combined area exceeds 

the maximum harvest opening size. Constraint (A10), which is the multi-harvest 

version of the original Cluster Packing adjacency constraint (Goycoolea et al. 

2005), also prevents a unit from being part of multiple clusters in a given period. 

Finally, to enforce that the average harvest opening size over the entire planning 

horizon does not exceed
maxA , we add the following forest-wide inequality 

(Murray et al. 2004): 

 max

,

0.t

t

a A u 


     (A11) 

In constraint (A11), a  is the area of cluster   and 
maxA  is the maximum 

allowable average clear-cut size. 

 If only maximum harvest opening size restrictions are present, McDill et 

al.’s (2002) Path Formulation can also be used by replacing A8-11 with the 

following set of adjacency constraints: 

 

,

                  -1,                                               , .
st

sp

s C p P

x C C t T

 

     (A12) 

where stP  is the set of all prescriptions applicable to unit s  that involve a harvest 

in period t . In the computational experiments, A1-7 were used for the Radiata 

problem, A1-11 for the Loblolly, and A1-7 and A12 for El Dorado. 

A2.   Model II 

 To give a formal definition of Model II, we let variable sets  ,  0,1st stb   

,s t  denote the decision whether unit s should be cut in period t the first time and 

whether it should be cut in period t the last time, respectively. If unit s is to be cut 

the first time in period t, then 1stb  , 0 otherwise. If unit s is to be cut the last time 
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in period t, then 1st  , 0 otherwise. Further, we let variable set  , ', 0,1  ,s t tg s t   

denote the decision whether unit s should be harvested in period t  after it had last 

been cut in period 't . If it is, then , ', 1s t tg  , 0 otherwise. Lastly, we let  0,1sn   

,s t  represent the “do-nothing” scenario. If unit s is not to be cut during the 

planning horizon, then 1sn  , 0 otherwise. Strictly speaking, variable set 

 0,1sn   is not needed for Model II except for the convenience of keeping track 

of uncut forest tracts. 

As in Model I, we seek to maximize net timber revenues over the planning 

horizon subject to logical constraints that allow exactly one first harvest or no 

harvest of a unit, and harvest volume flow constraints (A16-18) that are analogous 

to inequalities (A3-5) in Model I.  We calculate the revenue coefficient associated 

with the first harvest of unit s in period t using relation    1
tb b

st s st sr c a v e i


      , 

where b

stv  is the harvest volume of unit s in period t given that this is the first time 

unit s is cut. Similarly, we use formula    , ', , ', 1
tg g

s t t s s t t sr c a v e i


       to calculate 

the revenues associated with cutting unit s in period t after having cut it already in 

period t’. Parameter , ',

g

s t tv  represents the unit area volume associated with the 

harvest of unit s  in period t  given that the previous harvest occurred in period 't . 

Then, the following function and set of inequalities define Model II: 

 

 , ', , ',

, '

max ,b g

st st s t t s t t

s t t t k

r b r g
 

 
   

 
   (A13) 

st. 

                  1,                                                      ;s st

t

n b s S     (A14) 

, ', , , *

' *

                  ,                         , ;st s t t s t t st

t t k t t k

b g g s S t T
   

        (A15) 

, ', , ',

'

                  ,            ;b g

s st st s s t t s t t t

s t t k

a v b a v g h t T
 

 
        

 
   (A16) 

  1                  1 ,                                               1;min t tf h h t T       (A17) 

 max 1                  1 ,                                              1;t tf h h t T       (A18) 

                   , 0,1 ,                                                       , ;st stb s S t T     (A19) 
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 , ',                  0,1 ,                                                         , , ' ;s t tg s S t T t T k       (A20) 

                   0,1 ,                                                            ;sn s S    (A21) 

 

where Identity (A15) is a “network flow” constraint that ensures whenever a 

management unit is cut in a particular period, whether it is the first, second or an 

intermediate harvest, there must be another variable that either declares this 

harvest to be the last for that unit or it forces it to be cut again during the planning 

horizon. In other words, this constraint forces each management unit to have a 

sound prescription plan with no discrepancies. Along with the logical constraints 

(A14), the flow constraints create a network representation of the harvest 

scheduling problem with nodes representing the starting (source), the ending 

(sink) and the intermediate states of the units (Fig. 1). Whatever harvest decision 

takes the unit to a given harvest-period state, there has to be another decision that 

moves it along to another state. This decision is either a declaration that this 

harvest was the unit’s last, or the unit could be cut again in a subsequent period. 

Finally, constraints (A19-21) define the four sets of decision variables as binary. 

 Model II is also compatible with all the three exact ARMs: McDill et al.’s 

(2002) Path, Goycoolea et al.’s (2005) Cluster Packing and Constantino et al.s 

(2008) Bucket Formulation. Path constraints can be added as: 

, ',

'

                  -1,                                          , .st s t t

s C t t k

b g C C t T

  

 
     

 
   (A22) 

 

Objective (A13) and Constraints (A14-22) were used to model the El Dorado 

problem with Model II in the computational experiment. 

To incorporate Goycoolea et al.’s (2005) Cluster Packing Formulation, the 

decision variables in Model II are redefined to handle Cluster Packing. Variable 

sets stb , st , and 
, ',s t tg  are replaced with tb , t , and 

, ',t tg  to represent the 

decision whether cluster   should be cut in period t first, whether it should be cut 

in period t last, and whether it should be cut in period t after it had already been 

cut in period t’, respectively. Variable tb  takes the value of one if cluster   is to 

be cut for the first time in period t, 0 otherwise. Variable t  takes the value of 

one if cluster   is to be cut for the last time in period t, 0 otherwise. Lastly, 

, ', 1t tg   if cluster   is to be cut in period t after it had been cut in period t’, 0 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



31 

otherwise. To incorporate harvest opening size restrictions using Goycoolea et 

al.’s (2005) model, objective function (A13) and constraints (A14)-(21) remain 

the same except that all decision variables are replaced with the cluster variables 

as described above. To account for the logical condition that a given management 

unit can only be assigned to at most one feasible cluster that is cut in a particular 

period for the first time, we replace the logical constraint set (A14) with 

 

 
, :

                 + 1,                                                            .s t

t s

n b s S
 

    (A23) 

Variable sn  is added to the sum of cluster assignments to account for the option of 

not cutting unit s during the planning horizon. We also replace the network flow 

constraints to allow a unit to be assigned to different clusters in each period: 

 

, ', , , *

: ' , : * , : :

                  ,         , ;t t t t t t

s t t k s t t k s s

b g g s S t T   
              

          (A24) 

To prevent adjacent management units from being assigned to multiple clusters 

that are cut at the same time, we add inequality set 

, ',

'

                1,                                                 , .t t t

t t k

b g t T


 



  

 
     

 
   (A25) 

Constraints (A25) are analogous to constraints (A10) in Model I; they ensure that 

maximum harvest opening size restrictions are never violated. Finally, to enforce 

the forest-wide maximum allowable average harvest opening size restriction 

( maxA ), we require that: 

  max , ',

, '

0.t t t

t t t k

a A b g  
  

  
     

  
   (A26) 
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APPENDIX B: 

Goal Programming to fit Model IV 

 

We let a denote the unit area volume of a management unit at age a  (in 

periods) available from the original data, and we let *

a  denote the volume at age 

a  coming from the logistic curve (1). For simplicity, we assume that the growth 

of each management unit is the same: volumes a , accounting variables *

a  and 

the five parameters that are optimized for best fit have no s sub- or superscripts. 

This, of course, does not mean that Function (1) cannot be fitted for each 

management unit individually. 

The objective of the GP, Function (A1), minimizes the sum of absolute 

deviations, a , between the fitted, *

a , and the original data, a : 

 

 ,a

a

min   (B1) 

st: 

*                  ,                                                       ;a a a a A       (B2) 

*                  ,                                                       ;a a a a A       (B3) 

*

1 min                  ; 
 

 (B4) 

*                  ,                                                             ;a ay a A      (B5) 

*

max                  ,                                                   ;a ay a A        (B6) 

 * *

1 max exp                  1 ,                                 ;a a ay a A           (B7) 

 * *

1 exp max                  1 ,                                 ;a a ay a A           (B8) 

   * *

1 max taper max taper                  1 1 ,  ;a a ay a A                 (B9) 

   * *

1 taper max taper max                  1 1 ,   ;a a ay a A                 (B10) 

min max exp taper                  , , , , ;     
 

 (B11) 

*                  , ,                                                            ;a a a A      (B12) 

                   0,1 ,                                                                .ay a A    (B13) 

 

 Constraints (B2) and (B3) calculate the absolute deviation, a  between *

a
 

and a  with the help of objective function (B1), which maximizes the sum of the 
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deviations. Constraint (B4) sets the value of the fitted *

1 to be equal to min .  

Constraints (B5) and (B6) work together to determine if the fitted volume at a 

particular age is above or below the inflection point  . If the volume is strictly 

above the inflection point, then 1ay  . Indicator ay  is zero otherwise. Note that 

the goal program will not allow the inflection point to be equal to the volume in 

any particular period, unless using the difference equation for the taper (B9)-

(B10) vs. the exponential segment of the curve (B7)-(B8) does not make any 

difference in the objective function value. Recall that in the goal program, both 

the inflection point and the fitted volumes are variables. Constraints (B5) through 

(B10) establish the relationship between the five function parameters (
min , 

max , 

exp , 
taper  and  ) that are to be optimized and the fitted volumes: *  a a A   . 

Along with inequalities (B5)-(B6), constraints (B7)-(B10) capture Function (1). 

Lastly, constraints, (B11)-(B13) define the domains of the variables. 

While GP (B1)-(B13) is a quadratically constrained, non-convex
1
, and 

non-smooth
2
 optimization problem, it is trivial to solve since it has only five 

decision variables (
min , 

max , 
exp , 

taper  and  ) and only A  accounting variables 

for the fitted volumes ( *

a ), the deviations ( a ) and the indicators ay , each. 

Moreover, there is only one pair of goal constraints per data point, (B2)-(B3), and 

only a few extra constraints to account for the relationship between the volumes in 

consecutive age classes (B4)-(B10). GP (B1)-(B13) can be converted to a smooth 

optimization problem by optimizing for each binary combination of ay ’s and 

selecting the combination that leads to the smallest total deviation. In this study, 

we used MS Excel Solver to fit Function (1). 

                                                 
1
 The quadratic coefficient matrix of B2-B10 is not positive semidefinite.  

2
 Due to the binary ay ’s in B1-B13. 
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APPENDIX C: 

Modeling intermediate treatments with Model IV 

In this Appendix, we discuss how Model IV can incorporate intermediate 

treatment decisions that are hard to capture in Models I and II parsimoniously: 

Should a management unit be thinned in a particular planning period with a given 

intensity or not? Should fertilization be applied to increase site productivity or 

should the trees be pruned? Thinning reduces the volume of the unit at the time of 

treatment and puts it on a steeper growth trajectory for merchantable timber. 

Thinings are applied in an attempt to maximize revenues or to improve forest 

health, or both. In addition to stimulating growth, fertilization can also increase 

site productivity, and pruning can change the quality of timber products.  

The potential timings of treatments introduce additional prescriptions that 

are applicable to a management unit leading to an explosion of 0-1 variables in 

Model I. While the explosion is less dramatic in Model II, it is still an exponential 

function of the number of periods where intermediate treatments can occur. This 

is because additional sets of “first-”, “last-” and “intermediate harvest” variables 

are needed to link harvest decisions to intermediate treatments in prior or 

subsequent periods. If, in addition to the timing, the intensity of the treatments is 

also variable, then the combinatorial explosion is even more significant. 

In Model IV, the number of extra decision variables that are needed to 

capture intermediate treatments increases only linearly as a function of the number 

of planning periods. To illustrate how Model IV can keep model size small, we 

consider a binary thinning decision
st in management unit s in period t with a 

preset thinning intensity of [0,1]  . Let variable 
st  take the value of one if unit 

s is to be thinned in period t, 0 otherwise. We assume that the expected post-

thinning growth rates of the unit are known: exp'

s  in the exponential and taper '

s  in 

the taper section with an inflection point of s . First, Constraints (6)-(9) in Model 

IV are modified so that they would inactivate should thinning occur in period t: 

 

   , 1 max taper max taper                  1 1 ,             , 1,s s s s

s t st st stv y v s S t T                   (C1) 

   , 1 max taper max taper                  1 1 ,      , 1,s s s s

s t st st st stv y x v s S t T                    (C2) 

 , 1 max exp                  ( ) 1 ,                                   , 1,s s

s t st st stv y v s S t T           

 (C3) 
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 , 1 max exp                  ( ) 1 ,                           , 1.s s

s t st st st stv y x v s S t T            

 (C4) 

 

If 1st  , the value of 
, 1s tv 

 is unrestricted in inequalities (C1)-(C4) regardless of 

the value of indicator sty  because , 1 max

s

s tv    and because 
taper0 1s  . If 0st  , 

Constraints (C1)-(C4) work the same way as Constraints (6)-(9). To define the 

post-thinning growth of the units, we add:  

 

   , 1 max exp'                  1 1 ,                       , 1;s s

s t st st stv y v s S t T                 (C5) 

   , 1 max exp'                  1 1 ,                       , 1;s s

s t st st stv y v s S t T                 (C6) 

   , 1 max taper' max taper                  2 1 ,      , 1.s s s s

s t st st stv y v s S t T                     (C7) 

   , 1 max taper' max taper                  2 1 ,      , 1.s s s s

s t st st stv y v s S t T                     (C8) 

 

These constraints are structurally similar to (6)-(9) or (C1)-(C4). The only 

difference is in the post-thinning growth rates. If 1st  , it is the value of sty  that 

determines whether the 
, 1s tv 

 is going to be equal to the right-hand-side of 

inequality (C5)-(C6) or (C7)-(C8). Note that the volume in period t is adjusted 

based on the intensity of thinning in period t:  . If 0st  , the value of 
, 1s tv 

 

becomes unrestricted regardless of the value of sty . In this case, Constraints (C1)-

(C4) become active and work the same way as the original Constraints (6)-(9). 

 The number of decision variables per unit that need to be introduced in 

Model IV to account for thinning decisions with set intensities is equal to the 

number of planning periods that are eligible for thinning. The number of extra 

constraints, Constraints (C5)-(C8), is four times the number of eligible periods. If 

the range of volumes that correspond to planning periods eligible for thinning falls 

exclusively below or above the inflection point, then either (C5)-(C6) or (C7)-

(C8) may be dropped. Lastly, alternative thinning intensities, as well as 

fertilization and pruning decisions may be modeled the same way as thinning 

decisions. For fertilization and pruning, coefficient   will be one since no 

merchantable volume is removed from the unit. The post-treatment growth rates 

in volume (for fertilization) or revenues (for pruning) will drive the transition of 

the units from one period to the next in accordance with Constraints (C5)-(C8).  
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