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Comparing Model | and Model Il Formulations

of Spatially-Explicit Harvest Scheduling Models with Adjacency Constraints

Abstract: This paper investigates whether Johnson and Scheurman’s (1977) Model II
formulation, which can dramatically reduce the size and difficulty of linear programming
harvest scheduling models, offers similar potential for efficiency gains in solving spatially-
explicit harvest scheduling models with area-based adjacency constraints. One hundred and
fifty hypothetical problems and four real problems were formulated using Model | and using
two Model Il formulations. The hypothetical problems were distributed (30 each) in five
categories: regulated forest problems with four, six, and eight planning periods, and over-
mature forest problems with four and six periods. The length of the planning horizon was a key
factor determining whether Model Il formulations outperform Model | formulations in spatially-
explicit forest management planning problems. Results from the hypothetical problems
suggest that Model | formulations outperform Model Il formulations for four-period problems.
However, Model Il formulations perform significantly better than Model | formulations for
problems with planning horizons of six and eight planning periods. The alternative Model I
formulation (Model lla) performs slightly better than the basic Model Il formulation, but not
significantly. Real forest results are not as conclusive as with the hypothetical forests, reflecting

the limitations of drawing conclusions from a single case study.

Key Words: Forest planning models, mixed-integer programming, area-based adjacency
constraints, area-restriction models.
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1. Introduction

Linear programming (LP) formulations of forest-wide management planning problems
were first introduced in the 1960s (Curtis 1962, Loucks 1964, Kidd et al. 1966, Nautiyal and
Pearse 1967, Ware and Clutter 1971). When these models were proposed, solving even small
LP models was a challenge due to the limitations of computers at the time. Some addressed
these computational challenges by developing alternative algorithms for solving the problems.
For example, Walker (1976) developed the binary search method to schedule harvests over
time to maximize the net present value of the harvest subject to a downward-sloping demand
curve. Hoganson and Rose (1984) developed a Lagrangian decomposition approach that breaks
large problems with forest-wide harvest targets into many smaller dual problems that optimize
individual management unit (stand) decisions. The smaller problems are tied together by the
global problem of finding a set of shadow prices that result in the approximate satisfaction of
forest-wide constraints when the individual management unit solutions are aggregated. A
significant breakthrough in both model size and solution time came when Johnson and
Scheurman (1977) proposed an alternative formulation of the linear programming (LP) harvest
scheduling problem, which they called Model Il, that reduces the number of variables needed
to formulate large LP forest management problems, potentially by several orders of magnitude
—from 265,665 to 506 in one example (p. 9).

While dramatic advances in computing technology have made even the largest LP
problems of past decades relatively easy to solve today, new, more complex problems continue
to challenge the limits of today’s computers and software. In the past two decades,

considerable forest management planning research has focused on developing spatially-explicit
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planning models (e.g., Meneghin et al. 1988, Nelson and Brodie 1990, Lockwood and Moore
1993, Weintraub et al. 1994, Murray and Church 1995a,1995b, 1996, Snyder and ReVelle 1996,
1997, Hoganson and Borges 1998, Borges et al. 1999, Boston and Bettinger 1999, McDill and
Braze 2000, McDill et al. 2002, Falcao and Borges. 2001, 2002, Caro et al. 2003, Richards and
Gunn 2003, Crowe et al. 2003, Rebain and McDill 20033, 2003b, Goycoolea et al. 2005, 2009,
Téth and McDill 2008, and Constantino et al. 2008). Much of this research has focused on
addressing adjacency constraints, which limit the size of openings created by harvesting
operations and require a minimal green-up period before adjacent areas can be harvested.
Adjacency is an important problem, as many forestry organizations face such constraints (e.g.,
Barrett et al. 1998, AF&PA 2000, Boston and Bettinger 2002). However, other important forest
management issues — including mature patch size (Rebain and McDill 2003a, 2003b) and shape
(Barrett 1997, Téth and McDill 2008), patch size distribution, core area (Ohman and Eriksson
1998, Ohman 2000, Wei and Hoganson 2007, Zhang et al. 2011), connectivity and habitat
fragmentation (Franklin and Forman 1987, Gustafson and Crow 1998), and landscape
susceptibility to catastrophic fire (Acuna et al. 2010) — also benefit from the application of
spatially-explicit models.

Many spatially-explicit forest management planning problems that include a wide
variety of spatial management objectives and constraints have been formulated as mixed-
integer linear programming (MIP) models (e.g., Meneghin et al. 1988, Murray and Church
19954, 1996, Snyder and ReVelle 1996, 1997, McDill and Braze 2000, McDill et al. 2002, Crowe
et al. 2003, Rebain and McDill 2003a, 2003b, Goycoolea et al. 2005, 2009, Téth and McDill

2008, and Constantino et al. 2008). Typically, binary variables are used to indicate whether a
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particular management regime (including the timing of various management actions) will be
applied to a particular management unit. These models can be quite large, due to a large
number of management units and/or management regimes. Since their solution space is non-
continuous — consisting of feasible points rather than a convex, continuous feasible region as in
the case of LP — and because the number of feasible solutions is a combinatorially large
function of the number of management units and management regimes, these models can be
extraordinarily hard to solve.

Some have addressed these challenges by developing heuristic algorithms for solving
spatially-explicit forest planning problems (e.g., Nelson and Brodie 1990, Lockwood and Moore
1993, Weintraub et al. 1994, Murray and Church 1995b, Hoganson and Borges 1998, Borges et
al. 1999, Boston and Bettinger 1999, Falcdo and Borges. 2001, 2002, Caro et al. 2003, Richards
and Gunn 2003). Others have developed and evaluated alternative MIP formulations (e.g.,
Meneghin et al. 1988, Murray and Church 1995a, 1996, Snyder and ReVelle 1996, 1997, McDill
and Braze 2000, McDill et al. 2002, Goycoolea et al. 2005, 2009, and Constantino et al. 2008).
Nearly all of the MIP formulations of spatially-explicit forest management planning models
(e.g., Meneghin et al. 1988, Murray and Church 1995a, McDill and Braze 2000, McDill et al.
2002, Goycoolea et al. 2005, 2009, and Constantino et al. 2008) have used a Model |
formulation where each management unit variable represents a single management regime for
that unit for the entire planning horizon (Johnson and Scheurman 1977). This is not surprising,
for a couple of reasons. First, one of the key advantages of the Model Il formulation of an LP
harvest scheduling model is that areas harvested in the same planning period that otherwise

differ only in terms of their initial age class can be “merged” and represented by a single
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common variable after the first harvest. This is not an option in a spatially-explicit model if the
modeler wishes to maintain the spatial uniqueness of areas represented by each variable.
Furthermore, at least in LP formulations, the advantages of Model Il compared with Model |
increase as the planning horizon is increased, and most of the spatially-explicit forest planning
models in the literature do not have very long planning horizons. Most assume that a
management unit will be harvested at most once during the planning horizon, and the planning
horizons are generally less than one rotation (e.g., Meneghin et al. 1988, Murray and Church
1995a, McDill and Braze 2000, McDill et al. 2002, Goycoolea et al. 2005, 2009, and Constantino
et al. 2008).

Since few papers have explicitly discussed the reason for choosing a particular planning
horizon, we can only speculate that in at least some cases relatively short planning horizons
were used because problems with longer planning horizons were simply too hard to solve. (The
authors of this paper have certainly experienced this.) Some authors might also argue that in
many cases it does not make sense to formulate and solve spatially-explicit forest planning
models with long planning horizons since unpredictable events will almost certainly require a
change of plans in later periods, so there is no point in planning in so much detail very far into
the future. Nevertheless, good reasons can also be given for using longer planning horizons,
even for spatially-explicit forest planning. The most important is that forest sustainability issues
generally require one to consider more than one rotation. For example, how else can planners
ensure that a given harvest level can be sustained for more than one rotation? Furthermore,
target forest conditions, such as a target age-class distribution, often take longer than one

rotation to achieve (Hoganson and McDill 1993), and it may take longer than one rotation to
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project the cumulative effect of harvesting decisions on the spatial structure of the future
forest, e.g., on its patch size distribution. As with non-spatial plans, even if it is unlikely that
solutions for future periods will be followed precisely, it is useful to show that if all works out as
planned the plan can actually produce the desired future conditions. Finally, if a model does
not consider a complete rotation in forest planning, it is possible — even likely, especially with
profit-maximizing objective functions — that the model will harvest the best sites during the
planning horizon, leaving poorer quality or inaccessible sites to be harvested after the end of
the planning horizon (McQuillan 1986, 1991). Finally, it is possible — even likely, especially if
management units are significantly smaller than treatment units (harvest blocks) — that the
model will leave unharvested areas in pieces that are too small or too oddly shaped to be
manageable.

This paper investigates whether Johnson and Scheurman’s (1977) Model Il formulation —
which can dramatically reduce the size and solution difficulty of LP harvest scheduling models —
offers similar potential for efficiency gains in solving spatially-explicit harvest scheduling
models. As mentioned above, in a Model | formulation of a harvest scheduling problem a
variable represents a single management regime for an area for the entire planning horizon
(Johnson and Scheurman 1977). In contrast, a Model Il formulation uses four types of variables
to track the management of various areas (Fig. 1). One type of variable represents the decision
not to cut a management unit during the planning horizon. The second and third types
represent the decisions to cut a unit in a given period for the first time or for the last time,
respectively. Finally, the fourth type of variable represents the decision to harvest a

management unit in a particular period after it has been cut in another period. In aspatial, LP
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harvest scheduling models, management units are aggregated into “analysis areas” that
combine areas that are similar in terms of forest type, site class, stocking class, initial age class
and possibly other characteristics, and continuous variables are defined representing the
number of hectares from these analysis areas assigned to specific management regimes. In
spatial MIP models, binary variables are used to represent whether or not a given management
regime will be applied to a given management unit. The models used in this research are basic
spatially-explicit forest planning models (MIPs) with harvest flow constraints, ending condition
constraints, and area-based adjacency constraints (McDill et al. 2002). Nevertheless, we expect
that the results presented here will also apply to spatially-explicit models formulated to address
a broader range of spatially-explicit constraints and objectives.

While most spatially-explicit harvest scheduling models in the literature have used a
Model | formulation, this paper is not the first to apply the Model Il formulation to spatially-
explicit harvest scheduling models. Snyder and ReVelle (1996, 1997) present a network
formulation of the spatially-explicit harvest scheduling problem that is very similar to the Model
Il LP formulation. Snyder and ReVelle’s (1996) results suggest that the formulation is quite
efficient. For example, they report solving in seconds a problem with 50 cutting units and 15
ten-year planning periods having 13,350 variables and 1,871 constraints (p. 1086), which was a
very large MIP model at the time and one of the longer planning horizons reported ever in the
literature for spatially-explicit forest management models. However, Snyder and ReVelle (1996,
1997) never directly compared the Model | and Model Il formulations, and the number of
problems that they report is relatively small. Since then, to our knowledge, no spatially-explicit

harvest scheduling models using a Model Il formulation have appeared in the literature.
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2. Methods

To compare the performance of Model | and Model Il formulations of spatially-explicit
forest management planning problems, four real and 150 hypothetical problems were
formulated and solved in Model | format and in two Model Il formats. The hypothetical
problems are based on data from 60 forests created with MakeLand (McDill and Braze 2000).
The 60 forests are based on 30 maps, each having 50 irregularly-shaped polygons, representing
management units averaging 20 ha in size. Each map was randomly populated with a regulated
forest and an over-mature forest. The target regulated and over-mature age-class distributions
are shown in Table 1. The actual age-class distributions of specific forests vary slightly from the
target age-class distributions because management units must be assigned in their entirety to
only one age-class.

The four real problems are based on a loblolly pine plantation forest in the southeastern
U.S. Although the problems are based on actual data, both the spatial data and the growth and
yield information were intentionally perturbed to prevent the disclosure of private information.
The plantation has 280 management units (4,884 ha in total) that range in age from 0 to 60
years. Three different timber products are produced in this plantation: pulpwood, sawtimber

and chip-and-saw. For the flow constraints, the harvest variables h, were defined as the

harvest revenue generated at time t, rather than the volume harvested, and flow constraints
with 10% bounds were used. Flow constraints for the hypothetical forest problems allowed the
volume harvested to increase by up to 15% per period, but only allowed decreases of 3%.

We hypothesized that the Model Il formulation would be especially efficient for

problems with longer planning horizons. Thus, problem instances with four, six, and eight 20-
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year planning periods were formulated for each hypothetical regulated forest, and instances
with four and six 20-year planning periods were formulated for each hypothetical over-mature
forest. Eight-period models were not formulated for the over-mature forests because they
would have been too difficult to solve to optimality within the time limit used in this study. The
optimal rotation for the hypothetical forests is 80 years, and the minimum rotation is 60 years,
so it is possible to harvest a management unit up to two times within the planning horizon for
problems with four or six planning periods, and up to three times with eight planning periods.
Four problem instances were formulated for the real loblolly pine forest: one with five 5-yr
periods, one with ten 5-yr periods, one with fifteen 5-yr periods, and one with twenty 5-yr
periods. These planning horizons correspond roughly to one, two, three and four rotations.
Each model maximizes the discounted net revenue, plus a discounted residual forest
value based on the state of the forest at the end of the planning horizon, subject to flow
constraints, an ending age constraint, and adjacency constraints. In all cases, the minimum
average ending age was set at one half of the optimal rotation. A variety of formulations that
impose adjacency restrictions have been proposed in the literature (McDill and Braze 2000,
McDill et al. 2002, Goycoolea et al. 2005, and Constantino et al. 2008). The problem instances
in this study were formulated with McDill et al.’s (2002) Path constraints. These constraints
allow contiguous groups of management units to be harvested concurrently as long as their
combined area does not exceed a given maximum harvest opening size. The mathematical
formulation of these constraints is described below. Alternative adjacency constraint
formulations were not considered, but we believe it is unlikely that the general conclusions of

the study would change if a different adjacency formulation was used.
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Programs written in MS Visual Basic 2008 were used to formulate the problem
instances. Problem instances were then solved with IBM ILOG CPLEX Version 12.1.0 (64-bit) on
4 threads on a 4-core Intel Xeon X5160 (2.99 GHz) machine with 4 GB of RAM and a 64-bit
Windows 7 Operating System. The solver was set to terminate if one of the following two
stopping criteria was met: 1) an optimal solution was found, or 2) twelve hours of solution time
had passed. A formulation of a given problem was considered superior to another formulation
of the same problem if either 1) an optimal solution was found faster with that formulation, or
2) if the optimality gap at the end of 12 hours was smaller for that formulation than for the
other formulation. The “optimality gap” refers to the difference between the dual bound on
the objective function value of the problem and the primal bound at the end of 12 hours of
solution time, divided by the primal bound and expressed as a percent (McDill and Braze 2001).
One of the advantages of the branch-and-cut algorithm implemented by CPLEX, compared with
most purely heuristic solution approaches, is that it provides a dual bound on the solution,
which is an important measure of solution quality.

The following sections describe the mathematical formulations of Johnson and
Scheurman’s (1977) Model | and Model Il in the context of spatially-explicit forest planning

models.

2.1 Modell

To specify the spatial version of Johnson and Scheurman’s (1977) Model | used in this
paper, let S denote the set of management units, t=1, 2, ..., T, the time periods in the planning

horizon, and k be the minimum rotation age. In Model |, a prescription corresponds to a

10
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complete sequence of all management actions to be applied to a given area over the entire
planning horizon. In our simplified models, the only management activities that are applied are
regeneration harvests. Since harvests are assumed to occur only at the midpoints of the
planning periods, the number of times a unit can potentially be harvested over the planning

horizon is (T /k—| . The set of all possible prescriptions that can be assigned to a management

unit can be represented by a set of vectors of length T: P = {(O,...,O),(l, 0,...,0),...} . The first

element of the vector corresponds to period 1, the second to period 2, and so on. The
elementsin each pe P are either zeros or ones, where a one represents the decision to
harvest the management unit in the corresponding planning period and a zero indicates no

harvest should occur in that period. Let the 0-1 variable X, represent the decision whether unit
s should follow prescription p. If it should, X5 =1, otherwise it is 0. Decision variables are

created only for those prescriptions that would not lead to premature harvests. In other words,
all prescription variables with first harvests that occur before the unit reaches its minimum
rotation age are excluded from the model during pre-processing.

As previously mentioned, the cover/path formulation of McDill et al. (2002) was used to
address adjacency constraints. This adjacency formulation requires the identification of each
group of contiguous management units whose combined area just exceeds the maximum
harvest area; that is, if any one unit is removed from the set, either the combined areas of the
remaining units in the set will no longer exceed the maximum harvest area or the remaining
units will no longer be contiguous. Let A™ denote all, and C € A" denote one such group of

units.

11
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For management unit S €S, let a,denote the area, €, the regeneration cost, and Vgpthe
volume per unit area in period t given prescription p . Let Es, represent the ending value of
management unit s if prescription p is followed. We useh, as an accounting variable for the

volume harvested from the entire forest in period t, we use ¢ for unit volume timber price, i

for the real interest rate, and 1, for the revenues associated with harvesting unit s according
to prescription p. Bounds f_, and f_, denote the allowable percent decrease and increase in

harvest volume in consecutive planning periods. Finally, let ET denote the minimum average

age for the forest at the end of the planning horizon, and let &, be the age of unit s at the end

of the planning horizon if prescription p is followed. Then, the Model | formulation of the basic

spatially-explicit harvest scheduling problems formulated and solved for this study is:

max > r X, (1)
S,p

s.t..

D x, =1 vseS (2)
p

D a vy x, =h vi<T (3)
S,p

(1-fu)-h <h,, Vt<T -1 (4)
(1+ f )-h <hg, vt<T -1 (5)
D xq </C|1 VCeA" t<[T| (6)
s

Z(ésp —ﬁ) a,x,, 0 (7)
s.p

X 6{0,1} VseS,peP (8)

12
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The objective function (1) maximizes the net discounted timber revenues associated
with the entire forest across the planning horizon of T periods, plus the discounted ending

value of the forest, with the objective function coefficients being:

rp=>(c-a,vl,—e ) (1+i) +E, (1+i)" VseS,peP (9)
t

The ending value of a management unit is calculated under the assumption that unit will be

harvested at the financially optimal rotation in all periods beyond the planning horizon.

Constraint (2) ensures that each unit is assigned exactly one prescription. Constraint (3)

calculates the harvest volume in each time period, and Constraints (4) and (5) ensure that the

harvest volumes in adjacent planning periods do not fluctuate by more than the lower or upper

bounds, f . and f

n max /

respectively. Constraint (6) ensures that no contiguous group of units

whose combined area exceeds the maximum harvest area is harvested concurrently. Constraint
(7) ensures that the average age of the forest at the end of the planning horizon is greater than
or equal to the minimum average ending age. Finally, Constraint (8) defines the decision

variables as binary.

2.2 Model ll

To specify Model Il for the purposes of this research, let the variable sets b, | € {0,1}
Vvs,t denote the decision whether unit s should be cut in period t the first time and whether it
should be cut in period t the last time, respectively. If unit s is to be cut the first time in period

t, then b, =1, 0 otherwise. If unit s is to be cut the last time in period t, then |, =1, 0

otherwise. Further, let variable setg, ., € {0,1} Vs,t denote the decision whether unit s should

13



280  be harvested in period t after it had previously been cutin periodt'. Ifitis, theng ., =1,0
281  otherwise. Finally, let n, €{0,1} Vs,t represent the “do-nothing” prescription. If unit s is not

282  to be cut during the planning horizon, then n, =1, 0 otherwise. Then, the following objective

283  function and inequality constraints define Model Il:

284 maxZ{rjt’ 'bst + Z rs?t‘,t ) gs,t',t + rslt : Ist:| (10)
st t'<t—k
285 st.
286 n+Y b, =1 VseS (11)
t
287 b+ D Gopr = D, Gope+ly VseS,t<T (12)
tstk  tetek
288 Z{as Vg by + D a Ve, -gsyt.yt} =h VE<T (13)
s t'<t-k
289 (1-fm)-h <h, vt<T -1 (14)
290 (1+ e ) = hyy Vt<T-1 (15)
201 > (by+9)<[C|-L VC e A" t<|T| (16)
seC,t'<t—k
292 Z[as (6, ~ET)(n, + Ist)} >0 (17)
S,p
293 b,/ €{0,1} VseS,t<T (18)
294 9.0 €{0,1} VseS,t<T t'<T-k  (19)
295 n, €{0,1} VseS (20)
296
297 As in Model |, the objective (Equation 10) is to maximize net timber revenues over the

298  planning horizon, plus an ending forest value, subject to 1) logical constraints (11) that allow

299  exactly one first harvest or no harvest of a unit, 2) harvest volume accounting and flow
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constraints (13-15) that are analogous to inequalities (3-5) in Model |, 3) maximum harvest

opening size constraints (16), and 4) a minimum ending average age constraint (17), where o is
the age of unit s at the end of the planning horizon if it was last cut in period t. At t=0, o,

corresponds to the initial age of unit s plus the length of the planning horizon. Revenue

coefficients associated with the first harvest of unit s in period t were calculated using relation

r’ = (c-a AP —es)-(1+i)_t , Where vft is the harvest volume of unit s in period t given that this is

the first time unit s is cut. Similarly, the formula r., = (C-aS Vo —es)-(1+ i)_t was used to

calculate the net discounted revenues associated with harvesting cutting unit s in period t after

having cut it previously in period t’. Parameter rs"t gives the present value of management unit

s at the end of the planning horizon if it is harvested for the last time in period t. Parameter

g
Vs,t‘,t

represents the unit area volume associated with the harvest of unit S in period t when
the previous harvest occurred in period t'.

Identity set (12) is a “network flow” constraint that ensures that whenever a
management unit is cut in a particular period, whether it is the first or an intermediate harvest,
there must be another variable that either declares this harvest to be the last for that unit or
that forces it to be cut again during the planning horizon. In other words, this constraint forces
each management unit to have a complete prescription plan for the entire planning horizon.
Along with the logical constraints (11), these flow constraints create a network representation
of the harvest scheduling problem with nodes representing the starting (source), the ending
(sink) and the intermediate states of the units (Fig. 1). Whatever harvest action takes the unit

to a given harvest-period state, there has to be another decision, such as a declaration that this

15
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harvest was the unit’s last or a decision to cut the unit in a subsequent period, that takes it out
of that state. Finally, constraints (18-20) define the four sets of decision variables as binary.
The following additional set of constraints can be added to Model Il to potentially

tighten the formulation, possibly leading to shorter average solution times.
N+ 1, =1 VseS (21)
t

These constraints are logical constraints similar to Constraints (11) that require the unit to be
cut last in exactly one period or to not be cut at all. Snyder and ReVelle (1996) also include a
similar constraint set in their model (their Constraint set [4]) which “forces a final harvest to
occur during the final supernode year, or sink node” (p. 1083). All problem instances were
formulated with and without this constraint set to test whether adding them improves model
performance. We refer to the Model Il formulation without these constraints as Model Il and
the formulation with the constraints as Model lla. Thus, each problem was formulated using
Model I, Model Il, and Model lla.

Model formulations were initially compared on the basis of model size: i.e., numbers of
variables and constraints, as model size is one factor that can influence model performance.
Model performance was evaluated based on solution time when different formulations of a
given problem instance were both solved to optimality in less than 12 hours of run-time. If one
formulation of a problem instance was solved to optimality within 12 hours, it is obviously
superior (for that instance) to another formulation of that instance that was not solved in 12
hrs. For instances where both formulations being compared were not solved within 12 hours,

performance was evaluated based on the optimality gap achieved within 12 hours. With the
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potential of having to use mixed criteria for evaluating model performance, the only measure of
model performance that can always be applied to all instances is simply the number of “wins,”
“ties” and “losses” for each formulation.

However, since there were only a few cases where problems were not solved to
optimality in 12 hours, average solution times for the different formulations were also
compared. As each problem instance was formulated each way, a paired comparison of the
solution times for the different formulations could be made. Due to the large variability in
solution times for different problem instances, a big difference in solution times for a single
instance could potentially dominate the mean solution time difference for any given
comparison. To minimize this effect, paired comparisons were normalized by dividing the
difference in the solution times for two formulations of the same problem instance by the
maximum solution time for the two formulations being compared. The formula for this
normalization is:

tlme,j —time,

Normalized Differenceijk = ' _
max(t/meij,tlmeik)

Where 1 is the solution time for formulation j of problem instance i. This normalized
difference is always in the interval (-1, 1). When the normalized difference is greater than zero,
then formulation k can be considered superior to formulation j for instance i; conversely, when
the normalized difference is less than zero, formulation j can be considered superior to
formulation k for instance i. The normalized difference can be interpreted as a percentage

improvement in solution time for the superior formulation relative to the inferior formulation.
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Paired t-tests were used to test the two-tailed hypotheses that the mean normalized (percent)

differences between solution times for different formulations are not equal to zero.

3. Results and Discussion

One measure of model efficiency is model size. As a general rule, smaller models tend
to be easier to solve than larger models. Table 2 compares the number of variables and
number of constraints needed to formulate the hypothetical forest planning problems with
four, six and eight planning periods using the Model | and Model Il formulations. The number
of variables and constraints for the Model lla formulation are not shown because that
formulation always has the same number of variables as Model Il plus one additional constraint
for each management unit. Model | produces smaller models than Model Il in all cases. On
average, the Model Il formulation has approximately 30 percent more variables and 50 percent
more constraints than the Model | formulation. There is no obvious trend suggesting that the
ratio of the number of Model Il variables to the number of Model | variables is getting bigger or
smaller as the number of periods increases. However, the ratio of the number of Model Il
constraints to the number of Model | constraints does appear to increase as the number of
periods is increased.

The results in Table 2 show that adding two periods to the model generally results in an
approximate doubling in the number of variables. For Model |, this result is quite consistent,
whether it is from four periods to six or from six periods to eight. However, for Model Il, the
relative increase in the number of variables between four and six periods — which increases the

number of variables by roughly 150%, on average — is greater than between six and eight

18



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

periods — where the number of variables increases by only 80%. Increasing the number of
periods has a proportionately larger effect on the number of constraints for the Model Il
formulation than for the Model | formulation. For example, increasing the number of planning
periods from four to six increases the number of Model | constraints by about 50% (roughly in
proportion to the increase in the number of periods), whereas, by comparison, the number of
Model Il constraints is approximately doubled.

Clearly, Model Il MIP formulations result in larger models for the problem instances
considered here. Model Il results in smaller LP models because analysis areas that would have
been tracked by separate variables can be “merged” in later periods. In a LP model that
aggregates similar areas into “analysis areas,” when areas that were otherwise similar but
represented as separate analysis areas because they start out in different age classes are
harvested in the same period their areas can be re-aggregated into a single analysis area and
assigned to a single variable. However, in a spatially explicit model, this doesn’t happen
because areas always retain their unique representations because they are spatially unique.

Of course, model size is only a secondary concern. In most cases, the critical limiting
factor in solving MIP formulations of spatially-explicit forest planning problems is solution time.
Tables 3 and 4 compare the performance of Model | with Models Il and lla, respectively, for the
hypothetical problems by identifying the number of problem instances where one formulation
outperforms the other. Both tables show a very clear trend where Model | clearly outperforms
both versions of Model Il in problems with only 4 planning periods, and where both versions of
Model Il outperform Model | for problems with either 6 or 8 periods. Model lla outperforms

Model I slightly more often than Model II.
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There were only eight instances where the hypothetical problems were not solved to
optimality within the 12-hour solution-time limit. All of them were over-mature forest
problems formulated with 6 planning periods. Of the eight, seven were Model | formulations
and one was a Model Il formulation; none were Model lla formulations. Since in the majority of
these cases Model | had the poorest performance, excluding these cases from a pairwise
analysis of the solution time differences biases our results in favor of Model |, making this a
conservative analysis. Tables 5 and 6 compare the solution times for the hypothetical forest
problems formulated with Model | versus those formulated with Models Il and lla, respectively.
The tables show the average solution time for each formulation and for each initial age-class
structure and planning horizon. Average solution times for the over-mature forests tend to
increase by roughly three orders of magnitude with the addition of two time periods, while
average solution times for the regulated forests tend to increase by one to two orders of
magnitude with the addition of two time periods. Average Model | solution times are superior
for over-mature forest planning problems with four-period planning horizons. In all other
cases, there is either little difference between the two formulations or the Model I
formulations are superior. Furthermore, the advantage of the Model Il formulations clearly
grows as the length of the planning horizon increases.

The normalized difference in solution time is shown in Tables 5 and 6 as a percent
difference. Positive values can be interpreted as indicating that Model | outperformed the
respective version of Model Il. The p-value gives the probability of obtaining the observed
average percent improvement in solution time if the true mean difference in solution times is

equal to zero. Because of the normalization, observations can be combined across different
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planning horizon lengths, as the normalized differences can be seen as coming from the same
population, regardless of the planning horizon length. The results in both tables show quite
clearly that both versions of Model Il outperform Model | for planning horizons of 6 or 8
periods, and in all these cases we can confidently reject the null hypothesis that there is no
difference in average solution time. While Model | outperforms both versions of Model Il for
problems with 4 planning periods, the difference is only statistically significant at the 0.05 level
when comparing Model | and Model Il on over-mature forest problems with four planning
periods.

With the hypothetical forests, the comparisons between the two Model Il formulations
and Model | are generally stronger for Model lla than for Model Il. However, in a similar
comparison between Model Il and Model lla, none of the differences in solution times were
statistically significant. Nevertheless, the results do suggest that Model lla is somewhat
superior to Model Il.

The results for the real loblolly pine forests are shown in Table 7. None of the problem
instances were solved to optimality in 12 hours, although the 5-period models were solved to
very small gaps. Conclusions as to which formulation is superior are less clear than for the
hypothetical problems. The basic Model Il formulation performed better than the other two
formulations with 5- and 20-period planning horizons; Model | performed best with a 10-period
planning horizon; and Model lla performed best with a 15-period planning horizon. In fact, with
Model lla, no integer feasible solution was found within 12 hours for the problem with a 20-
period planning horizon, and this formulation performed the worst of the three formulations

for three out of the four planning horizons. Most likely, these results merely highlight the
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shortcomings of trying to draw conclusions from a single example. There is a lot of variability in
solution times for different problems and with different formulations.

To explore this issue further, we calculated correlations between solution times for
different formulations within a given class of hypothetical problems, e.g., regulated forest
problems with 60-year planning horizons. These correlations are reported in Table 8. For
regulated forest problems with shorter (4 and 6-period) planning horizons, solution times were
fairly consistent (correlations between 0.59 and 0.94) between formulation methods. That is, if
a problem instance took a relatively long time to solve with one formulation, it also took a long
time with the other formulations and vice versa. However, for the regulated forest problems
with 8 planning periods and for the overmature forest problems, the correlations between
solution times for different formulations were much weaker (correlations generally less than
0.5 and as low as 0.09). This indicates that for these problems, when a problem took a long
time to solve with one formulation it did not necessarily take a long time to solve with another.
In general, we concluded from this that as problems become more difficult to solve, solution

times become less predictable.

4. Conclusions

The results from this study show that the length of the planning horizon is a key factor in
determining whether Model Il formulations are superior to Model | formulations in spatially-
explicit forest management planning problems. The results from the hypothetical problems
suggest that Model | tends to be superior to Model Il for problems with relatively short

planning horizons (less than or equal to one rotation). However, at some point, as the length of
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the planning horizon is increased, Model Il eventually becomes the superior formulation. This
occurs even though Model Il formulations generally require substantially more variables and
more constraints than equivalent Model | formulations. While current spatially-explicit model
formulations tend to use planning horizons that are shorter than one rotation, there are good
reasons to consider using longer rotations. These include consideration of long-term
sustainability issues and the cumulative impact of harvesting decisions on the spatial structure
of the forest, e.g., the patch size distribution. As computing power increases and solution
algorithms improve, our ability to solve models with longer planning horizons will also improve.
Using a Model Il formulation also appears to help make problems with longer planning horizons
more tractable.

Results from our real test case are not entirely consistent with our results from our
hypothetical problems. In particular, Model lla does not perform particularly well for this test
case; although it produces the lowest solution time with a 15-period planning horizon, it gives
the worst solution times with the remaining planning horizons and does not even produce a
feasible solution within 12 hours for the problem instance with the longest planning horizon.
We interpret this lack of consistency with the hypothetical problems as a reflection of the
variability and unpredictability of results for any single case, especially with harder problems.

An important question that often arises with spatially-explicit forest planning problems
is “what makes some problems so much harder to solve than other problems?” The results
presented here reaffirm the result reported by McDill and Braze (2000) that initial age-class
distribution is a key factor. For a given planning horizon, our problems based on forests with

over-mature age-class distributions took two or more orders of magnitude longer to solve than
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problems based on forests with regulated age-class distributions. Furthermore, the results
presented here show that problems with longer planning horizons are harder to solve than
problems with shorter planning horizons, with increases in solution time typically of two or
three orders of magnitude for six versus four planning periods and for eight versus six planning
periods. One key advantage of the Model Il formulations, however, is solution time does not
increase as fast with increases in the planning horizon with this formulation as it does with the
Model | formulation. Model Il solution times tended to be longer than Model | solution times
with short rotations, but Model Il eventually becomes the superior formulation as the length of
the planning horizon is increased.

We note at the beginning of this paper that spatial forest planning models do not
benefit as much from using a Model Il formulation compared with aspatial LP models because
with aspatial planning models, areas that differ only in terms of their initial age class cannot be
merged after they are harvested in the same period. However, the advantages of Model Il over
Model | will also increase if more intermediate treatment options, such as thinning, are
included, and this advantage applies to spatial as well as aspatial models. This is because
increasing the number of treatment options between regeneration harvests only increases the
Model Il model size additively for each rotation, whereas it increases Model | model size
multiplicatively. To see this, consider the simple case where the rotation is fixed and the
planning horizon is two rotations long. If there are three intermediate treatment (e.g.,
thinning) options for each rotation, this can be modeled with six variables in Model Il, but it will

require nine variables with Model I.
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An interesting potential extension of the Model Il format would be to use spatially-
explicit variables to represent management areas up until the first or second time they are
harvested and then to allow them to be merged into aspatial analysis area variables after the
first or second cut. This would allow modelers to maintain a high degree of spatial specificity
for the initial periods of the model when it is probably more critical while still modeling certain
aspatial sustainability considerations for longer planning horizons. For problems where
planners are interested in projecting the long-term spatial configuration of the forest under

different management policies, however, this would not be a suitable approach.
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632

633 Table 1. Target distribution of area by age class for hypothetical forests for regulated and

634 over-mature initial age-class distributions.

Age Percent of Total Area

Classes Regulated Over-mature
1to 20 25 10
21to 40 25 15
41 to 60 25 20
61 to 80 25 25
81 to 100 - 30

635
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636 Table 2. Average number of variables and constraints for Model | and Il formulations of the

637 hypothetical forest problems.

Avg. Number of Variables  Avg. Number of Constraints
Initial Age-Class Number of

Distribution Periods Model | Model I Model | Model II

Over-Mature 4 273 347 254 328
6 588 851 371 635

Regulated 4 240 289 224 272
6 515 738 340 563

8 1,100 1,351 457 819




638 -

639 Table 3. Number of wins and ties by forest initial age-class distribution and planning horizon

640 when comparing Model | with Model 1.
ston peross Mooroms MUET mes MR
Over-mature 4 30 22 1 7
Over-mature 6 30 8 0 22
Over-mat. Total 60 30 1 29
Regulated 4 30 13 8 9
Regulated 6 30 7 1 22
Regulated 8 30 4 1 25

Regulated Total 90 24 10 56




641

642 Table 4. Number of wins and ties by forest initial age-class distribution and planning horizon

643 when comparing Model | with Model lla.
ston peross Mooroms MUET mes MR
Over-mature 4 30 15 0 15
Over-mature 6 30 7 0 23
Over-mat. Total 60 22 0 38
Regulated 4 30 13 7 10
Regulated 6 30 5 1 24
Regulated 8 30 5 1 24

Regulated Total 90 23 9 58
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645
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647

648

Table 5. Comparison of average solution times and average percent difference in solution
time for Model | and Model Il by forest initial age-class distribution and planning

horizon. (P-values test the hypothesis that the average percent difference equals

zero.)
Average Solution Time
Initial Age-class  Planning No. of (sec) Avg. %
Distribution Periods Obs. Difference  p_yalue
Model | Model Il

Over-mature 4 30 6.9 10.0 21.1% 0.027
Over-mature 6 22 4687.6 2981.2 -34.2% 0.039
Over-mat. Total 52 1987.2 1267.0 -2.3% 0.802
Regulated 4 30 0.1 0.1 3.5% 0.532
Regulated 6 30 1.7 0.7 -23.1% 0.003
Regulated 8 30 326.4 26.4 -56.6% 0.000
Regulated Total 90 109.4 9.1 -25.4% 0.000
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653

Table 6. Comparison of average solution times and average percent difference in solution
time for Model | and Model lla by forest initial age-class distribution and planning

horizon. (P-values test the hypothesis that the average percent difference equals

zero.)
Average Solution Time
Initial Age-class  Planning No. of (sec) Avg. %
Distribution Periods Obs. Difference  p_yalue
Model | Model Il

Over-mature 4 30 6.9 335 11.8% 0.263
Over-mature 6 23 5,753.5 2,823.3 -42.7% 0.008
Over-mat. Total 53 2,500.7 1,244.1 -11.9% 0.209
Regulated 4 30 0.1 0.1 4.6% 0.378
Regulated 6 30 1.7 0.6 -32.9% 0.000
Regulated 8 30 326.4 7.6 -52.6% 0.000
Regulated Total 90 109.4 2.7 -27.0% 0.000
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658

Table 7. Comparison of optimality gaps after 12 hours of solution time for the real forest

problems formulated with four planning horizons, using Model I, Model Il and Model

Ila.
Model | Model Il Model lla
Planning horizon Opt. gap (%) Opt. gap (%) Opt. gap (%)
5 periods 0.00000268 0.00000228 0.00023
10 periods 0.07 0.09 0.10
15 periods 5.44 0.78 0.46
20 periods 1.40 0.96 Infinite*

*No feasible solution found.
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661

Table 8. Correlation between solution times for different formulations within different groups

of problem instances.

Age-Class Planning
Distribution Periods Ml with Ml Ml with Mlla MIl with Mlla
Regulated 4 0.59 0.70 0.81

6 0.94 0.80 0.92

8 0.77 0.36 0.34
Over Mature 4 0.34 0.39 0.09

6 0.10 0.22 0.48
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Network flow representation of spatial Model Il. The arrows correspond to the variables that

“move” unit s across the planning horizon.
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