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A Cutting Plane Method for Solving Harvest Scheduling Models
with Area Restrictions
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aSchool of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195

Abstract

We describe a cutting plane algorithm for an integer programming problem that arises in forest
harvest scheduling. Spatial harvest scheduling models optimize the binary decisions of cutting or
not cutting forest management units in different time period subject to logistical, economic and
environmental restrictions. One of the most common constraints requires that the contiguous size
of harvest openings (i.e., clear-cuts) cannot exceed an area threshold in any given time period or
over a set of periods called green-up. These so-called adjacency or green-up constraints make
the harvest scheduling problem combinatorial in nature and very hard to solve. Our proposed
cutting plane algorithm starts with a model without area restrictions and adds constraints only if a
violation occurs during optimization. Since violations are less likely if the threshold area is large,
the number of constraints is kept to a minimum. The utility of the approach is illustrated by an
application where the landowner needs to assess the cost of forest certification that involves clear-
cut size restrictions stricter than what is required by law. We run empirical tests and find that the
new method performs best when existing models fail: when the number of units is high or the
allowable clear-cut size is large relative to average unit size. Since this scenario is the norm rather
than the exception in forestry, we suggest that timber industries would greatly benefit from the
method. In conclusion, we describe a series of potential applications beyond forestry.

Keywords: OR in natural resources, integer programming, cutting planes, spatially-explicit
harvest scheduling

1. Introduction

We propose a cutting plane algorithm to optimize area-based forest harvest scheduling. Har-
vest scheduling models, that are typically cast as integer programs, optimize the spatiotemporal
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layout of harvests subject to a variety of logistical, economic and environmental constraints. Area-
based models ensure that the contiguous size of harvest openings (i.e., clear-cuts) cannot exceed a
maximum threshold in any given time period or over a set of periods called green-up. Area-based
harvest scheduling problems are combinatorial problems that are often very hard to solve to opti-
mality. The proposed cutting plane algorithm starts with a model without area restrictions and adds
constraints only if a violation occurs during optimization. Before providing a formal definition of
the algorithm, we give a brief background and literature review on harvest scheduling models.

The National Forest Management Act of 1976 was the first piece of legislation in the United
States that imposed restrictions on the size of clear-cuts. The Act responded to public criticism,
which emerged in the 1960s, that large clear-cuts compromised wildlife habitat and other forest
ecosystem functions. Many states followed suit and established clear-cut size regulations on both
private and state forestlands [3]. Forest certification standards such as those administered by the
Forest Stewardship Council (FSC) or the Sustainable Forestry Initiative (SFI) also dictate various
limits on harvest opening sizes [16]. The compliance of forest managers who enroll in an FSC or
SFI program, is ensured by periodic third-party audits.

The intention behind the policy of restricting harvest opening sizes was to reduce the spatial
and temporal concentration of harvest activities across the landscape. A possible side effect of this
policy, however, a heterogeneous, patchy forest landscape, has been shown to have both positive
and negative ecological consequences [15]. A forest with a spatially heterogeneous age-class dis-
tribution is more resilient against the spread of fire, but the increased amount of edge will increase
the likelihood of wind-throw and compromise interior old forest habitat. Clear-cut size restrictions
may also reduce timber revenues.

Computing the tradeoffs between timber revenues and landscape metrics is useful for policy
makers, for the designers of forest certification standards and for forest landowners/managers who
are interested in certification. However, such tradeoff analyses may be prohibitively expensive.
The larger the opening limit relative to the average size of the harvest units, the harder it is to
formulate and solve these models [18]. We give a brief overview of prior work on spatial harvest
scheduling and discuss a real-life example that illustrates the computational issues that can arise.

1.1. Area-based Harvest Scheduling in Forestry

Harvest scheduling models seek to maximize timber revenues or other outputs subject to en-
vironmental, logistical or budgetary constraints by assigning harvest decisions to forest manage-
ment units (contiguous groups of trees that share similar characteristics such as species or average
height) over a planning horizon. “Environmental” or sustainability constraints might include end-
ing timber volume (inventory) requirements, a balanced flow of timber revenues, or maximum

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

harvest opening size restrictions. Harvest scheduling models that incorporate maximum harvest
opening size constraints are called Unit- or Area Restriction Models [a.k.a., URM vs. ARM, 30]
depending on whether or not the combined area of every pair of adjacent units exceeds the allow-
able area threshold. If it does, the problem is a URM that prevents adjacent forest stands from
being harvested simultaneously or within a pre-specified timeframe called the green-up or exclu-
sion period. Otherwise, the problem is an instance of the ARM.

The core of the URM, which was first formulated as a mixed integer program (MIP) by [20],
and subsequently by [28, 31, 32, 44] is an instance of the Node Packing Problem, a.k.a. the Vertex
Packing or the Maximal Weight Stable Set Problem in integer programming. The ARM is a more
general model; it allows groups of contiguous management units to be harvested concurrently as
long as their combined area is less than the maximum harvest opening size. The ARM typically
arises when the maximum harvest opening size is large relative to the size of the units. Since the
ARM is a generalization of URM, it can be viewed as a Stable Set problem where the require-
ment on the independence of the nodes is relaxed subject to a pre-specified threshold. While this
threshold is defined as area in forest planning, it does not have to be - giving rise to potential ap-
plications beyond forestry. In portfolio optimization as an example, it can be defined as threshold
covariance among a cluster of financial instruments. Being able to select a pair of correlated in-
struments whose covariance is below the tolerable risk of the investor can be advantageous given
the difficulties of finding large independent sets in an increasingly globalized stock market [5, 6].
Since the Stable Set Problem has been shown to be NP-Hard [35], the ARM is also NP-Hard.
Due to the computational difficulties that are typically associated with solving NP-Hard decision
problems, the first methods that have been proposed for the ARM all involved the use of heuristic
techniques to find good solutions [e.g., 3, 7]. It was not until the early 2000s, when the first exact
models of the ARM appeared in the refereed literature [4, 27, 34]. The first model in [27], called
Path Formulation, enforces harvest opening size restrictions by means of constraints only. The
formulation of these constraints, which are structurally very similar to the 0-1 cover inequalities
in knapsack problems, requires the enumeration of all contiguous clusters of management units
whose combined area just exceeds the maximum opening size. Subsequent attempts to improve
the Path Formulation include [11] who appended knapsack constraints to [27]’s model to enforce
area restrictions, [40] who proposed a strengthening procedure for the path constraints and [39]
who showed that the use of path inequalities in lazy constraint pools can lead to dramatic savings
in solution times.

The second exact model in [27], the Generalized Managent Unit (GMU) or Cluster Packing
Formulation also relies on an enumeration procedure [17, 23, 24, 27, 33]. Unlike the Path For-
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mulation, however, which requires minimally infeasible clusters, it is the set of feasible clusters
that are needed in this model. Feasible clusters are contiguous groups of management units whose
combined area is less than or equal to the maximum opening size. The GMU model uses extra
decision variables to represent feasible clusters that comprise more than one management unit.
Pair-wise [27] or maximal clique-based [17] constraints can then be written to prevent the harvest
of adjacent or overlapping clusters. [18] showed that the maximal clique-based Cluster-Packing
Model provides a tighter approximation of the convex hull of the ARM than the Path Formulation
and that it can produce superior computational results.

The third model, Bucket Formulation [9], is very different from the previous two in that it
does not rely on apriori enumerations of feasible or infeasible clusters. Unlike the Cluster Packing
models or the Path Formulation, this model uses harvest assignment variables instead of harvest
variables. Any one management unit can be assigned to initially empty sets of clear-cuts or buckets

[18] in every planning period. While the management units that are assigned to the same clear-cut
don’t have to be adjacent, constraints are in place to ensure that the total area of each clear-cut is
less than or equal to the maximum harvest opening size. Finally, there are additional constraints in
the model to prevent the formation of adjacent or overlapping clear-cuts. What makes the Bucket
Formulation very attractive is that unlike the other two models, it does not require potentially
costly enumerations and that the size of the model is limited by the number of feasible clear-cut
assignments. While extra preprocessing is needed to identify “infeasible” assignments, the poten-
tial reduction in the number of variables and constraints can be substantial. That said, problem
size for the Bucket Formulation can increase exponentially as a function of the number of units
depending on the efficiency of the preprocessing algorithm.

1.2. Problem Motivation

The size of the Path and the Maximal Clique-based Cluster Packing formulations is sensitive to
the maximum harvest opening size, whereas the size of the Bucket model is sensitive to the number
of management units. While problem size is not necessarily a good predictor of problem difficulty
[41], it can make the problem formulation process prohibitively time-consuming, especially if
cluster enumerations are involved. Moreover, solving large integer programs, such as the ARMs
listed above, can also be hard [9, 17]. These issues are never more apparent than in tradeoff

analyses where forgone timber revenues or changes in ecosystem metrics, such as forest habitat
fragmentation, are to be forecasted as functions of alternative harvest opening size policies. Forest
policy makers, landowners or forestry practitioners are all likely to be interested in how much
compliance with a specific certification standard or a new regulation would cost. With the three
existing ARM approaches, one has to formulate and solve a separate model for each opening
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size restriction of concern. This can be a time-consuming process if the forest in question has a
large number of management units, or if the maximum harvest opening size is large relative to the
average size of the units, or if many different harvest opening size policies are considered. Forest
planning problems that involve thousands of management units are common. In fact, most authors
argue that future research should focus on solving problems that comprise even more units [e.g.,
17]. Forest regions across the globe where the allowable clear-cut size is large are not uncommon
either. In the Canadian provinces of Ontario and New Brunswick, in central and north Quebec,
and in some regions of Alberta, as well as in Victoria, Australia and in Russia, the maximum
opening size varies between 100 and 260 ha [25]. In the Pacific Coastal states of Oregon and
Washington, the limit is only 48.56 ha but contiguous clear-cuts up to 97.12 ha are allowed with
special permission [25, 43]. Very small management units are the norm in these regions, especially
in the U.S. private forest sector, where timber harvesting rights are typically allocated to willing
buyers via auctions [2, 38]. Small-scale buyers can bid only on small sales that contain lower
timber volumes, and as a result, forest managers often design small units [36].

The 1,708 ha Pack Forest, United States is a prime example of the computational difficulties
that arise in harvest scheduling when unit sizes are small relative to the allowable clear-cut size.
Pack Forest has 186 units with an average unit size of 9.18 ha and with feasible clusters that average
10.27 in cardinality. Washington State Forest Practices limits the opening size to 48.56 ha with a 5-
year green-up requirement [43]. The administration of the Forest wants to weigh the pros and cons
of acquiring FSC certification which requires 24.28 ha maximum clear-cut size subject to green-
up rules that are driven by silvicultural factors such as tree height and canopy closure [16]. To
estimate the opportunity costs of FSC compliance, the maximum timber revenues under the State’s
48.56 ha clear-cut size rule need to be calculated in the absence of FSC requirements. Formulating
the harvest scheduling model that could estimate these revenues using the Maximal Clique-based
Cluster Model requires over ten million variables, whereas the Path Approach requires almost
a million constraints. The cluster enumeration procedure alone, required by both models, takes
several weeks to complete using the best available algorithms. While the Bucket Model takes only
minutes to formulate, the optimality gaps achieved with set time-frames are much larger than those
of the other two models.

Pack Forest is not the only organization facing this scheduling problem. There are thousands
of other forest owners in Washington State whose holdings are large enough to require harvest
scheduling models and all of them have to comply with the State’s 48.56 ha restriction on clear-cut
size. The nature of the problem is likely to be similar or more pronounced in other regions with
significant private holdings and with similar policies (e.g., Oregon, U.S. [25]).

5
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1.3. The Proposed ARM Cutting Planes Approach

The cutting plane algorithm proposed in this study can bypass the computational issues listed
above. More importantly, we show that it can complement the three exact models as it works best
when the others are most likely to fail. The idea of using the path constraints from [27]’s Path For-
mulation as cuts stems from the expectation that path constraints should rarely be binding during
optimization, especially if the maximum harvest opening size is large. This expectation, which
we confirm empirically, is based on the fact that while the number of path constraints increases
exponentially as a function of maximum opening size, area violations are less likely to occur since
the ARM becomes more relaxed. We hypothesize that by creating only those path constraints that
prevent the specific opening size violations that arise from solution candidates during optimization
would not only lead to smaller IPs that are easier to solve, but it would also cut formulation times.

We note that the proposed cutting plane approach is an instance of what is often called delayed

constraint generation (DCG). DCG was first reported by [12] in the context of the Traveling Sales-
man Problem (TSP), which, like the Path Model, requires a potentially enormous set of constraints.
It was these, so-called sub-tour elimination constraints that [12] used as cuts to be the first to solve
the 54-city TSP. Apart from the successful use of cutting planes in the TSP [see 22, for a review],
the method was also found to be very efficient in vehicle routing problems [1, 10].

2. Methods

This section starts with a formal description of the Path, the Maximal Clique-based Cluster
Packing and the Bucket Formulations that were used to benchmark the computational performance
of the cutting plane algorithm. The proposed algorithm is described next, along with the computa-
tional experiment that was designed to compare both formulation and solution times. Both of these
time components were included in the analysis since they cannot be separated in the cutting plane
method where the formulation of Path constraints is imbedded in the optimization process.

2.1. Model Formulations
2.1.1. Terminology and Model Specifications.

Let P denote the set of planning periods and N the set management units associated with a
given forest planning problem. Let p index set P and i index set N. Each management unit has
the following attributes: area ai, age in years at the end of the planning horizon if the unit is cut in
period p, ti,p, volume in the unit at the end of the horizon if it is cut in period p, vi,p, expected net
revenue in period p, ri,p and the set of units that are adjacent to unit i, Di. We consider two units to
be adjacent if they share a common boundary. We assume that a management unit with forest type

6
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k cannot be harvested until it reached a minimum rotation age of Rk periods. Lastly, we assume
that Rk ≥ P: each unit can only be harvested at most once during the planning horizon.

All of the three benchmark models were set to maximize discounted net timber revenues subject
to four sets of constraints: (1) logical constraints that allow each unit to be harvested at most once
over the planning horizon; (2) harvest flow constraints that limit the harvest volumes in a given
period to be both below and above a certain percentage, U and L, respectively, of the volume in
the previous period; (3) average ending age constraints that force the area-weighted average age
of the forest at the end of the planning horizon to be at or above a certain target age ET ; and
(4) maximum harvest opening size constraints that prevent the harvest of contiguous clusters of
management units whose combined area exceeds a threshold Amax in a planning period. In this
study, we limited the temporal extent of the maximum harvest opening size restrictions (a.k.a., the
green-up period) to be equal to one period. Lastly, we assumed that ai ≤ Amax for any i ∈ N.

2.1.2. The Path Formulation [27]:

The Path Formulation requires the apriori enumeration of minimal covers (or minimally infea-
sible clusters, see Fig. 1). After [17], we let Λ+ denote this set with C representing one particular
element in Λ+. A cover C ∈ Λ+ is minimal if

∑
j∈C a j > Amax holds, but

∑
j∈C\{l} a j ≤ Amax for any

l ∈ C. In the computational comparisons that follow, we used Algorithm I [18] to generate Λ+

for the test problems. Algorithm I, which also generates the set of feasible clusters (Λ−), uses the
adjacency table, the areas of the management units and Amax as inputs:

Γ(M, Amax) : M × Amax 7→ Λ− × Λ+ (1)

where M = [mi, j]|N|×|N| is the adjacency matrix with mi, j =


ai if i = j, else

1 if i and j are adjacent, and

0 otherwise.

We refer to Algorithm I as Γ(M, Amax) in this paper and direct the reader to [18] for a full
description of the algorithm. In the Path Formulation (2)-(8), the decision variables, xi,p, represent
the choice whether unit i should be harvested in period p or not. Inequality set (3) captures the
logical, sets (4)-(5) capture the harvest flow, (6) the minimum average ending age and (7) the
adjacency constraints with u denoting the length of the green-ups in periods and t the planning
periods. Constraints (8) define the binary restrictions:

max
∑
i,p

ri,pxi,p (2)

7
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Subject to:∑
p

xi,p ≤ 1 ∀i ∈ N (3)

∑
i

vi,p+1xi,p+1 ≤ U
∑

i

vi,pxi,p ∀p ∈ P\{1} (4)

∑
i

vi,p+1xi,p+1 ≥ L
∑

i

vi,pxi,p ∀p ∈ P\{1} (5)

∑
i,p

(ti,p − ET )aixi,p ≥ 0 (6)

∑
i∈C

min(p+u−1,|P|)∑
t=p

xi,t ≤ |C| − 1 ∀C ∈ Λ+, ∀p ∈ P (7)

xi,p ∈ {0, 1} ∀i ∈ N, ∀p ∈ P. (8)

Let (2)-(6) and (8) be denoted as the core of the Path Formulation.

2.1.3. Maximal Clique-based Cluster Packing Formulation [17]:

This model also relies on an apriori enumeration process. Unlike in the Path Formulation, how-
ever, this time the set of feasible clusters (Λ−) is needed (Fig. 1). A contiguous set of management
units g forms a feasible cluster if their combined area does not exceed Amax. Again, we will use
[18]’s Algorithm I (1) to generate set Λ−. The variables xg,p in this model represent the decision of
whether all the management units in cluster g should be cut in period p or not. We note that these
variables are defined for p = 0 only if they denote a one-unit cluster. This ensures that the ending
age constraint functions as intended. Coefficients tg,p denote the age in years at the end of the plan-
ning horizon if cluster g is cut in period p. In the experiments that follow, we used the maximal
clique-based version of the Cluster Packing Formulation [17], which requires the enumeration of
the maximal sets of mutually adjacent management units (cliques): Π. A clique K ∈ Π is maximal
if adding one extra unit to the set would result in a group of units that are no longer mutually
adjacent. The Maximal Clique-based Cluster Packing Formulation can be defined as follows:

max
∑
g,p

[xg,p

∑
i∈g

ri,p] (9)

Subject to:∑
g∈Gi,p

xg,p ≤ 1 ∀i ∈ N (10)

8
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∑
g

[xg,p+1

∑
i∈g

vi,p+1] ≤ U
∑

g

[xg,p

∑
i∈g

vi,p] ∀p ∈ P\{1} (11)

∑
g

[xg,p+1

∑
i∈g

vi,p+1] ≥ L
∑

g

[xg,p

∑
i∈g

vi,p] ∀p ∈ P\{1} (12)

∑
g,p

(tg,p − ET )
∑
i∈g

aixg,p ≥ 0 (13)

∑
g∈GK

min(p+u−1,|P|)∑
t=p

xg,t ≤ 1 ∀K ∈ Π, ∀p ∈ P. (14)

xg,p ∈ {0, 1} ∀g ∈ Λ−, ∀p ∈ P (15)

where Gi is the set of feasible clusters that contain unit i, and GK is the set of clusters that
contain at least one unit in K. Constraints (11)-(12) are harvest flow constraints, and constraint
(13) is the average ending age constraint. Script u in (14) refers the length of green ups in periods.

2.1.4. The Bucket Formulation [9]:

Define class B, indexed by b, as a set of clear-cuts [or buckets after 18]. Since |B| ≤ |N|, b ∈ N.
Clear-cuts can be empty sets or they can comprise one or more management units that are not
necessarily connected to each other (Fig. 1). The composition of clear-cuts is left to the model
(16)-(25) to determine by means of assignment variables yb

i,p, that represent the decision whether
management unit i should be assigned to clear-cut b in period p or not. The following model
maximizes discounted net timber revenues (16) subject to logical (17), harvest flow (18)-(19),
minimum average ending age (20), and binary (22) constraints:

max
∑
i,b,p

ripyb
ip (16)

Subject to∑
b,p

yb
i,p ≤ 1 ∀i ∈ N (17)

∑
i,b

vi,p+1yb
i,p+1 ≤ U

∑
i,b

vi,pyb
i,p ∀p ∈ P\{1} (18)

∑
i,b

vi,p+1yb
i,p+1 ≥ L

∑
i,b

vi,pyb
i,p ∀p ∈ P\{1} (19)

∑
i,p

(ti,p − ET )aiyb
i,p ≥ 0 (20)

9
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∑
i

aiyb
i,p ≤ Amax ∀b ∈ N (21)

yb
i,p ∈ {0, 1} ∀i, b ∈ N, p ∈ P. (22)

Constraint set (21) puts a limit on the total area of management units that can be assigned to
the same clear-cut. Since adjacent clear-cuts might still have a combined area that exceeds Amax,
constraint set (21) alone cannot prevent all harvest size violations. The Bucket Model uses two
additional constraint sets, (23)-(24), and a set of indicator variables, wK

b,p, that turn on if at least
one unit in maximal clique K is assigned to clear-cut b in period p, to keep the clear-cuts disjoint:

yb
i,p ≤ wK

b,p ∀K ∈ Π, i ∈ K, b ≤ i, p ∈ P (23)

∑
b

min(p+u−1,|P|)∑
t=p

wK
b,t ≤ 1 ∀K ∈ Π, p ∈ P (24)

wK
i,p ∈ R

+ ∀K ∈ Π, b ∈ N, p ∈ P (25)

Constraint set (23) defines the behavior of indicator variables wK
b,p based on the values of the

assignment variables. Constraint set (24) says that each management unit in a clique, say clique
K, can only be assigned to one clear-cut. Lastly, constraints (25) define the indicator variables as
positive real. Constraints (24) allow greenups of length u in periods.

At O(|N|2 × |P|) [9], the size of the Bucket Formulation can exceed the size of the Path or the
Maximal Clique-based Cluster Packing models if |N| is large [18]. However, the model can be
reduced to a fraction of its size by creating assignment variables only for those pairs of units that
can be connected by a chain of other units whose combined area plus the area of the two original
units doesn’t exceed the maximum opening size [9]. As in [9], a dynamic programming recursion
was used [13, 37, 42] in this study as well to calculate the area of the shortest area chains between
each pair of units:

s(i, j, l) =

 α(i, j) if l = 1

min{s(i, j, l − 1), s(i, l, l − 1) + s(l, j, l − 1)} otherwise
(26)

where α(i, j) is the combined area of units i and j with a(i, j) being ∞ if the units are not
adjacent, and s(i, j, l) is the total area of the shortest area chain between units i and j going through
intermediate units 1, 2, ..., and l. If, for a pair of units i and j, Function (26) returns an s(i, j, |N |)
that is greater than Amax, there is no need for variables that would assign unit i to clear-cut j, or
vice versa. This simplification considerably reduces model size at a minimal preprocessing cost.
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2.2. The Cutting Plane Algorithm for the Path Formulation:

As described in Section 1.2, the formulation time for the Path Model can be excessive due to the
enormous number of cover constraints that might be needed to prevent all possible harvest opening
size violations. To minimize formulation times associated with the cover enumeration process , we
propose to use the cover inequalities (7) as cuts or cutting planes. Unlike conventional constraints,
cutting planes do not have to be identified pre-optimization. The proposed cutting plane method,
whose two variants are formally described in Algorithms (1)-(2), starts as the standard branch-
and-bound algorithm [21] with the LP relaxation of the core Path Formulation being the root node
(LP0): (2)-(6) with xi,p ≥ 0 ∀i ∈ N, ∀p ∈ P. In other words, we start with the LP relaxation of
the model that lacks the cover inequalities that would prevent harvest opening size violations. The
branch-and-bound algorithm is instructed to stop whenever an LP sub-problem, say LPk (where
k indexes the sub-problems), is found with an objective value that is better than the best found
so far (a.k.a., the incumbent solution). In either case, the cutting plane algorithm checks if the
new solution contains any harvest opening size violations. We call this detection effort the ARM

Separation Problem. If a violation is found, the algorithm creates a constraint of form (7) to prevent
that specific violation and appends it to the problem. Otherwise, no action is taken. In either case,
the branch-and-bound algorithm proceeds until another potentially optimal solution is found. The
Separation Problem is invoked again and the process continues until no more violations are found
and all of the existing LP sub-problems are solved.

Formally, the ARM Separation Problem is defined as a modified version of Function (1). Let
Hk,p denote the set of management units m ∈ N such that xm,p = 1 in LPk. Then, the Separation
Problem for LPk is to evaluate if

⋃
p Λ+

k,p = {∅} for Γ(Mk,p, Amax) : Mk,p × Amax 7→ Λ+
k,p ∀p ∈ P,

where Mk,p = [mi, j] with i, j ∈ Hk,p. If Γ(Mk,p, Amax) returns {∅}, then LPk is ARM-feasible.
Otherwise, one constraint of type (7) needs to be written for each C ∈ Λ+

k,p and appended to LPk

and to the other active nodes. While both the domain and the image of Γ(Mk,p, Amax) are different
from Goycoolea’s Γ(M, Amax), what is important is that, typically, Mk,p b M, and as a result Mk,p

is much sparser than M. In other words, the units in Mk,p are much less likely to form contiguous
clusters than those in M. The computational implication of this, namely that evaluating function
Γ(Mk,p, Amax) is in most cases trivial compared to Γ(M, Amax), is critical to performance of the
proposed algorithm.

As mentioned earlier, we developed two different strategies for imbedding the ARM Separation
Problem in the branch-and-bound algorithm. In the first strategy (Algorithm 1), the Separation
Problem is invoked whenever a solution, fractional or not, is found to an LP sub-problem with
an objective value better than the incumbent’s. The branch-and-bound algorithm starts as usual.
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There is one active (or dangling) node, LP0 ∈ D, where D is the set of active nodes, and an empty
set of incumbent solutions (Z∗). The lower bound on the optimal objective value (z), is set to −∞.
Next we evaluate if D is empty. If it is, we check if we have an incumbent in Z∗. If we do, the
incumbent is optimal, otherwise the problem is infeasible. If D is not empty, another sub-problem,
LPk, is selected using the solver’s built-in variable selection strategies, and solved as an LP. If the
program is infeasible or if it is feasible but the solution has an objective value zk that is less than
the incumbent’s, then LPk is dropped from set D and another sub-problem is selected. Otherwise,
we evaluate Γ(Mk,p, Amax). If Γ(Mk,p, Amax) yields an empty

⋃
p Λ+

k,p, i.e., LPk is ARM feasible,
we check the integrality of LPk. If LPk is integral, we drop it from set D along with all the other
LP sub-problems that have an objective value less than or equal to zk. We identify LPk as the
incumbent and set z to be equal to zk. If LPk is fractional, we instruct the solver to branch on a
variable and create two LP sub-problems that are appended to D, replacing LPk. If Γ(Mk,p, Amax)
yields a non-empty

⋃
p Λ+

k,p, we append all sub-problems in D, including LPk, with constraints (7)
written for all C ∈ Λ+

k,p and p ∈ P. In other words, we add the path constraints as global cuts. We
also tested the option of adding the constraints to only LPk as local cuts, but this strategy proved
to be computationally inferior to global cuts. Once the cuts are appended to the dangling nodes,
the composition of set D is reassessed and the process continues in an iterative manner until no
more violations are found and set D becomes empty, or if the gap between the objective value of
the incumbent and the best node falls below a predefined threshold.

In the second strategy (Algorithm 2), the Separation Problem is invoked, i.e., Γ(Mk,p, Amax)
is evaluated only if the solution to an LP sub-problem with an objective value better than the
incumbent’s is integral. If LPk is fractional, we instruct the solver to branch on a variable and
create two new LP sub-problems replacing LPk in D as in the first strategy. If LPk is integral and
Γ(Mk,p, Amax) yields an empty

⋃
p Λ+

k,p, then LPk is ARM feasible and dropped from set D along
with all the other LP sub-problems that have an objective value less than or equal to zk. We identify
LPk as the incumbent and set z to be equal to zk. If Γ(Mk,p, Amax) yields a non-empty

⋃
p Λ+

k,p, the
algorithm proceeds as in the first strategy until another LP sub-problem is found with an objective
value better than the incumbent’s.

There is a tradeoff between the two strategies. The Separation Problem is less frequently in-
voked in the second than in the first strategy leading to potential time savings. However, the
identification of path constraints that cut off large amounts of fractional solution space might be
delayed or missed with the second strategy. We test both strategies.
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2.3. The computational experiment

Sixty hypothetical and eight real forest planning problems, including Pack Forest, were used
to test the performance of the cutting plane algorithms in comparison with the benchmark models.
We compared the formulation plus solution times (total times) and tested if the computational ad-
vantage of the cutting planes method was sensitive to different maximum clear-cut size restrictions.
We hypothesized that the method would perform better with increasing clear-cut sizes.

2.3.1. The test forests:

The hypothetical problems were generated using a program called MakeLand [26]. MakeLand
randomly created ten 300 and ten 500-unit forests and assigned age-classes to each of the units in
such a way so that the overall age-class distribution of each forest would be slightly over-mature
resembling a typical Pennsylvania hardwood forest. The age-class allocations were repeated three
times for each forest resulting in 60 problems.

The real forests included the 5,224-unit NBCL5 (New Brunswick, Canada), the 1,323-unit
Eldorado (California, U.S.) and the 1,019-unit Shulkell (Nova Scotia, Canada). The datasets as-
sociated with these forests were obtained from the University of New Brunswick’s Forest Man-
agement Optimization Site [14]. Four of the five remaining real forests were from Pennsylvania,
U.S.: the 32-unit Kittaning4, the 71-unit FivePoints, the 89-unit PhyllisLeeper and the 90-unit
BearTown. Lastly, the 186-unit Pack Forest was from Washington, U.S. The hypothetical forests,
plus Pack, Eldorado and Shulkell had only one forest type and site class. Kittaning4, FivePoints,
PhyllisLeeper and BearTown had five forest types and three site classes, while NBCL5 had six
forest types and only one site class. The size of the largest management units in each forest was
smaller than the most restrictive harvest opening size limit that was applied to that particular forest.
To achieve this, the units larger than 16.1 ha in Shulkell and larger than 20.23 ha in NBCL5 were
excluded. Units in NBCL5 without yield information in the FMOS database were also dropped.

2.3.2. Planning parameter settings:

Maximum harvest opening sizes of 40, 50 and 60 ha were imposed on the hypothetical prob-
lems, 40, 50, 60 and 80 ha on the four smallest real problems, 24.28, 32.37, 40.47 and 48.56 ha on
Pack Forest, 48.56, 60.70 and 72.84 ha on Eldorado, 40 and 60 ha on Shulkell and 21, 30 and 40 ha
on NBCL5. These restrictions are comparable to those used in earlier studies such as [18]. Other
critical planning parameters included the length of the planning horizon, which was set to 60 years
for the hypothetical problems, and to 50, 45, 40 or 25 years for the real problems. The length of
the planning periods was 10 years for each problem except for Eldorado, Shulkell and Pack where
it was only 5 years. We assumed that the forests regenerated in the same forest type and site class
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within one planning period after harvest. The minimum rotation age was different for each forest
but was constant across forest types and site classes with the exception of NBCL5 where it varied
based on forest type. The minimum average age of the forests at the end of the planning horizon
was set to be 50 years for Pack and 40 years for Eldorado, Shulkell, Kittaning4, FivePoints, Phyl-
lisLeeper, BearTown and for the hypothetical forests. In NBCL5, the ending age was set to be at
least one half of the minimum rotation age: 10, 15, 20, 25, 30 and 50 years for the six forest types,
respectively. The lower and upper bounds on the harvest volumes in a particular period except the
first were varied for each forest between 80 and 95%, and between 110 and 130%, respectively, of
that of the previous period.

2.3.3. Implementation:

We formulated and solved the Path, Maximal Clique-based Cluster Packing and Bucket models,
and ran the proposed cutting plane algorithms, using the Java programming language and IBM-
ILOG CPLEX v. 12.1 [19] Concert Technology (4-thread, 64-bit, released in 2009). A Power
Edge 2950 server was used for both model formulations and optimization. The server had four
Intel Xeon 5160 central processing units at 3.00Gz frequency and 16GB of random access mem-
ory (RAM). The operating system was MS Windows Server 2003 R2, Standard x64 Edition with
Service Pack 2 (MS Windows 2003). There were a few larger model instances that we formulated
on a more powerful machine, Power Edge R510 that had two Intel Xeon X5670 central processing
units at 3.00Gz frequency, with 32GB of RAM and MS Windows Server 2008 R2, Standard x64
Edition. These “larger” instances were the Bucket models for Shulkell at 24.3 ha Amax, Eldorado
at 72.8 ha and NBCL5 at 21, 30 and 40 ha, and the Path and the Maximal Clique-based Cluster
Packing models for Pack at 48.6 ha Amax. As it will be seen in the Results section, the fact that
for a few problems the formulation times were measured using the faster machine, had no impact
on our conclusions because these formulation times were still longer than those obtained with the
alternative models where the slower Power Edge 2950 was used.

Algorithm I [18], or, equivalently, the evaluation of Γ(M, Amax), was implemented in Java.
Hash tables and linked lists were used to store the intermediate results of enumeration and to
check for redundancies in an efficient manner. Algorithm I was not only used to formulate the
Path and the Maximal Clique-based Cluster Packing models but it was also used to solve the
ARM Separation Problem, Γ(Mk,p, Amax), in the proposed cutting plane algorithms. The maximal
clique enumeration and the Floyd-Warshall Algorithm (Eq. 26), that were needed for the Maximal
Clique-based Cluster Packing and the Bucket models, were also implemented in Java. Formulation
times did not include the times to calculate the revenue and volume coefficients.

As for mixed integer optimization, the solver CPLEX was instructed to terminate after 6 hours
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of run time or after a 0.05% optimality gap was reached, whichever happened first. Except for
the 1GB working memory limit, all other CPLEX parameters were left at their default settings.
The ARM Separation Problem was imbedded in both versions of the cutting plane algorithm using
CPLEX’s lazy constraint callback, and cut callback routines. Callbacks are user-defined sub-
routines that are implemented by CPLEX during optimization whenever certain conditions hold.
CPLEX invokes lazy constraint callbacks whenever a new solution, fractional or not, is found
with an objective function value that is better than the incumbent’s. In cut callbacks, the user
defines the conditions under which the sub-routine is invoked. We used lazy constraint callbacks
for the first (Algorithm 1) and cut callbacks for the second cutting planes strategy (Algorithm 2).
CPLEX was instructed to invoke the cut callbacks whenever an integral solution was found with
an objective function value better than the incumbent’s. All cuts were added as globally valid. We
experimented with adding the cuts locally, but found that many cuts had to be re-created repeatedly
during optimization leading to inefficiencies.

3. Results

Tables 1 and 2 contain details about the computational performance of the proposed cutting
plane method. These details include formulation and solution times, optimality gaps and the num-
ber and percent of path constraints that were used as cuts by the cutting plane method during
optimization. The column “Formulation time” lists only the Core (Eq. 2-6 and 8) formulation
times. Computing times associated with the detection algorithm were included in the ”Solution
times” column. Tables 3 and 4 compare the formulation and solution times that were achieved
by the cutting plane method with those of the original Path, the Maximal Clique-based Cluster
Packing and the Bucket models. The cluster enumeration times, which are part of both the Path
and Maximal Clique-based Cluster Packing formulation times, were listed separately in the second
column to show how significant this effort can be computationally. All results listed in the above
tables with respect to the cutting plane approach are from the first strategy (Algorithm 1) where the
ARM Separation Problem was invoked every time a potentially optimal solution, fractional or not,
was found by the branch-and-bound algorithm. While on average the second strategy (Algorithm
2) led to 13% better performance, it ran out of the 6-hour time limit in six, while it ran out of mem-
ory in three out of the sixty hypothetical problems. We never experienced any time or memory
limit issues with the first strategy.

Tables 1 and 3 display results about the eight real, while Tables 2 and 4 display results about
the sixty hypothetical forest planning problems. Since there were too many hypothetical problems
to display individually, only aggregate results are listed in Tables 2 and 4. The aggregate results
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include medians and first and third quartiles, which are cutoff values for the lowest 25 and 75% of
the test population in terms of performance metrics. The optimality gaps were not aggregated.

One key observation that can be made based on Tables 1 and 2 is that the number of path
constraints that were used as cuts by the cutting plane method was, in the vast majority of cases,
only a tiny fraction of the entire set of path constraints that are needed for the original Path Model.
The only exceptions were Kittaning4, FivePoints, PhyllisLeeper and the BearTown instances with
40 and 50ha max opening sizes, where, not surprisingly, the cutting plane method was not able to
outperform the original Path Model (Table 3). Another important observation is that the proportion
of path constraints always decreased as the maximum clear-cut size increased. This foreboded our
primary result, shown in Tables 3 and 4, that the proposed cutting plane algorithm outperformed
the other methods, sometimes by dramatic margins, as the maximum clear-cut size increased. It
is clear that formulation times for the Path and the Maximal Clique-based Cluster Packing models
were very sensitive to increasing maximum clear-cut sizes, while those of the Bucket model were
very sensitive to the increasing number of units. Considering Shulkell at 24.3 ha max opening
size, or Eldorado at 72.8ha, while the Path or the Maximal Clique-based Cluster Packing models
required 2-3 days to complete the formulation and the optimization process, the proposed cutting
plane method found a solution within the predefined 0.05% optimality gap in 3 minutes for the
former and in 71 minutes for the latter instance.

The advantage of the cutting plane method was even more dramatic for Pack Forest at the 40.5
or 48.6 ha max opening sizes. Of the 924,133 path constraints that are needed for the full Path
Model at the 48.6 ha opening size, which is the legal limit in Washington, only 30 (0.00325%)
had to be used by the cutting planes method to find a feasible solution within 0.16% of optimality
(Table 1). At 40.5 ha, only 54 of the 170,232 constraints (0.0317%) were necessary. The huge
difference in the number of constraints that had to be used led to massive savings in formulation
time. While formulating the core Path Model, which is all what is needed for the cutting planes
method, took only 1.66 seconds regardless of opening size, the full Path and Maximal Clique-based
Cluster Packing Models each took more than 60 days for the State’s 48.6 ha limit and they took
almost 2 days for the 40.5 ha limit to formulate (Table 3). Formulation times were very reasonable
at 2-3 minutes for the Bucket Model since Pack Forest had only 186 units. However, in terms of
optimality gaps (none of the models solved to the target 0.05% gap within 6 hours), the Bucket
Model performed far worse than the proposed cutting planes method and the other benchmarks
(Table 3). At 0.34 and 0.16%, respectively, the cutting planes method achieved the best gaps
for the 48.6 and the 40.5 ha opening size instances at Pack Forest. Of note is that the Maximal
Clique-based Cluster Model did not produce any feasible solutions at 48.6 ha.
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As for the relative performance of the Bucket Model vs. the cutting plane method, the latter
did always better in real problems. The advantage of cutting planes was particularly dramatic in
cases where the number of units in the forest was large as in NBCL5 (Table 3).

To further contrast how the four methods performed with respect to the hypothetical problems,
Fig. 2 maps out trend lines for solution and formulation plus solution times on natural logarithmic
scales as functions of increasing clear-cut size. The lines were derived from median formulation
and solution times. The top graphs show that solution times for the Path and the Maximal Clique-
based Cluster Packing models increased more than polynomially with the maximum clear-cut size.
On the other hand, solution times for the Bucket method increased only slightly, and they peaked
in the middle of the clear-cut size range for the cutting plane method. If only the solution times
are considered, the cutting plane method did not perform better than the other models. Moreover,
the medians obtained with the Bucket model were always below those of the cutting plane method.
This is not surprising since solution times include formulation times for the cutting plane method.
The two cannot be separated due to the integrated nature of the algorithm. If formulation plus
solution times are compared, the result is very different (bottom graphs). Total times for the Path
and the Maximal Clique-based Cluster Packing models increased at a rate faster than solution times
as a function of increasing maximum harvest opening size. At the extreme, in the 500-unit, 60ha
category, the median total time was one magnitude higher than the median solution time for these
two models. In 5 out of 6 categories (bottom graphs), median total times for the Bucket model
were greater than that of the cutting plane method. Except for the 300-unit, 40 ha category, where
the median for the Bucket model was only marginally smaller at 553.46s than that of the cutting
plane at 555.44s, all the other problems formulated and solved faster with the new method.

4. Discussion and conclusions

Overall, our tests showed that the proposed cutting plane method can be very efficient in for-
mulating and solving spatially-explicit harvest scheduling problems with area restrictions if the
maximum clear-cut size is large relative the average size of the units or if the number of units is
high, or both. The greater the number of units, or the larger the maximum harvest opening size, the
cutting plane method is more likely to outperform the other models. While total times for the Path,
the Maximal Clique-based Cluster Packing and the Bucket models exhibited a robust increasing
trend as a function of maximum harvest opening size or as a function of the number of units, the
total time for the cutting plane method either decreased or if it increased, it increased at a sub-linear
rate. With the exception of Eldorado and the four smallest problems (Kittaning4, FivePoints, Phyl-
lisLeeper and BearTown), where the relative number of path constraints used as cuts was high,
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total times with the cutting plane method were always the lowest at the largest clear-cut size. This
trend was expected since a relaxation of harvest opening size should lead to fewer violations in
potential solutions. Fewer violations require fewer path constraints to be generated by the cutting
plane method, which in turn could result in shorter computing times.

The management planning implications of these time savings is best illustrated by Pack Forest,
an actual forestry organization. The biggest part of the opportunity costs of acquiring FSC certifi-
cation at Pack Forest comes from foregone timber revenues. These revenues can only be estimated
by finding a harvest schedule that maximizes profit subject to regulations that are present in the
absence of FSC certification. Since state regulations include a 48.6 ha limit on maximum clear-cut
size, whatever model is used to find a profit maximizing harvest schedule needs to take this re-
striction into account. Of the three models that were available from the forest planning literature,
only two, the Path and the Bucket Models were able to find feasible harvest schedules within 6
hours of solution time (Table 3). The failure of the Maximal Clique-based Cluster Packing Model
to find feasible solutions was not completely unexpected as [18] have already predicted that ARM
instances where the feasible clusters average at or above 10 units in cardinality “seem largely in-
tractable” (p161). The feasible clusters in the 48.6 ha instance of Pack Forest average 10.27. Of
the two models that did find feasible solutions within 6 hours, the Path Model required more than
60 days to formulate. The cutting plane method, which requires only 1.66 seconds of formulation
time, can be used to run hundreds of sensitivity analyses during this timeframe to investigate the
impact of such important but uncertain factors as wood prices or timber yields. While the Bucket
Model formulated the 48.6 ha instance in only 176 seconds, it found a solution only within 1.01%
of optimality. Although the 1.01% does not seem much, it amounts to about one year’s worth of
salaries for one of the Pack Forest workers. Again, the computational advantage of the cutting
plane method over the Bucket Model is even more pronounced in larger problems such as NBCL5,
Shulkell and El Dorado.

An interesting observation in NBCL5 and the hypothetical problems, is that there is a peak in
total times for the cutting plane approach in the middle of the maximum clear-cut size range (Table
1 and 2). We speculate this might be due to tradeoffs between the difficulty of solving the ARM
Separation Problem and the cost of adding cuts to active nodes in the branch-and-bound process.
As Amax increases relative to the average size of the units, the ARM Separation Problem becomes
slightly harder to solve because a larger number of units is needed to construct minimally infeasible
clusters. As the opening size further increases, however, this added computational difficulty is
eventually offset by the lack of units that can possibly form large enough clusters.

It might be possible to further improve the efficiency of the proposed cutting plane approach.
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We tested only two strategies for imbedding the ARM Separation Problem in the branch-and-bound
algorithm. The two differed only in terms of when the Separation Problem was invoked. While in
the first strategy, it was invoked whenever a solution, fractional or not, was found with an objective
value that exceeded that of the incumbent’s, in the second strategy, it was invoked only when the
solution candidate was all-integral. Many other possible strategies exist not only in terms of when
the Separation Problem is invoked but also in terms of how exactly the Separation Problem is
defined. We defined the set of input variables, Hk,p, for function Γ(Mk,p, Amax), which served as a
tool to solve the Separation Problem, based on whether their optimal values in LPk were equal to
one. An equally valid strategy would be to define Hk,p based on whether the input variables took
strictly positive values in LPk. If they did, they would be included in Hk,p, otherwise they would
not. While this strategy would make the Separation Problem harder to solve because of the larger
input size, it might allow the identification of stronger cuts early in the optimization process.

As a last note, it is important to emphasize that the value of new ARM methodologies is not
restricted to timber management. Apart from potential applications in the radio transmission prob-
lem [17], the ARM can be used to design prescribed burns or other types of “treatment” units to
minimize the risk of catastrophic wildfires and pest infestations in agricultural, grass and forest
lands. The contiguous size of the burn or treatment units is typically restricted not only because
of operational, safety and economic reasons, but also because the ultimate goal is often to create
a landscape structure that is more resilient to future fires and pests [8]. This can be best achieved
with a fire or treatment mosaic of burned (treated) and unburned (untreated) areas [8]. Spatial op-
timization of land-use patterns in managed landscapes [29] is yet another area where the ARM can
come handy to promote the spatial diversity of landscape elements such as farms of various crops,
grasslands and forests.

Being a generalization of the Stable Set Problem (SSP), the ARM can also be used in other
graph theoretical applications of the SSP where some dependence (connectivity) among the nodes
is allowed. One example is portfolio optimization where financial instruments on the stock market
can be represented as nodes and correlations among instruments with respect to price movements
or liquidity can be represented as edges [5, 6]. Finding large independent portfolios in a market

graph is problematic due to the globalization of the stock market [5]. Thus, the ability to select
a pair of instruments that are correlated could be beneficial as long as the covariance (risk) of
the pair does not exceed the tolerance of the investor. This is where ARM methodologies, the
proposed cutting plane algorithm in particular, can be useful since the market graph is large and
risk tolerance varies among investors.
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Algorithm 1 The ARM Branch-And-Cut Algorithm with Γ(Mk,p, Amax) invoked at each solution
candidate. LPk represents linear programming sub-problem or node k, where k = 0 represents the
root node. Set D denotes the set of active, or dangling nodes, and Z∗ denotes the set of incumbent
solutions. Objective function value z is the current best primal bound and zk represents the objective
value corresponding to node k.

Initialize: z← −∞, Z∗ ← {∅}, D← {LP0}

while D , {∅} do
currentNode← select element from D {strategy depends on the solver}
currentSolution← solveLP(currentNode)
zk ← objectiveValue(currentNode)
if currentSolution is feasible and zk > z then

Λ+
k ←
⋃

p Γ(Mk,p, Amax) {evaluate the ARM Separation Problem ∀p ∈ P}
if Λ+

k , {∅} then
for all l ∈ D and C ∈ Λ+

k do
append LPl with constraints

∑
m∈C xm,t ≤ |C| − 1

end for
else if currentSolution is integral then

Z∗ ← currentSolution
z← zk

for all j ∈ D do
z j ← objectiveValue(LP j)
if z j ≤ z then

D← D \ {LP j}

end if
end for

else
D← D ∪ {LP|D|+1} ∪ {LP|D|+2} {branch and create two nodes from currentNode}

end if
else

D← D \ {currentNode}
end if

end while
if Z∗ = {∅} then

problem is infeasible
else

Z∗ is optimal
end if
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Algorithm 2 The ARM Branch-And-Cut Algorithm with Γ(k,p, Amax) invoked at only integral solu-
tions. LPk represents linear programming sub-problem or node k, where k = 0 represents the root
node. Set D denotes the set of active, or dangling nodes, and Z∗ denotes the set of incumbent so-
lutions. Objective function value z is the current best primal bound and zk represents the objective
value corresponding to node k.

Initialize: z← −∞, Z∗ ← {∅}, D← {LP0}

while D , {∅} do
currentNode← select element from D {strategy depends on the solver}
currentSolution← solveLP(currentNode)
zk ← objectiveValue(currentNode)
if currentSolution is feasible and zk > z then

if currentSolution is integral then
Λ+

k ←
⋃

p Γ(Mk,p, Amax) {evaluate the ARM Separation Problem ∀p ∈ P}
if Λ+

k , {∅} then
for all l ∈ D and C ∈ Λ+

k do
append LPl with constraints

∑
m∈C xm,t ≤ |C| − 1

end for
else

Z∗ ← currentSolution
z← zk

for all j ∈ D do
z j ← objectiveValue(LP j)
if z j ≤ z then

D← D \ {LP j}

end if
end for

end if
else

D← D ∪ {LP|D|+1} ∪ {LP|D|+2} {branch and create two nodes from currentNode}
end if

else
D← D \ {currentNode}

end if
end while
if Z∗ = {∅} then

problem is infeasible
else

Z∗ is optimal
end if
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Figure 1: Spatially explicit harvest scheduling models optimize the binary harvesting decisions for
each forest stand (depicted as polygons on a map) over a set of planning periods. The fig-
ure also shows examples of feasible and minimally infeasible clusters and clear-cuts (or buckets)
whose complete sets are required for alternative formulations the ARM. Sets {13,14,43,50}, {24,38} and
{18,31,40} are examples of minimally infeasible clusters, used in the Path Formulation [27], whereas
{13},{14},{18},{24},{31},{38},{40},{43},{50},{13,50},{14,43},{14,50},{13,14,50},{14,43,50},{18,31} or {31,40} are feasi-
ble clusters used in the Maximal Clique-based Cluster Packing Model [17]. Finally, potential clear-cuts used in [9]
include all the feasible clusters plus spatially disjoint assignments such as {13,14} or {43,50}.
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Figure 2: Comparing solution time and total (formulation plus solution) time of the four ARM approaches based on
the hypothetical problems. Data points represent the trend in the median values of Table 4.
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Table 1: Computational performance of the ARM Cutting Planes - real forests
Problem ID/ Formulation Solution Optimality Number of Percent of path

Max clear-cut size time (s) time (s) gap (%) cuts used constraints used
Pack, |N|=186

24.3ha - 0.29 145 1.84
32.4ha 1.66 - 0.32 79 0.23
40.5ha - 0.16 54 0.03
48.6ha - 0.34 30 0.00

Shulkell, |N |=1,019
16.1ha 2.03 183.24 0.03 56 0.11
24.3ha 179.68 0.04 28 0.01

Eldorado, |N |=1,363
48.6ha 4,628.30 0.03 1,471 2.72
60.7ha 2.44 3,265.15 0.05 1,228 0.88
72.8ha 4,298.62 0.05 1,866 0.36

NBCL5, |N|=5,224
21ha 443.13 0.05 1,343 4.67
30ha 4.17 1,081.20 0.04 1,000 1.38
40ha 159.36 0.02 965 0.38

Kittaning4, |N |=32
40ha 28.37 0.05 64 43.54
50ha 1.36 13.91 0.05 31 18.79
60ha 22.48 0.05 28 14.58
80ha 58.19 0.05 15 4.89

FivePoints, |N |=71
40ha 36.38 0.05 127 28.22
50ha 1.23 7.42 0.05 93 14.24
60ha 19.94 0.05 88 9.35
80ha 11.88 0.04 52 2.82

PhyllisLeeper, |N|=89
40ha - 0.09 483 83.71
50ha 1.17 - 0.09 631 66.35
60ha - 0.06 653 57.99
80ha - 0.07 594 24.54

BearTown, |N |=90
40ha - 0.11 401 82.34
50ha 1.45 - 0.07 452 68.38
60ha - 0.18 582 65.91
80ha - 0.10 724 39.56
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Table 2: Computational performance of the ARM Cutting Planes - hypothetical forests
Problem ID Formulation Solution Number of Percent of path

time (s) time (s) cuts used constraints used
THIRD QUARTILE (cutoff for the lowest 75% of the data)
300-stand problems

40ha 1,307.01 399.25 3.30
50ha 1.11 2,030.89 359.50 0.84
60ha 1,683.81 244.25 0.22

500-stand problems
40ha 2,489.13 484.25 1.80
50ha 1.20 2,998.58 390.25 0.43
60ha 2,288.71 270.75 0.13

MEDIAN (center - 50% - of the distribution)
300-stand problems

40ha 554.33 347.00 2.41
50ha 1.11 789.04 251.50 0.67
60ha 537.79 167.50 0.16

500-stand problems
40ha 1,302.44 410.00 1.15
50ha 1.17 1,613.98 303.00 0.30
60ha 1,121.93 213.00 0.08

FIRST QUARTILE (cutoff for the lowest 25% of the data)
300-stand problems

40ha 386.92 289.00 1.90
50ha 1.09 508.74 202.25 0.50
60ha 304.68 134.50 0.11

500-stand problems
40ha 792.64 346.00 0.64
50ha 1.17 940.18 229.75 0.17
60ha 626.90 127.00 0.05
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Table 3: Formulation and solution times - real forests

Problem Cluster Path Cluster Packing Bucket CP
ID enumeration formulation solution formulation solution formulation solution total

(time in seconds / % optimality gap at 6 hrs)
Pack, |N |=186

24.3ha 31.59 36.53 (0.21%) 35.00 (0.44%) 104.78 (1.83%) (0.29%)
32.4ha 2,731 2,846 (0.20%) 2,751 (0.58%) 135.68 (0.95%) (0.32%)
40.5ha 162,593 164,079 (0.44%) 162,726 (0.92%) 121.32 (0.86%) (0.16%)
48.6ha 5,302,395c 5,302,397c (0.55%) 5,303,282c - 176.00 (1.01%) (0.34%)

Shulkell, |N |=1,019
16.1ha 546.85 548.87 42.837 586.52 246.45 68,265 795.09 185.27
24.3ha 164,059 164,062 515.09 164,202 16,143 24,555c 4,079 181.70

Eldorado, |N|=1,363
48.6ha 1,497 1,500 20.16 1,516 32.23 56,253 (0.08%) 4,631
60.7ha 20,158 20,160 75.61 20,144 115.92 64,384 (0.14%) 3,267
72.8ha 234,216 234,219 3,518 233,879 530.95 39,149c (0.56%) 4,301

NBCL5, |N|=5,224
21ha 143.70 182.14 11.23 167.81 21.27 210,717c 532.14 447.30
30ha 2,626 2,931 22.63 2,825 86.63 789,070c (0.07%) 1,085
40ha 73,558 83,743 79.78 74,510 12,748 949,889c 19,516 163.53

Kittaning4, |N |=32
40ha 0.05 1.42 13.48 1.80 162.23 0.44 235 29.73
50ha 0.02 1.38 8.92 1.66 473.14 0.22 2,725 15.27
60ha 0.02 1.38 4.38 1.41 1,164.09 0.23 13,322 23.84
80ha 0.02 1.38 13.81 1.16 138.88 0.30 (0.27%) 59.55

FivePoints, |N|=71
40ha 0.09 1.34 4.03 1.78 210.25 2.84 6.97 37.61
50ha 0.08 1.34 0.56 1.25 461.71 3.47 7,075 8.66
60ha 0.08 1.33 0.78 1.29 229.89 4.47 10,342 21.17
80ha 0.34 1.59 0.33 1.62 2,426.62 6.64 35 13.11

PhyllisLeeper, |N |=89
40ha 0.05 1.23 (0.07%) 1.41 (0.16%) 2.49 (0.18%) (0.09%)
50ha 0.05 1.22 (0.08%) 1.19 (0.16%) 3.67 (0.11%) (0.09%)
60ha 0.06 1.23 19,553.34 1.51 (0.15%) 4.83 (0.21%) (0.06%)
80ha 0.23 1.44 1,796.89 1.51 (0.13%) 9.79 (0.20%) (0.07%)

BearTown, |N|=90
40ha 0.03 1.48 (0.11%) 1.16 (0.18%) 3.08 (0.21%) (0.15%)
50ha 0.03 1.48 (0.07%) 1.55 (0.24%) 3.39 (0.14%) (0.12%)
60ha 0.02 1.48 (0.18%) 1.32 (0.14%) 4.11 (0.38%) (0.14%)
80ha 0.08 1.56 (0.10%) 1.95 (0.24%) 6.19 (0.51%) (0.06%)

: best total time/ optimality gap
-: no feasible solution within 6 hrs
c: formulated on Power Edge R510
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Table 4: Formulation and solution times - hypothetical forests

Problem Cluster Path GMU Bucket CP
ID enumeration formulation solution formulation solution formulation solution total

(time in seconds)
THIRD QUARTILE (cutoff for the lowest 75% of the data)
300-stand problems

40ha 9.40 10.50 98.02 11.57 146.32 364.14 397.64 1,308.15
50ha 213.77 214.86 276.10 221.90 403.19 1,877.06 1,079.39 2,032.00
60ha 5,634.02 5,635.13 963.78 5,656.08 2,579.94 3,715.71 776.25 1,684.96

500-stand problems
40ha 348.25 349.43 223.72 358.21 302.66 10,773.57 241.37 2,490.31
50ha 8,094.98 8,096.14 833.70 8,131.70 2,099.76 20,484.90 680.96 2,999.75
60ha) 160,339.08 160,340.25 5,467.03 160,536.04 20,188.99 30,855.36 1,889.09 2,289.58

MEDIAN (center - 50% - of the distribution)
300-stand problems

40ha 7.40 8.51 62.92 9.51 100.91 330.11 223.35 555.44
50ha 146.41 147.52 224.99 151.54 251.88 1,726.40 257.46 790.16
60ha 2,656.64 2,657.73 550.03 2,671.16 1,236.04 3,472.05 411.23 538.91

500-stand problems
40ha 87.48 88.66 107.32 93.00 215.83 7,343.02 203.69 1,303.64
50ha 1,799.79 1,800.96 387.94 1,814.19 930.21 15,978.36 376.56 1,615.20
60ha 34,389.50 34,390.69 2,524.52 34,456.30 7,300.03 25,071.03 776.45 1,123.10

FIRST QUARTILE (cutoff for the lowest 25% of the data)
300-stand problems

40ha 6.38 7.46 35.82 8.69 59.74 293.99 130.18 388.02
50ha 121.67 122.77 122.85 127.44 191.84 1,412.86 159.75 509.85
60ha 2,064.02 2,065.12 268.48 2,079.97 1,010.41 3,222.42 339.18 305.77

500-stand problems
40ha 26.39 27.58 56.03 29.90 126.38 6,191.18 117.33 793.81
50ha 596.25 597.45 172.18 609.30 504.89 13,419.41 256.26 941.38
60ha 6,756.09 6,757.28 791.98 6,786.41 2,428.95 20,344.91 357.69 626.90
: best total time
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