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systems enact the values of the individuals and societies that they serve. Addressing this question in 

a principled fashion requires technical knowledge of recommender design and operation, and also criti- 
cally depends on insights from diverse fields including social science, ethics, economics, psychology, pol- 
icy, and law. This article is a multidisciplinary effort to synthesize theory and practice from different 
perspectives, with the goal of providing a shared language, articulating current design approaches, and 
identifying open problems. We collect a set of values that seem most relevant to recommender systems 
operating across different domains, and then examine them from the perspectives of current industry 
practice, measurement, product design, and policy approaches. Important open problems include multi- 
stakeholder processes for defining values and resolving trade-offs, better values-driven measurements, recom- 
mender controls that people use, non-behavioral algorithmic feedback, optimization for long-term outcomes, 
causal inference of recommender effects, academic-industry research collaborations, and interdisciplinary 
policy-making. 

CCS Concepts: • Information systems → Recommender systems; • Human-centered computing →
Collaborative and social computing theory, concepts and paradigms ; HCI design and evaluation 

methods; • Social and professional topics → Governmental regulations ; 

Additional Key Words and Phrases: Recommender systems, value-sensitive design, technology policy 
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 INTRODUCTION 

ecommender systems are the algorithms which select, filter, and personalize content across so-
ial media [ 195 ], news aggregators [ 79 ], music and video streaming services [ 155 , 389 ], online
hopping [ 210 ], online ad targeting [ 387 ], and other systems. As such, their positive and negative
ffects on individuals and societies have been extensively theorized and studied. In the context
f social media recommendation, there has been mixed evidence regarding both positive and
egative effects on adolescent well-being [ 266 ], polarization [ 6 , 16 ] and news consumption [ 118 ].
n news recommender systems, diversity of opinion and content sourcing is a major concern
 33 , 150 ]. Recommender systems used to promote job openings may be discriminatory if they
o not consider the balance of distribution across legally protected user attributes [ 196 ]. Product
ecommendations used for online shopping could shift large-scale behavioral patterns with
ignificant economic, environmental, or social effects [ 137 ]. Even systems designed purely for
ntertainment, such as film and music streaming services, must consider the fair allocation of
ttention to the artists who create content [ 222 ]. One overarching question across all of these con-
exts is, how can we make recommender systems enact the values of the individuals and societies that
hey serve ? 

This article is an interdisciplinary, multi-stakeholder effort to define a common language and
eview the current state-of-the-art for addressing problems related to designing and operating rec-
mmender systems in support of a wide array of human values. We proceed by proposing a set of
elevant values based on a synthesis of previous work and refined through a cross-sector expert
orkshop. Based on this set of values, we then review current industrial practice and emerging de-

ign techniques for building value-aligned recommender systems. This is a wide-ranging exercise
n value-sensitive design [ 122 ], which we undertake by synthesizing knowledge from a variety
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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f perspectives including computer science, ethics, economics, psychology, sociology, journalism,
hilosophy, and law. Although any inquiry into values brings up deep theoretical questions, our
rientation is fundamentally practical: we want to know what can be done today, or in the near
uture, by those who build and operate contemporary large-scale recommenders. 

We use the term “recommender systems” to focus on the core problem of personalized con-
ent selection across many domains. Recommender systems often operate without an explicit user
uery, though the user may also ask for more tailored recommendations (e.g., “politics podcast”).
his contrasts with search functionality which requires an explicit query and where results tend

o be much less personalized [ 74 , 190 , 199 ]. Social media is a major application of recommender
ystems, but we note that the two are not synonymous, and the effects of social media depend
n many other design choices including content moderation and other ways of finding content.
e focus primarily on recommenders for social media, news content, and entertainment stream-

ng services. However, many of the issues and approaches we highlight are broadly applicable to
ther important categories of recommender systems, including online shopping, targeted adver-
ising, recruitment, healthcare, and education. 

There are several widely used frames for discussing the normative implications of AI systems,
ost of which apply to our narrower context of recommender systems. “Alignment” is concerned
ith ensuring that AI systems enact the intentions of its designers and of its users despite the

mpossibility of specifying the correct action in all possible cases [ 141 ] and provides us with the
anguage of “value alignment.” “Fairness” or “bias” is primarily concerned with the distribution of
enefits and harms between people or groups [ 64 , 99 ]. “Integrity” refers to identifying and moder-
ting content that violates platform policies for a variety of reasons, including obscenity, copyright,
riminal activity, and misinformation [ 142 ]. “Well-being” is an umbrella term for a wide variety
f sociological measures used across sectors including government, public health, and research,
hich are starting to be applied to AI systems [ 291 ]. There is a body of work on the “ethics” of

ecommender systems [ 226 ]. The potential effects of AI systems have also been analyzed within
 “human rights” framework [ 89 ]. There is substantial overlap between these categories, each of
hich encompasses a range of more specific concerns such as misinformation [ 114 ], polarization

 321 ], or addiction [ 7 ]. 
Rather than trying to reconcile these diverse frameworks, we take all of these to be concerned

ith values . We draw on the field of value-sensitive design [ 122 ] to define values as “what a per-
on or group of people consider important in life” [ 40 : 1 ]. Building real systems requires both deep
echnical practice and grounding in the realities of diverse human lives, including an understand-
ng of the actual effects of deployed recommenders. Furthermore, values and our understanding
f them are constantly evolving, so the whole exercise depends on moral and philosophical reflec-
ion. Therefore, building human values into recommender systems requires a mix of conceptual,
mpirical, and technical work [ 121 ]. 

Our focus is on existing or near-future techniques and current industrial practice, because we
ant to ensure that this work is applicable to the developers of large commercial recommender

ystems. This article contributes to previous work by answering three main research questions: 

• What human values are most relevant to the design and operation of recommender sys-
tems? We answer this by reviewing previous compilations, and then gathering structured
feedback from a specific set of stakeholders: experts in academia, civil society, and industry.

• What organizational processes might be used to encode values into production recom-
mender systems? We answer this by proposing an idealized version of current industrial
practice, drawing on public reports and the authors’ own experience at several platforms. 
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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• What specific software designs might support the values identified above? We answer this
with a synthesis of existing and emerging approaches to item ranking algorithms and rec-
ommender user interfaces. 

The article is structured as follows. Section 2 reports our work identifying values and summa-
izes the state of research and practice around each, including the empirical effects of existing rec-
mmender systems. Section 3 summarizes current industry practice, including the design of con-
emporary recommenders and a widely used framework for implementing values in commercial
ecommender systems. Section 4 takes up the challenges of measuring values in practice, includ-
ng issues around operationalization and data sources. Section 5 synthesizes previous published
ork in recommender design that is relevant to implementing these values. Section 6 discusses
olicy approaches that might incentivize the implementation of these values. Section 7 concludes
y listing major open problems. 

 VALUES FOR RECOMMENDER SYSTEMS 

ur first research question is, what values are applicable to recommender systems? We did not aim
t creating a comprehensive list of all relevant values (which is probably not possible). Instead,
ur goal was to ground the many discussions happening in industry, academia, and policy in a
easonably broad set of values so progress can be made. 

We began by searching for previous compilations of values, issues, and risks relevant to
ither recommenders in particular or AI systems in general. We found four sources that were
rimarily compilations: a survey of AI ethics policy documents [ 116 ], a large user research project
ndertaken by the BBC [ 183 ], a compilation of AI-relevant well-being metrics [ 161 ], and an IEEE
rocess for ethical system design [ 162 ]. We extracted and combined these lists to produce an
nitial set of values. 

One of the questions that arises when assessing relevant values is “valuable to whom?” Recom-
ender systems are fundamentally multi-stakeholder in nature, as they have effects on consumers,

reators, platforms, and non-users including society in general [ 1 ]. There are also fairness consider-
tions that apply across different subgroups [ 99 ] and cultural considerations that apply in different
arts of the world. Therefore, we extended our initial list through a multi-stakeholder approach. 
In an effort to include values relevant to a wide variety of stakeholders, we gathered input

hrough the Partnership on AI ( PAI ), a global non-profit partnership of roughly 100 academic,
ivil society, industry, and media organizations working towards positive outcomes from AI for
eople and society. We put out a broad invitation to people from these organizations to attend
 discussion of values in recommender systems, and approximately 40 people responded. At the
ubsequent workshop, these participants discussed our initial list of values in small groups to
urther develop their conception of how values apply in recommender systems. 

Of the 29 people who identified themselves in a pre-workshop survey, 14 were from civil society,
 were from industry, and 7 were from academic institutions [ 202 ]. Almost all workshop partic-
pants were based in the US. Anticipating this bias, we included a set of global “techno-moral
irtues” [ 350 : 15 , 120 ] as well as the feminist ethic of care [ 309 ] and philosophical traditions in
frica that emphasize the relationships and bonds among people [ 243 ]. We asked each participant

o provide further citations to any literature they considered relevant. We combined our initial list
erived from the compilations above, all values discussed in transcripts of the workshop delibera-
ions, the values mentioned in all participant-submitted references, and anything mentioned in a
rief post-workshop survey. The authors then refined this long list by merging and editing entries
hrough several rounds of reviews to produce our final list. 

This approach of literature review followed by expert deliberation complements attempts to
rticulate the values that apply to recommender systems through user research. We note that one
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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f our initial compilation sources [ 183 ] is a large user survey and that our list of values includes
hose found in qualitative recommender user studies such as [ 68 ]. We also note that there is much
verlap with the UN Sustainable Development Goals [ 341 ], in particular, good health and well-
eing, quality education, decent work and economic growth, industry and innovation, reduced
nequalities, climate action, peace, justice, and strong institutions. 

The goal of this exercise was not to arrive at a set of global, universally applicable values, but to
ist some of the key values that have been identified to be particularly relevant to various stake-
olders in various recommender contexts. The main challenge in devising our list was coming up
ith a set of definitions at an appropriate level of granularity that together cover a wide set of

verlapping and often vague concepts. We aimed for a level of abstraction between overly general
tatements (e.g., “do good”) and specific formulations (e.g., particular metrics). Our list is presented
n Table 1 . In Appendix A we expand this table to include citations for definitions, example indi-
ators or metrics for each value, and example design changes which could promote that value. 

By nature, there are tensions between values, and those tensions lead to many of the difficulties
n operationalizing them in recommender systems. For example, the value of free expression is in
ension with the value of safety because if we allow users to say anything they want on social
edia, others may feel threatened. As another example, privacy can be in tension with usefulness.

rivacy suggests that a platform should not try to infer whether a user might have a particular
isease, even though early information and intervention might be helpful to them. 
There are tradeoffs not just between values, but between different people and groups of peo-

le. For example, if we exclusively focus on the well-being of individuals, society may suffer [ 254 ].
ther tensions arise because recommenders must simultaneously serve several types of stakehold-

rs including users, content producers, platforms, and non-users, as studied in the field of multi-
takeholder recommendation (Abdollahpouri et al., 2020). Values can also operate on varying time
cales. Giving users entertaining content may satisfy their short-term needs, but providing more
nformative content may have longer-term benefits. Having informed users may also be a societal
alue, and individual values often operate on a shorter timescale than societal values. 

Many of the values in our list are closer in nature to instrumental goals for an AI system,
y which higher-order values are achieved. For example, the bioethics principles of respect for
utonomy, beneficence , and justice are often considered primary, without resorting to other val-
es for justification [ 56 ]. By contrast, other values seem to derive much of their importance be-
ause they contribute to these principles, including privacy, agency, control, transparency, accessi-
ility/inclusiveness, and accountability . 

Rather than discussing each value individually, we approach them through a number of themes
hat characterize many discussions on these topics: usefulness, well-being, legal and human rights,
ublic discourse, safety, and societal values. 

.1 Usefulness 

latforms use recommender systems because they believe them to be useful to users, content cre-
tors, and themselves. The most straightforward distinction between recommendation and search
s that a recommender can suggest items without an explicit query, which is valuable in a variety
f contexts. For example, news items cannot be selected through user queries alone, because the
ser is unaware of new events. While the value of presenting a previously unknown post, article,
erson, movie, song or ad varies, all of these can lead to positive and novel outcomes for people.
odern recommender systems have their roots in collaborative filtering systems in the 1990s, and

he need for intelligent filtering has only increased since then as the pool of available informa-
ion has exploded. We call this value “usefulness ” to distinguish it from “utility” which has a more
echnical meaning from economics (discussed in Section 5.3.1 ). 
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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Table 1. Our List of Values Relevant to Recommender Systems. 

See Appendix A for Detailed Definitions, Metrics, 

and Related Design Approaches 

Theme Value 

Usefulness 
Usefulness 
Control 
Agency, Autonomy, Efficacy 

Well-being 

Well-being 

Connection 

Physical health 

Mental Health 

Community, Belonging 

Recognition, Acknowledgment 
Self-expression, authenticity 

Care, Compassion, Empathy 

Self-actualization, Personal Growth 

Inspiration, Awe 
Entertainment 

Legal and Human 

Rights 

Privacy 

Freedom of Expression 

Liberty 

Fairness, Equality, Equity 

Accessibility, Inclusiveness 
Transparency and Explainability 

Accountability 

Public Discourse 

Accuracy (Factuality) 
Diversity 

Knowledge, Informativeness 
Civic Engagement 
Tolerance, Constructive Discourse 

Safety Safety, Security 

Societal values 

Progress 
Labor 
Tradition, History 

Environmental Sustainability 

Duty 
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A

Usefulness is closely related to control , which we take to mean that users should be able to select
hich content they are seeing, the type and degree of personalization (if any), and understand

he processes that determine what they see. In large part, this requires that platforms provide
eatures to support such choices (e.g., playlists on a music streaming service or topic selection
n a news service) though there are also important questions about community governance [ 201 ,
85 ]. On social networks, interfaces for describing which posts to see are particularly complex
iven the breadth of available content. Note that feeling in control and actually having control are
ifferent. Placebo controls may increase user satisfaction without offering any actual improvement
 348 ] while users may not perceive even large effects of functional controls [ 207 ]. Agency is a
imilar value, but we use it to refer to control over other elements of the users’ lives, not just the
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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ecommender. For example, a recommender could assist a user with education [ 81 ] or direct them
o job opportunities. 

There are complex tensions between agency and control and other values, as users might make
hoices that harm themselves or others. This grounds out in concrete ethical questions such as: if it
s possible to infer that someone has an eating disorder [ 377 ], and if there is research indicating that
iewing dieting videos leads to bad outcomes for such a person, is it reasonable or even obligatory
o thwart their expressed intention to see such material? 

Recommender systems can also be useful to both content creators and platforms. While rec-
mmenders are a commercially important technology, algorithmic content optimization does not
ranslate directly into revenue in many contexts [ 169 ]. For example, subscription services must
aximize user retention, while current recommender designs struggle with long-term outcomes.
irect optimization for revenue, or more precisely profit, is best developed in the context of online

hopping [ 80 , 83 , 168 , 210 ]. Even for ad-driven services, content personalization and ad selection
re often handled by different recommenders which optimize against different objectives [ 333 ].
ther organizations which operate recommenders may not intend to make money by doing so,

uch as news publishers. While not all recommender systems need to be profitable, they all must
e useful to the operator by some measure. 

.2 Well-Being 

ell-being is fundamental to human experience, and recommender systems have the potential to
ffect users’ well-being in many ways. While the phrase has specific implications around positive
ubjective experience, it is also widely used in the policy community as an umbrella framework
hich encompasses other values [ 106 , 135 , 250 ] and has been explored as an important end goal

or AI systems in general [ 161 ]. Well-being as a subjective experience is one of the values in our list,
ut many other values intersect with it strongly and are often included in well-being frameworks.

Well-being is a complex concept, and there is little consensus on how to define it [ 88 ]. Objec-
ive measures such as employment, lack of crime, and economic prosperity were historically used
s proxies for well-being . More recently there has been increasing focus on a more holistic un-
erstanding of well-being based on both subjective and objective measures [ 86 , 153 , 191 ]. These
ubjective well-being measures account for people’s cognitive and affective evaluations of their
ives by asking subjects to rate how much they agree with statements like, “The conditions of my
ife are excellent” [ 87 ]. 

The values of connection, community and belonging, recognition and acknowledgement, self ex-
ression, care, compassion , and empathy all relate to the concept of well-being . Many different types
f content can contribute to increased well-being , such as through education, motivation, or per-
onal relationships. Entertainment can also contribute to well-being , especially as a short-term emo-
ional experience, and hedonism is often considered a basic drive [ 293 ]. 

The effect of recommender systems on well-being has been most widely studied in the context
f social media use. There is conflicting evidence for both positive and negative effects, in part
ecause well-being in this context is variously defined and often represented by other factors, from
elf-esteem and life satisfaction to civic engagement , social capital, and user satisfaction. Also, most
tudies have not been designed to separate the effects of algorithmic content selection from other
spects of social media such as user creation and sharing. 

In one study of over 2,000 college students, social media use was associated with improvement
n various facets of psychological well-being such as overall life satisfaction, civic engagement , and
ocial trust [ 349 ]. Some investigators have suggested that the amount of time spent online is less
mportant than the quality of that time; active use may promote well-being, whereas passive use
nd emotional connection to use may have a negative impact [ 28 , 123 , 354 ]. The literature also
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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oints toward negative health effects related to social media use. One longitudinal study com-
ared social media use with mental health and physical health , and found a decrease of 5%–8% of a
tandard deviation in self-reported mental health [ 296 ]. In another study, deactivating social media
ccounts for four weeks resulted in increased time in offline interactions and improved subjective
ell-being [ 6 ]. Upward social comparison has been proposed as one potential link between social
edia use and mental health disorders such as depression and anxiety [ 225 , 367 ]. 
Some recommender-based products may encourage addictive tendencies. Allcott et al. [ 7 ]

ound that abstaining from social media use for a time or allowing people to set future screen-time
imits produced a decrease in subsequent use, suggesting that social media use may result in habit
ormation and self-control issues. These effects may not be due to personalized recommendations
er se , as broadcast television, a non-personalized medium, has also been found to be addictive in
his sense [ 120 ]. 

There is classic work on the advantages of both strong and weak social ties [ 13 ]. These benefits
re less well studied in the context of recommender systems, but a few studies of social media
re worth noting. Social media use has been associated with increased social connection and so-
ial capital in online and offline social networks, with particular benefit for users experiencing
ow self-esteem and low life satisfaction [ 101 , 315 , 326 ]. Larger social networks may be associated
ith greater perceived social support, reduced stress, and improved well-being [ 238 ]. Social media
se has been shown to increase intergroup contact and reduce prejudice when offline social net-
ork diversity is low [ 16 ]. Recommenders can also contribute to civic engagement . A large-scale

xperiment showed that messaging on social media can increase voter turnout on the order of 1%
 38 ]. While the possibility that recommendations connect people to violent or extremist groups
as been widely discussed (and we review the evidence below) the converse of this concern is the
ossibility of connecting people to constructive communities or social movements. 
We see long-term well-being as a major open problem for recommender systems, with a num-

er of challenging sub-problems: defining well-being in contextually appropriate ways, measuring
ser well-being in production, and algorithmically optimizing for relatively long-term outcomes
months to years). 

.3 Legal and Human Rights 

ome of the values in our list can be considered rights, in the sense of obligations to various parties.
revious work has explored the legal and human rights potentially impacted by recommender
ystems [ 226 ] and by AI in general [ 89 ]. 

Privacy has at least three different interpretations in the recommender context. The first sense
efers to information the system knows, infers, or estimates about the user. The second refers
o the possibility of direct revelation of user information to other users or third-parties. There is
lso the possibility of indirect (often noisy) revelation of user information by the actions of the
ecommender, e.g., a recommendation made to one user may allow them to infer something about
he items viewed by another user. This form of information revelation is the subject of a large body
f research in the area of differential privacy [ 69 , 96 , 166 ]. Privacy trades off against other values
uch as usefulness, transparency, and fairness. The question of demographic inference which might
elp the user is well discussed in the context of algorithmic fairness [ 11 ] but analogous concerns
rise with many types of user knowledge. Granting users control over whether and how they want
latforms inferring and using their personal data to recommend useful content might be one way
o reconcile privacy and ethical use of personal data. 

Like privacy, transparency and explainability are broad concepts. Explainability might mean that
 recommender system gives reasons why a certain piece of content is being shown to a user
 386 ]. Transparency could require platform disclosure of various types of data including metrics
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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haracterizing different types of content or aggregated user activity. Transparency can be important
or building users’ trust [ 76 ] and is often discussed as a policy tool to promote understanding
nd accountability . Explanations and disclosures can come in multiple forms depending on their
ntended audience, such as users, researchers, governance bodies, or auditors, and meaningful
ransparency needs to be informed by concrete individual and societal information needs [ 93 , 303 ].
rom a technical perspective, explanations can be tricky to generate because many recommender
echniques (including deep learning) do not lend themselves to easy explanations [ 366 ] . 

Fairness , equity, and equality are closely tied to human rights (Universal Declaration of Human
ights, UN). In everyday situations where recommender systems are employed, multiple parties
ave some interest in the outcome [ 2 ]. Fairness has a variety of meanings in recommender systems,

ncluding considering the disparate impacts of recommendations across user classes [ 203 ]. Content
roviders want to be fairly treated in terms of the exposure and benefit they receive from the
ystem [ 85 , 174 ]; users want to receive good quality of service, and do not want to be under-served
elative to other users [ 100 ]; other stakeholders, such as the system operator, content creators, and
ociety broadly each have ideas of what it may mean for recommendation to be “fair” [ 85 , 98 ].
his has deep ties to various conceptions of equity , in particular, equity of attention [ 37 : 201 , 302 ].
ecommenders may also create externalities that affect people who do not use the platform, such
s by directing many new people to a formerly obscure place, or encouraging the consumption of
roducts with environmental consequences [ 279 ]. The field of multi-stakeholder recommendation
as emerged to tackle these dynamics [ 1 ]. 
Given all the parties involved through the platform or via externalities, fairness is a multifaceted

roblem where different stakeholders have different objectives and needs from the system. Often
he desires of different stakeholders are in conflict; not everyone can have exactly what they want,
hough it might still be possible to give something worthwhile to everyone. 

.4 Public Discourse 

ome of the most intense recent discussion around recommender systems has centered around
ow they affect public discourse. Accuracy of information and diversity of content are two prime
xamples. 

Access to accurate and factual information supports human decision-making and understanding
cross myriad domains, ranging from healthcare to politics to economics [ 154 , 295 ]. While false-
oods and misleading content have threatened truth for centuries [ 14 , 253 ], online user-generated
edia may have amplified the threats to sensemaking and decision-making. For example, some

vidence suggests fabricated news articles (as identified by third-party fact checkers) spread signif-
cantly faster through Twitter than genuine news articles, especially articles about politics [ 356 ].
t is not clear to what extent this is an effect of recommender algorithms, as opposed to non-
lgorithmic social media creation and sharing dynamics [ 156 , 236 ]. Similarly, COVID-19 misinfo
as common on social media globally, especially early in the pandemic [ 8 , 48 ] and there is evi-
ence that suggests misinformation contributed to the spread of the virus via reduced vaccination
ates [ 208 , 264 ]. This suggests that personalized recommendations may have had a causal effect
n disease spread, though this has not been directly studied. 
Many authors have argued that designers of news recommenders have editorial responsibilities

imilar to news editors [ 115 , 148 , 244 , 311 ]. Getting the right information to the right people at
he right time is a key normative concern that goes well beyond ensuring accuracy, a value that
e call “informativeness.” We can look to the tradition of public-service journalism to inform

ecommender design [ 115 , 311 ] but personalized news delivery is a new technology and specific
ditorial theories are still developing. One approach would be to try to deliver a news item if the
ser previously expressed an interest in a particular topic, if it reports on events that affect their
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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ife, or if there is an opportunity for the user to help others [ 319 ]. These sorts of ideas have yet to
e effectively translated into algorithmic terms. 
Diversity is a value that can be relevant to consumers, content creators, and society in general. In

ndustrial settings, diversity has mostly been studied because increased diversity typically results
n greater user satisfaction and user engagement, at least up to a point [ 155 , 194 , 222 , 369 ]. Many
ecommenders use diversification algorithms for the practical task of ensuring that users are not
ontinuously shown the same type of item in their recommendations, often implemented as a
e-ranking pass [ 132 , 390 ]. Other parties also have an interest in diversity. A streaming music or
elevision platform needs to ensure that the long tail of less popular artists or producers have
nough exposure to make it worthwhile for them to stay on the platform [ 222 ], and increased
iversity may contribute to equity of attention [ 37 , 302 ]. 
The experience of a lack of diversity in personalized content consumption has been described

s a “filter bubble” or “echo chamber.” However, this language is somewhat vague and has been
sed to describe a wide variety of phenomena including self-selected consumption behavior, ho-
ophily in social networks, and algorithmic feedback effects [ 50 ]. We consider such possibilities
ore specifically throughout the rest of this article. 
Diversity has been most specifically studied in the context of news recommendations, where it
ight serve a variety of democratic goals including consumer choice, civic participation, pluralist

olerance, or challenging the status quo [ 33 , 148 , 357 ]. The meaning of diversity can differ between
ews organizations, depending on their editorial missions and the balancing of other values that
atter to the organization (such as personal relevance, engagement, or time spent). In practice, di-

ersity is often measured using item-similarity metrics [ 194 ] but such formulations do not capture
he complexity that the social sciences have brought to the debate about media diversity [ 206 ]. 

One concern is that a lack of diversity in personalized news recommendations could prevent
sers from being exposed to contrary perspectives. Simulations have suggested that optimization
o increase user engagement could create feedback loops that drive users into narrower selections
f content [ 57 , 175 , 177 , 192 , 284 ]. However, news personalization algorithms do not seem to pro-
uce a less diverse selection than human editors [ 231 ] and the news provided to different users is
uite similar [ 139 , 244 ]. Social media users consume a more diverse range of news sources than
on-users [ 118 ] but correspondingly also consume more news from partisan sources [ 117 ]. 
A related concern is that recommender systems might be causing large-scale polarization of

deology (issue polarization) or attitudes (affective polarization) [ 321 , 323 ]. A recent review found
n overall positive correlation between “digital media” use and polarization [ 209 ]. The causal ev-
dence is more mixed. In the U.S., polarization began increasing decades before social media [ 43 ]
hile several other developed countries have similar internet usage but do not show increasing
olarization [ 44 ]. Paying people to stop using social media for several weeks produced small de-
lines in issue polarization measures in a study of American users [ 6 ] but increases in a measure
f ethnic polarization in Bosnia-Herzegovina [ 16 ] which was hypothesized to result from reduced
nter-group contact. While there is little evidence that filter bubbles or a lack of diversity are driving
olarization, other socio-technical processes can increase polarization including partisan sorting
 339 ]. Optimizing for engagement (see Section 3.1 ) can prioritize divisive content, and there are
ow several lines of evidence that this mechanism is exacerbating polarization [ 323 ]. 

.5 Safety 

afety includes the idea that people should not be bullied, attacked, or dehumanized and should not
e exposed to disturbing content. For social media, safety has thus far mostly been considered in
he context of content moderation, and many platforms have developed their content moderation
olicies based on international human rights principles and frameworks and in consultation with
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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hird-party experts [ 90 , 108 , 260 ]. As a notable example, a series of human rights abuses occurred
n Myanmar, characterized by hate speech and disinformation against the minority Rohingya by
he military on social media [ 51 ]. 

Recommender systems should not promote violence. Note that “polarization,” a mass harden-
ng of political divisions, is conceptually distinct from “radicalization,” where a small number of
ndividuals violate mainstream norms and may resort to violence [ 316 ]. There are a number of
ocumented cases of far-right and terrorist radicalization where online recommendations were
nvolved [ 26 , 237 , 280 , 362 ]. However, these reports mention many other factors including chat
ooms, personal relationships, user-directed searches, and life circumstances. More systematic
tudies have looked for recommender feedback effects that move users toward radicalization en
ass [ 110 , 200 , 236 , 275 ] These studies generally show that recommenders alter content mix in

he direction of engagement, but have produced poor evidence on the radicalizing potential of
ecommender systems because of insufficiently powerful experimental designs, as we will dis-
uss below. In general, causal understanding of user trajectories through recommender systems
emains a major challenge. 

.6 Societal Values 

here are additional values on our list that have more of a societal flavor such as progress, labor,
uty, environmental sustainability, duty, and tradition and history . These are important values that
rose in our research, though the degree to which they are considered important varies consider-
bly from one culture to another. In our workshop and the literature we reviewed these values did
ot come up as particularly relevant to online platforms, but that does not mean that they cannot
r should not be promoted in certain contexts. 

 THE STATE OF PRACTICE 

ur second research question is, how might these values be operationalized within commercial
ecommender systems today? Because our focus is industrial applicability, rather than attempt-
ng to design an ideal process from first principles we document and build on current practice.

hile the academic literature on recommenders is vast, there is far less documentation of actual
ommercial operations. 

In Section 3.1 , we describe a general architecture that captures common design patterns in com-
ercial recommender systems. This provides the necessary context for the rest of the article. In

ection 3.2 , we propose an organizational process for modifying a recommender system to support
 specific value, within the context of a large company. These sections draw on public material, plus
he author’s own experience at several large platforms, to triangulate the current state of practice.

.1 How Recommenders Work 

ecommender systems are often described as “black boxes” [ 307 ] but most are constructed using
imilar principles. This section presents a greatly simplified, but illustrative recommender design.

hile it doesn’t represent the details of any particular system, many real systems share its features.
ur discussion also leads to a technical definition of engagement in terms of behavioral data. Most

ecommenders are built to prioritize some form of engagement at their core, though they also
onsider many other types of signals. 

Recommendations start with a pool of content items. These items may be produced entirely
y the recommender operator, as with a news organization’s recommendations; or they may be
urated from multiple sources, such as a music recommender which gets content from publishers;
r items may be entirely user-generated and posted without prior review, as on social media.
hese three categories have been called “closed,” “curated,” and “open” recommender systems
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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Fig. 1. An illustration of how many modern recommenders work, adapted from (Google, 2020; Lada et al., 

2021). The global set of items is first moderated to remove content that violates platform policies. The remain- 

ing steps happen when a user is served recommendations: candidate generation selects a wide set of items 

that could be relevant, ranking scores each one, and re-ranking ensures feed-level properties like diversity. 
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 72 ]. Before recommendations are generated, a moderation process identifies and removes items
hich violate platform policies. Platform moderation is a complex process which involves many
uman and machine steps from policy making to enforcement to appeals [ 142 , 380 ] but here we
re concerned only with how moderation defines which items are available for recommendation. 

Individual recommendations are generated using data about item content, user attributes, and
ontext, and result in an output stream or set of recommended items, sometimes called a feed or
late . The context may include a wide variety of features such as the video the user is currently
atching, the time of day, or a search query like “politics podcast” [ 25 , 36 ]. User attributes may
e derived from personal information the user has provided, any explicit user feedback or control
ettings, and any implicit feedback contained in the history of past interactions with the system. 

The recommendation process usually begins with the selection of candidate items . Candidate
eneration algorithms are tuned to retrieve an overbroad sample but are very efficient at filtering
 corpus of (potentially billions of) items available for recommendation down to a small set which
ight be a good fit for the user and context, typically ranging in size from a few hundred to a

ew thousand. These candidates are then ranked, that is, each is assigned a relevance score, which
ypically reflects a prediction of user engagement with the candidate item. In modern systems
anking may involve dozens or hundreds of “signals” which summarize aspects of the content,
he user, the context, and how all of these interact. The top-scoring items are then selected as the
ser’s recommendations. Many systems then re-rank the remaining items, this time comparing
hem to each other, rather than evaluating each individually, to achieve goals such as diversity of
tem topic or source [ 131 , 390 ]. 

Item ranking constitutes the core of personalization. The final item score is typically a weighted
ombination or some other function of (i) the predicted probability of a number of different types
f user responses [ 109 , 227 , 310 , 389 ] plus (ii) a wide variety of scoring signals that range from
ource credibility [ 261 ] to playlist diversity [ 222 ] to whether an item tends to be inspiring [ 163 ].
anking items by the probability of desired or targeted user reactions (e.g., sharing, dwell time)

s informally known as optimizing for engagement . This may or may not optimize for value to
arious stakeholders, which is why many non-engagement signals are also used. 
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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The word “engagement” has been used across many fields including media and technology to
uggest that users are repeatedly interacting with a product, as evidenced by a wide variety of
etrics. Here we propose a more specific definition, compatible with recommender design practice.
e take engagement to be a set of user behaviors, generated in the normal course of interaction with

he platform, which are thought to correlate with value to the user, the platform, or other stakeholders .
his definition builds on previous work [ 167 , 379 ]. It is multi-stakeholder in nature and reflects

he fact that engagement signals are chosen to be indicators of value, but aren’t going to be fully
ligned with specific values in all cases. It also suggests there are some signals of value that can
nly be derived from non-ordinary or non-behavioral data, as we discuss below. 

.2 Implementing a Product Change 

n this section, we answer our second research question: what organizational processes might be
sed to encode values into production recommender systems? Our goal is to provide practical
dvice for people who are working on large recommender systems within the industry. Because
f this, we focus on documenting the ways in which values are actually built into recommenders
oday. Unfortunately, there is little public documentation of the actual processes by which values
re engineered into large recommender systems, so we draw heavily on the authors’ collective
xperience working on a variety of platform-scale recommenders. 

This is a different approach than, for example, attempting to derive an ideal organizational pro-
ess from first principles. Nor does it explain what stakeholders outside of the organization build-
ng recommenders should do (but see our discussion of policy approaches in Section 6 ). However,
his approach has the advantage of codifying a process which we know is actually possible within
he industry today. 

We start by assuming that a choice has been made to prioritize a particular value or to adjust the
tatus-quo tradeoff in favor of that value. We do not give a process for deciding how to prioritize
alues, taking into consideration the needs of all stakeholders—this is a major open problem which
e articulate in Section 7 . Here, we focus on what can be done within an organization once the

hoice has been made. 
We illustrate the process by which a specific human value might be incorporated into a recom-
ender system’s design using the example value of diversity . Consider the development or refine-
ent of a news recommendation platform in which the designers are concerned with users having

he opportunity to develop an awareness and understanding of multiple political perspectives—
his has been called the deliberative perspective on recommender diversity [ 150 ]. One way that a
ecommender system might contribute to this value is by increasing the diversity of recommended
tems. This strategy rests on two key assumptions: there is currently a lack of diversity in the items
sers see, and showing them more diverse items will increase tolerance. Both of these assumptions
re complex and available evidence is mixed [ 249 , 321 ]. Nonetheless, this is a non-trivial example
f how metric-driven recommender engineering might proceed. 
Once the decision to increase content diversity has been made, the implementation might pro-

eed using the steps outlined below. 

3.2.1 Research Unintended Consequences. Generally, such an effort begins with the study of
otential mechanisms to incorporate this value. In the case of diversity, designers may research
he history of attempts to create inter-group tolerance through diversity of exposure, including the
ays in which this has failed [ 258 , 263 ]. User studies may be used to test the exposure diversity
ypothesis with users of the platform, assessing the impact of seeing news items from diverse
erspectives on people’s knowledge and attitudes. In particular, it will be important to test for
ackfire effects where people reject diverse information [ 18 , 95 ] or other unintended consequences.
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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here must also be a reasonable expectation that the changes to the recommendation system won’t
dversely affect other values that the system embodies. In concrete terms, this often means that
ny proposed change should not decrease other metrics (see below) more than a specified amount.

3.2.2 Develop a Metric. As discussed in Section 4 , metrics are central to any attempt to build
alues into recommender systems. A variety of diversity metrics have been proposed, both for
ews content [ 75 , 357 ] and for recommender systems more generally [ 60 , 194 ]. Choosing or de-
eloping a metric requires settling on a definition of diversity suitable for that particular system.
t may be that multiple metrics are needed to capture different aspects of diversity. While product
eams typically choose metrics, there has been experimentation involving external stakeholders
n order to increase the legitimacy of such decisions [ 33 , 201 , 320 ]. 

Here we focus on a conception of “productive” diversity , where people disagree in ways that are
ltimately constructive [ 321 ]. Given this concept, developing a method to measure the diversity
f articles on the platform may be broken into several phases, such as 

� Developing a description of diversity for use by human raters (e.g., “Does this set of articles
include constructive contributions from multiple perspectives?”). 

� Creating a training dataset of positive and negative examples using human-rater
evaluations. 

� Using this training data to develop a heuristic or machine-learned model that can predict
whether a list of (recommended) articles adequately reflects “productive diversity.”

3.2.3 Consider Different Product Designs. Before implementing a specific product change, dif-
erent product-based approaches to increasing diversity will be explored. For example, the designer
ould change the user interface, perhaps by showing related articles from other viewpoints below
ach item [ 325 ], or change the ranking algorithm to try to nudge people to consume more articles
hat represent this type of diversity [ 216 ]. For the sake of example, we assume below that the latter
hange has been selected. 

3.2.4 Implement the Product Change. Implementing this specific product refinement requires
ncorporating the diversity prediction model into the item ranking procedure. Whereas many cur-
ent recommender systems score each item independently, diversity is a property of sets of items.
ne challenge is that scoring entire lists is both more complicated and more expensive than scoring

ndividual items [ 160 , 369 ] which may necessitate the development of more efficient algorithms
or ranking such item sets. 

3.2.5 Evaluate and Advocate. Once implemented, the new product feature will typically be
ested using offline data [ 55 , 128 ] followed by A/B tests with a small group of users. If these tests
how positive results, the new diversity prediction model will be deployed in production, and mon-
tored to see whether the target diversity metric improves (this may involve gradual ramping up of
he deployment to larger numbers of users, holdback tests, etc.). There may also be side effects—for
xample, while increasing diversity often increases engagement [ 194 , 369 ], this is not always the
ase. Suppose that as a by-product of the model deployment, there is a drop in engagement, declines
n other values-relevant outcomes such as quality or safety metrics, or some cost imposed on other
takeholders (e.g., content producers). In practice, this requires negotiation among internal stake-
olders to decide if the increase in diversity is significant enough to justify a drop in other metrics.

3.2.6 Establish Guardrails to Prevent Reversion. Once deployed, product teams often establish
 review process so that subsequent product changes, within the originating team or elsewhere,
on’t indirectly revert the diversity improvement. This might include numeric “guardrails” that
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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Fig. 2. An illustration of the relationship between values, metrics, recommenders, items, and outcomes. The 

selection of a metric leads to a selection of items, some of which the user will engage with. Over time, the 

items a user engages with shape outcomes of interest. 

s  

c

 

d  

(  

u  

m  

i  

i  

t

4

I  

m  

T  

m  

t  

u

4

D  

m  
pecify the maximum allowable decrease in diversity induced by other product or algorithmic
hanges. 

3.2.7 Monitor Outputs and Outcomes. In practice, product teams will continually monitor the
iversity of recommended items to detect operational failures (e.g., bugs or system failures), or
induced or exogenous) changes in the user distribution and user behavior. A survey which asks
sers or human raters to detect “productive” diversity may also be regularly employed to detect
odel drift and produce updated training data. Finally, determining whether the ultimate goal

s being achieved, or is still worthy of being achieved, requires ongoing evaluation. This could
nvolve survey methods to assess metrics such as affective polarization, and ethnographic research
o understand what it means for users to be encouraged to be “more tolerant” in this way. 

 VALUE MEASUREMENT 

n order for recommender systems to incorporate human values, there need to be methods for
easuring how well a system is adhering to, promoting, or facilitating these values over time.
his section describes how to go from a value to a metric, the issues involved in designing good
etrics for values, and the data that is available on which to build such metrics. Figure 2 shows

he steps in operationalizing a value, including the process of selecting metrics, the interactions a
ser has, and the ultimate outcomes. 

.1 From Value to Metric 

efining a metric is part of the process of specifying what, exactly, a particular human value
eans in the context of a real system. This process is called operationalizing a value. The people
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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nvolved in defining metrics have considerable influence over the ultimate function of a recom-
ender, which is why multi-stakeholder involvement in recommender metric selection may be

mportant [ 201 , 320 ]. 
To illustrate the gap between a value and its measurement, consider the value of “safety,” and

n particular, protecting users from hate speech. A precise definition of hate speech is not only
ard to articulate, but under constant debate and evolution, and every choice has some set of un-
esirable side effects [ 84 , 134 , 214 , 214 , 259 ]. Well-being is an even more complicated example.
s discussed, well-being has many components (physical health, health of personal relationships,
aving a purpose in life, etc.) and can be considered in the short term (e.g., entertaining content)
r the longer-term (e.g., learning useful skills or fostering relationships). Making news recommen-
ations that serve the public interest likewise requires defining concrete metrics that reflect some
ssessment of that interest [ 115 , 357 ]. At some point, a real recommender must commit to specific
perationalizations of broad concepts, with the resulting tradeoffs between competing values and
takeholders. 

.2 Characteristics of a Good Value Measurement 

 good measurement has a number of desirable properties, including validity and reliability [ 230 ],
airness, and legitimacy. Quinn et al. [ 269 ] summarize the situation as 

The evaluation of any measurement is generally based on its reliability (can it be re- 
peated?) and validity (is it right?). Embedded within the complex notion of validity 

are interpretation (what does it mean?) and application (does it “work”?). [ 269 : 216 ] 

Many social science theories involve quantities that are not directly observable and hence must
e inferred, often with considerable uncertainty, which makes any measurement instrument im-
licitly a model of some purported underlying reality [ 164 ]. Construct validity is the convergence
f a successful theoretical idea with a measurement that effectively captures it [ 318 ]. Jacobs and
allach [ 165 ] propose several other types of validity in the context of measurements within com-

utational systems, including face validity (is the metric plausible?), content validity (does the
etric capture all the relevant parts of the concept of interest?), convergent validity (does this
etric agree with other accepted metrics?) and discriminant validity (does this capture something

ifferent than other metrics?). Reliability is typically evaluated in terms of agreement between
ultiple measurements (test-retest reliability), between different human judges (inter-rater relia-

ility) and, for surveys, between different ways of asking a question (inter-item reliability) [ 164 ]. 
It is rare that a particular measurement fully captures what we mean by some value in a partic-

lar context, meaning that most metrics are in fact proxies for what we actually care about. Even
 good metric will change meaning when it is known to be used to make consequential decisions,
.g., student test scores must be interpreted differently when they are used to decide academic
rogression because instructors will begin “teaching to the test.” This effect is sometimes known
s Goodhart’s law , but there are a variety of different causal structures which can produce feed-
ack processes that widen the distance between a metric and the underlying value [ 213 , 235 ]. In
he technical community, this has been most discussed in the context of the general problem of
lgorithmic optimization and the difficulty of objective specification [ 78 , 141 ]. Hence, as part of
eing precise about the definition of a human value, it is important to identify gaps in what is
easured and monitor them over time. Human values—that is, what is considered important—

lso tend to change over time. Qualitative user research plays a critical ongoing role in designing
nd evaluating metrics. 

Because modeling assumptions are required to connect a measurement to the underlying value
t purports to reflect, measurement itself has fairness implications. The signals from measurements
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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an vary across demographics, even after controlling for differences in user intent and task [ 221 ].
or example, if older users read more slowly than younger users, then a metric based on dwell
ime will be an over-optimistic measurement for older users regardless of their level of satisfac-
ion. Thus, interpreting metrics at face value may systematically disadvantage and misrepresent
ertain demographics and user groups. Organizations deploying recommendation systems often
ely on internal auditing methods as a way to measure how the overall system performs across
ifferent demographics and other user attributes [ 113 , 272 ]. External audits may also be required
y regulation, as discussed below. 

It is not enough to have an accurate and fair measurement of a human value. Stakeholders in
he recommender system need to be able to accept the process and outcome of the measurement
s legitimate. This means that two metrics that are operationally identical (e.g., they both corre-
ate strongly with a desired outcome) may not be interchangeable. Transparency around how the

easurement is carried out may help build trust in a metric. For example, some platforms peri-
dically release public transparency reports which include various metrics [ 308 ]. Another way to
ncrease legitimacy is to establish accountability regarding a measurement, e.g., through indepen-
ent, external audits of the measurement [ 329 ]. More ambitiously, a metric could be created or
hosen through a participatory process [ 320 ]. For instance, the measurement could aggregate the
pinions of a panel of users, as in the “digital juries” [ 112 ] and “citizens assembly” concepts for
aking platform decisions [ 255 ]. In one case, representatives of various stakeholders participated

n the construction of a recommender that matched supermarket excess food donations to volun-
eer drivers and local food banks, using an elicitation process to define a ranking function [ 201 ]. 

.3 Data Sources for Measuring Values 

ur news recommender diversity example involved a complex, multi-step process for defining
n algorithmic measure, ultimately drawing on human labeling to define the value of diversity.
roadly speaking, there are three main data sources for value measurements on a recommender
latform. 
The first source of data is the behavioral signals that users generate during normal usage, e.g.,

rticles a user clicks on, songs a user plays, comments, emoji reactions, re-sharing of content, ads a
ser clicks on, purchases made, time spent on the platform and on specific items, and so on. These
orts of implicit signals of value are often called “engagement,” but we note that some behavior
ignals are explicitly designed to give feedback to the algorithm, such as swipe left/right or thumbs
p/down. Implicit and explicit behavioral feedback both provide distinct and useful information
o a recommender system [ 172 ]. 

The second source for signals of value is answers to survey questions that are posed to a fraction
f the user base, typically a very small fraction. Surveys can ask very targeted questions, e.g., Face-
ook has asked users whether individual posts were “worth their time” [ 107 ] while YouTube uses
ser satisfaction surveys that ask users to evaluate previous recommendations [ 131 , 389 ]. Survey
esults can be used to monitor real-world outcomes, evaluate A/B tests, and ultimately recommend
tems that a user is predicted to respond positively to when asked about their experience. 

The third source for value measurements is human annotation. This data is often produced by
aid raters, though human ratings also come from users flagging or reporting items. Vast amounts
f human training data are routinely used to create models for identifying particular kinds of
ositive or negative content for the purpose of content moderation and ranking. Platforms that
eature professionally-made content can also ask creators to provide metadata for a variety of
anking purposes. For instance, the Swedish public broadcaster asks editors to rate each story in
erms of importance, public service value, and lifespan [ 217 ]. While survey data is limited by how
ften users can be asked to fill out a form, annotation data is costly to create and therefore available
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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n limited quantities, and some types of labeling work may contribute to mental health issues for
aters [ 15 ]. Human annotation can also be noisy, inconsistent, and biased depending on how rater
ools are selected, and have limited, unbalanced coverage, while the meaning or usage of labels
an change over time. Research in the area of human computation [ 198 ] attempts to address such
ssues [ 111 ]. 

In contrast to surveys and annotation, the benefit of behavioral signals is that they are plentiful—
any orders of magnitude more data is available. However, the behavior of users on the platform

ypically correlates with but does not perfectly capture any particular type of value, and is only a
roxy for what different stakeholders actually care about. Moreover, behavioral signals have been
hown to be sensitive to a variety of factors, such as the user and their demographics [ 58 , 146 ],
he context in which the user is interacting with the system, and the recency of interactions. For
xample dwell time, a behavioral signal that has been used as a proxy for user satisfaction [ 379 ],
an vary significantly depending on whether the item is the first one clicked in a list of results or
ot [ 39 ]. As discussed above, behavior does not represent underlying preferences for a variety of
easons including cognitive biases, information asymmetry, coercion, lowered expectations, and
o on [ 9 , 32 , 54 ]. Additionally, the collection of vast amounts of user data poses significant privacy
oncerns. 

One important approach that tries to combine the benefits of behavioral and survey signals is
o learn a model that predicts survey results given user behavior, that is, it tries to predict how a
articular user would answer a survey question if shown a particular set of items. This method
xtrapolates limited survey data to all users, and is common in industry [ 131 , 320 ] but has not been
uch discussed. We view such prediction of survey results as an emerging method for aligning

ecommender systems with human values, though it must be understood that predictions are just
roxies and must be continually monitored for divergence from ground-truth survey responses. 
In principle, surveys can elicit complex judgements of value. In addition to the challenges of

omplicated, multi-component values (e.g., well-being) the context and wording of a survey can
ignificantly affect the results [ 317 , 364 ]. Social desirability bias, the tendency of respondents to
nswer in ways that others would view favorably, adds a further complication [ 124 , 239 ]. Another
ssue arises when users from different demographic groups tend to answer questions differently
 102 ]. Since online surveys often involve casual participants, “seriousness” checks and data de-
oising can be very important [ 17 ]. 

 DESIGN APPROACHES 

e are now ready to discuss the major approaches that recommender system developers and re-
earchers have used to promote the values discussed above, and in turn, to identify some of the
hallenges and open problems which require the development of new technologies. The structure
f this section reflects the issues presented above. Section 5.1 discusses the core of the recom-
ender system, namely, the techniques used to select and order items shown to the user, and

ong-term user paths through these items. Section 5.2 discusses the affordances and controls made
vailable to users and other stakeholders through UI and UX design. Finally, Section 5.3 considers
airness and multi-stakeholder perspectives, and describes techniques used by system designers
o help optimize tradeoffs within real systems. 

.1 Item Selection 

t the heart of any recommendation system are the models and algorithms used to generate one
r more recommended items. Generally, the core models are trained to predict a user’s behavioral
esponse to a candidate recommendation (e.g., watch, like, reply, purchase) using properties of the
ser, the candidate items, and the context. Items are then scored by combining predicted outcomes
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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n some way [ 227 , 389 ]. The nature of the properties used to make predictions, the predicted re-
ponses themselves, and the way these predictions are combined into a final score all play a role
n the values that a recommender embodies. 

5.1.1 Item Ranking Signals. The properties of an item being considered for recommendation—
hether a social media post, news article, or musical track—play a key role in determining whether

t is of interest to the user, and, therefore, whether showing it to a user can serve one of their values.
The “topic” of an item is an important signal. A variety of techniques have been used for text

nalysis in recommender systems, including latent semantic indexing in Google News [ 79 ], Latent
irichlet allocation [ 173 ], and transformers. Image and video analysis are also used for topic as-

essment [ 82 ], as is audio analysis [ 381 ]. Modern recommender topic taxonomies can encompass
ens of thousands, or even millions, of distinct categories and sub-categories. One of the challenges
s that these classifiers are typically accurate for the popular elements of the taxonomy of topics,
ut often do not perform well for posts on less popular topics. 

Topics do not directly correspond to specific user needs or to values. A post about “football” can
e about organizing a football viewing party (possibly contributing to the value of connection) or
ust reporting the latest scores or player injuries (the value of knowledge). To support the value of
mpathy and care it would be useful to identify posts where the poster could benefit from support
f their network (e.g., after losing a loved one, needing advice on a certain matter, or announcing
n important event in their life). An open challenge is inferring the way a particular user will relate
o an item, rather than analyzing properties of the item alone. There is nascent work on predicting
he experience a user may have when viewing content, e.g., whether they are entertained, angry,
r inspired [ 67 , 163 ]. These sorts of inferences could also enable better targeted or more persuasive
dvertising, which raises policy concerns [ 304 ]. 

Content analysis is also heavily used by social media platforms in order to determine whether
 post violates community policies or is of low quality in some way, and should therefore be re-
oved or demoted. The predominant method for determining such violations uses ML models

rained on content labels provided by paid raters. These models increasingly use multimodal tech-
iques, simultaneously considering text, speech/audio, images, and video. This is often crucial to
nderstanding the intent of a post, e.g., the caption “love the way you smell today” means some-
hing different when superimposed over the image of a rose vs. a skunk [ 184 ]. 

Increasingly, items are evaluated not just in terms of their content but their context, includ-
ng properties of the poster and audience, previous user behavior, reactions from other users, and
o on [ 142 ]. Incorporating embeddings of sequences of user interactions has been shown to in-
rease accuracy in misinformation and hate speech classification on Facebook [ 246 ] while “toxic”
onversations on Twitter are better predicted by including network structure features [ 290 ]. 

These models are generally trained on labels or annotations generated by human raters. This
rocess itself is potentially subject to error and particular forms of bias, both in the instructions
iven to evaluators and their assessment biases [ 287 ]. Also, many of these categories are both com-
lex and politically contested [ 46 , 214 ] and raters often disagree, which complicates the evaluation
f model accuracy [ 134 ]. The promotion or demotion of particular topics or types of language, and
he errors and biases in this process, have major implications for freedom of expression, which im-
lies a deep connection between these technical methods and broader policy considerations [ 91 ,
81 , 380 ]. 

5.1.2 User Trajectories. We use “trajectory” to refer both to the sequence of items a user saw
ver time and the reactions those items evoked. A user’s past trajectory often provides information
hat can be used to make better predictions about their future preferences and behaviors. At the
ame time, we want to ensure that the user’s future trajectory supports the values they care about.
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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oreover, trajectories are the basic unit for studying some problems users experience on plat-
orms, as they are central to discussions about potential long term effects on, say, well-being and
olarization. For example, the “filter bubble” critique is essentially a statement about the typical
ourse of user trajectories. 

The majority of recommenders deployed in practice are “myopic” in the sense that they make
redictions of a user’s immediate response to the next slate of items presented, and rank items
ased on these predictions. However, many recommenders use past sequences of user and system
ehavior in sophisticated ways. 
Advances in deep learning have made possible the practical deployment of sequence models , such

s recurrent neural networks or transformers. For example, Beutel et al. [ 36 ] describe a recurrent
specifically, an LSTM) model deployed at YouTube. Recurrent approaches explicitly model a user’s
latent” or “hidden” state, that is, they include variables which represent aspects of the user’s situ-
tion or psychological state which are unobserved but have effects on what the user wants to see
ext. This state might encode aspects such as user satisfaction, frustration, or current topic focus,
ut interpretation of the hidden state embodied in such models is challenging and is tightly cou-
led to the engagement metrics being predicted and optimized. Inferring user state from behavior
s an important challenge and a key step toward better supporting many values. For example, a
ecommender could detect a user’s dissatisfaction with a certain type of content, or with too little
opic diversity in the recommendation stream, or even that someone was developing an eating
isorder [ 377 ]. 
Current ranking techniques do not offer the means to (directly) optimize a user’s future trajec-

ory. A promising direction is the use of reinforcement learning (RL) for optimizing such futures
on-myopically [ 5 , 297 , 330 ]. In particular, the use of RL allows the system to consider the impact
n the user of not just immediate recommendations, but of the entire sequence of recommenda-
ions it might make over an extended period, and plan that sequence accordingly. 

In our news diversity example, the redesigned recommender considered diversity within each
late of recommended items independently. An RL-based recommender would be able to consider
he diversity of items over days or weeks as well. In an educational setting—where a user’s un-
erstanding of a topic might best be served by an individualized sequence of content— an RL
ecommender resulted in faster learning and more course completions than a baseline linear se-
uence [ 24 ]. As such, RL offers considerable promise as a technology for individual or user-level
alue alignment. To date it has been used largely to optimize user engagement over the long term,
ut with suitable metrics and objective criteria, it could play a vital role in better aligning recom-
endation trajectories with user well-being by adaptively planning recommendation sequences. 
As with sequence models, advances in deep RL methods have made it more practical to de-

loy RL in practical recommender systems [ 66 , 126 , 160 ]. That said, a number of challenges re-
ain. First, since RL relies on sequential interaction data with real users, such models are often

rained offline using data generated by past recommendations, which may induce bias because the
ser was interacting with a different model [ 66 ]. The second challenge involves choosing from a

arge action space ranging from hundreds to millions depending on the recommendation task [ 94 ,
60 ]. A related problem is that item recommendations are often made jointly in slates or scrolling
eeds, where the interactions or interference among the visible items makes interpreting and op-
imizing for user responses challenging [ 160 ]. Finally, adopting RL for true value-alignment re-
uires sophisticated models of various aspects of user latent state (preferences, satisfaction, aware-
ess/knowledge levels, fatigue/boredom, etc.) and their dynamics. These psychological and situa-
ional states are challenging to uncover from observable user-response behavior, and may require
lanning over extremely long “event horizons” as user adaptation to recommender changes may
ake 3–6 months to fully materialize [ 57 , 229 ]. 
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 



Building Human Values into Recommender Systems 20:21 

 

c  

o  

a  

c  

i  

a
 

i  

p  

s  

e  

b  

α  

t
i

 

c  

i  

o
 

fi  

1  

s  

i  

e  

p  

d  

w
 

t  

w  

e  

t  

r  

Y  

e  

a  

t  

[  

s  

t  

s  

c  

s  

f  

e

Some work has considered trajectories that might be unhealthy or harmful. One problem con-
erns minimizing the likelihood that trajectories will end up with users viewing large amounts
f questionable content, such as videos that might promote unhealthy behavior, false statements
bout COVID vaccines [ 61 ], or other content that may not explicitly violate the platform’s poli-
ies. This might occur not because users explicitly ask for such material, but because they end up
n places (e.g., groups) where this material is common. In addition to downranking such content,
nother solution is to avoid recommending low-quality groups or content sources to users. 

Another strand of work concerns items that are acceptable or appropriate when considered in
solation but could be harmful if consumed too much or by certain vulnerable people. For exam-
le, there may be nothing wrong with a diet video but perhaps someone with an eating disorder
hould not be presented with an endless stream of such videos; or it may be unhealthy to watch
xclusively violent movies. Singh et al. [ 301 ] address this possibility by ranking user trajectories
y proportion of “unhealthy” content, then using the mean proportion of this content in the top
th percentile of user trajectories as a regularization metric. They demonstrate a safe RL approach

hat improves both worst-case and average-case outcomes, in terms of the fraction of “unhealthy”
tems recommended to any one user. 

The most complex concern about trajectories is the possibility that recommender systems might
hange user preferences in a manner that increases engagement but harms some other value. This
s commonly associated with the idea of “manipulation,” meaning unwanted changes in attitude
r behavior (even if unintentional). 
This sort of optimization-driven shift has been frequently suggested as a mechanism driving

lter bubble, echo chamber, or polarization effects, though the empirical evidence is mixed [ 50 ,
39 , 249 , 321 , 392 ]. Such models posit a feedback loop where users choose particular items (as in
elective exposure effects [ 265 ]) and the recommender responds to that engagement by narrowing
ts output to those topics, which in turn shifts user preferences further in that direction. This
ffect may be a particular concern for RL systems, which may learn how to make their users more
redictable so as to maximize engagement [ 283 ]. A polarizing preference shift effect has been
emonstrated in multiple simulations with different specifications [ 57 , 105 , 175 , 177 , 192 , 284 ]
hich suggests that it could be a robust effect. 
A range of work has attempted to determine the causal effect of recommender systems on con-

ent consumption trajectories. This is particularly important if those trajectories are correlated
ith offline outcomes such as violence [ 129 ]. There is replicated evidence that strongly moralizing

xpression spreads faster than other content on social networks [ 47 ] and such moralizing seems
o precede offline violence [ 232 ]. A number of researchers interested in categories such as “far
ight,” “conspiracy,” or “radical” have studied the network structure of recommendations between
ouTube channels [ 110 , 200 , 275 ]. While this showed that more extreme channels often link to
ach other, these studies do not analyze user trajectories because they were conducted without
ny personalization. A different approach is to program bots to selectively engage with certain
opics. This has generally shown that engaging with some type of content increases its frequency
 360 , 368 ] but this design models users as unchanging, so it does not provide evidence on per-
uasive effects. A user-tracking study of “far right” content on YouTube from 2016 to 2019 found
hat consumption there matched broader patterns across the web, including consumption from
ources without recommender systems [ 156 ]. Separating consumption due to recommenders and
onsumption due to users’ seeking behavior is difficult without on-platform experiments. Using a
et of Twitter users randomly assigned to receive a baseline chronological feed, Huszár et al. [ 159 ]
ound that Twitter’s home timeline recommender reduced the consumption of more politically
xtreme material. 
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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In general, inference of the causal effects of recommenders on user preferences and outcome is
 major open problem. The feedback effects between algorithms and societies are at the cutting
dge of social science research, in need of both interdisciplinary and cross-sector collaboration. 

.2 Controls and Feedback 

eaningfully supporting human values requires effective communication between the user and
he system, beyond the standard implicit signals (clicks, shares, dwell time, etc.). We place com-
unication affordances on a continuous spectrum between explicit and implicit. We use controls

o refer to features where the user can explicitly change certain settings, and feedback to refer to
ituations where the user is more passive and their preferences are elicited in some way, such as
y answering a survey question, providing a like/dislike, and so on. 

There are a variety of documented benefits to providing users with more control over their expe-
ience. Users have reported being more satisfied with their recommendations when given greater
ontrol [ 176 ] and better controls have led to increased engagement [ 171 ]. Interestingly, even the
ppearance of controls can achieve some of these effects. In [ 348 ], users reported higher satisfac-
ion with the system even though the controls had random effects. Conversely, Loecherbach [ 207 ]
ave users control over the diversity of items in their feed but there was no correlation between
ctual and perceived diversity. In general, greater recommender control usage does not always
ranslate into better control [ 359 ]. 

Existing systems offer a variety of ways for a user to customize their experience, and many more
ontrol and feedback schemes have been proposed by researchers [ 147 ]. Some involve simple di-
ect feedback on individual items, e.g., thumbs up/thumbs down, or item-level ratings [ 42 , 388 ].
thers involve evaluating the relevant importance of pairs of items [ 41 , 65 ]. Even when controls
re provided, many users do not know that they exist or what they do [ 157 , 306 ], find them chal-
enging to use, or simply don’t see the value in engaging with them. As a result, most users do not
se recommender controls and a “passive” user experience remains the default [ 176 ]. Aside from
etter educating users on controls, a promising approach is to design feedback mechanisms that
erve multiple purposes: such as sending a social signal (which is why the user would use it) and
imultaneously providing direct feedback that pertains to some value. Some examples of this exist
oday, such as the “Insightful” emoji on LinkedIn, the “Care” emoji on Facebook, and the proposed
espect button [ 324 ] . 
One of the issues that limits the use of controls is the difficulty in creating a direct, understand-

ble link between the input a user provides and the resulting change in the system’s behavior. In
ome cases, this link is quite direct (e.g., “don’t show me any sports-related content”), whereas in
thers the outcome of a control/feedback action is less obvious (e.g., “show me more videos like
his video I just watched”). There are many points along this spectrum. For example, instructing
he system to “show less about football” will be largely predictable in terms of the content it affects
though what about political statements/protests by athletes?) but users may still not understand
he expected magnitude of change. To complicate things further, there is often some ambiguity
bout whether the change the control offers is transient (e.g., for the current session) or for the
onger term. One proposed design is to highlight items that will be added and removed from the
ser’s feed when a control is changed [ 292 ]. 
Organizing content into “channels” can help users to better customize their experience. Some

ystems include implicit ways of specifying what sort of items are to be included, such as music
ecommenders which can continue a human-generated playlist [ 382 ]. Algorithmic channels could
lso be designed around particular goals (e.g., learning to play guitar) or needs (e.g., getting sup-
ort from friends, participating in lively conversations). The primary technical challenge here is
uilding relevance measures that capture the dimensions that users care about. 
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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In the future, communication between the user and the system will take different forms. Con-
ersational recommender systems are an emerging area that offers a potentially more natural,
ngaging, and usable interface for people to express their preferences, particularly in light of re-
ent advances in speech, natural language and dialog technologies [ 3 ]. Applications range from
ntegrations with the approaches listed above to entire reimaginings of the control process [ 71 ,
70 ]. A related idea is recommender personae, where the recommender is associated with a par-
icular personality (e.g., explorer, diplomat, expert) to set a particular context for the conversation
 144 ]. Conversational recommenders face many of the same challenges as other control systems,
ut more so: they must interpret the metaphorical, imprecise, or subjective language a user may
se to convey their needs or topic preferences. 

5.2.1 Meaningful Explainability. The field of explainable recommender systems has grown into
 vibrant research area [ 386 ] in part because users respond positively to having good justifications
or why certain items are suggested. Tintarev and Masthoff [ 337 ] argue that a good explanation can
ncrease transparency, scrutability, trust, effectiveness, efficiency, persuasiveness, and satisfaction
n the system. Each of these terms expresses somewhat different goals: transparency shows how
he system works and can be instrumental in accountability; scrutability allows the users to tell
he system it is wrong; trust increases confidence in the system; and satisfaction increases users’
ense of derived benefit; effectiveness helps the user employ the system toward their own aims;
ersuasiveness convinces the user to change their beliefs or behavior; efficiency can increase the
alue of the system. Some of these values can be contradictory and may not be achieved at the same
ime. For example, an explanation that increases transparency of the system does not necessarily
ncrease trust if the explanation is not understandable or reveals undesirable behavior. Therefore,
hat constitutes a “good” explanation very much depends on the goal, and the field is rapidly
eveloping [ 145 , 241 , 248 ]. 
With the rise of increasingly complex machine learning models, it has also become increasingly

ifficult to give intuitive and understandable explanations of why a user received a specific rec-
mmendation. Explanations may be shown to the user in different forms (e.g., text, visuals, high-
ighting relevant features) and may either attempt to explain the workings of the recommendation

odel itself, or may be the result of training a separate model that generates post-hoc explana-
ions from model inputs and outputs [ 386 ]. There are also recommender algorithms specifically
esigned to be explainable [ 376 ]. The system of Balog et al. [ 19 ], for instance, operates based on
et intersections, e.g., “recommended for you because you don’t like science fiction movies except
hose about space exploration.” This explainable-by-design approach avoids the challenges of in-
erpreting learned models [ 282 ], but generating understandable explanations from deep learning
odels is an active area of research that may yet prove fruitful [ 185 , 189 , 328 ] . 

.3 Making Tradeoffs 

n general, there are numerous tradeoffs involved when incorporating human values into recom-
ender systems, and a variety of techniques to evaluate these tradeoffs and make choices. There

re at least three categories of tradeoffs: (1) tradeoffs between the benefits and potential harms to
ifferent people, (2) tradeoffs between different types of stakeholders, such as content creators ver-
us content consumers, and (3) tradeoffs between values, resulting in different (but not obviously
orse or better) measurable outcomes induced by various recommendation strategies. 
Ultimately there must be some notion of a fair or optimal tradeoff, and techniques for mak-

ng “good” tradeoffs in this sense. We hope that these tradeoffs are informed by the expressed
pinions of users and other stakeholders, so we first discuss the theory of social choice, which
tudies how to combine the preferences of many people. We then discuss techniques for achieving
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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arious notions of fairness, such as between different types of users or between different stake-
older categories. Finally, we discuss tools designed to optimize tradeoffs when faced with the
ractical necessity of tuning a recommender’s ranking function. 

5.3.1 Tradeoffs in Theory: Social Choice. People express their values in their everyday use of
ecommender systems. Indeed, many recommender controls are designed specifically for this pur-
ose, everything from upvoting and swiping left/right to reporting violating content. This creates
he problem of aggregating preferences, and negotiating between competing desires of individu-
ls, groups, and stakeholders. The framework of social choice, originally developed in economics
 125 , 294 ], provides a foundational tool for addressing tradeoffs at all of these levels. 

Abstractly, this framework assumes that each stakeholder has a utility function over a set of
ossible outcomes for them. This is motivated by the idea that someone could say which of several
ituations they’d prefer, that is, that each person has preferences . Note that this utility function can
e purely “local” (a user may care only about whether they get good recommendations) or it can
nvolve societal values (a user may care that other users also like what they like, or that vendors are
reated fairly). A social welfare function is a voting process or a way of “adding up” or combining
takeholder preferences to produce a single number, a “societal utility” or social welfare. The aim
s then to adopt a recommender policy which maximizes the expected social welfare. 

This formulation can encompass virtually any criteria that express preferences over short or
ong-term, individual or group outcomes. There are relatively direct mathematical expressions for
enalizing addictive behaviors, group-level diversity of consumed content, fairness across indi-
iduals, and so on. Conversely, any collaborative recommender system aggregates the explicit or
mplicit preferences of users in some mechanical way, as when signals like upvoting and watch
ime are combined across many users to decide how items are ranked for a different user. Social
hoice theory is a key bridge between the normative and the algorithmic, useful for analysis and
esign. 
Although social choice theory is foundational, there are two major difficulties to applying it

n practice. First, determining what an individual’s “preferences” actually are is quite challenging
oth in theory and in practice [ 334 ]. There is a long history of formal elicitation methods such as
sking users to repeatedly say which of two options they prefer, or asking them to play various
inds of economic games [ 53 , 65 ], but formal preference elicitation can be involved and is quite de-
anding of the participants. Furthermore, someone might be uninformed, coerced, addicted, have

owered expectations [ 9 ] or want something that isn’t available [ 119 , 277 ]. In addition, attempts
o elicit preferences can lead to strategic behavior where people misrepresent their beliefs to try
o induce more favorable recommender outcomes, e.g., a content creator usually has an incentive
o argue that their content is relevant to as many users as possible [ 29 , 30 ]. While many different
inds of feedback can provide crucial signals of what people value, behavior cannot be naively
nterpreted as true preferences. 

Second, there is no entirely bottom-up or value-neutral method of ethics. Simply specifying the
utcomes over which stakeholder preferences are defined is inextricably tied to the values being
onsidered [ 32 ]. For example, there is the choice of what will be voted upon. There is also the
uestion of whose preferences count in what situations, e.g., community administrators may have
pecial voting privileges, and it may be important to encode “rights” that cannot be infringed by
he preferences of others. Hence, social choice approaches cannot excuse system designers from
aking consequential normative choices [ 27 ]. There is more to democracy than voting systems. 

5.3.2 Fairness and Tradeoffs Among Stakeholders. Many of the values in our list involve
aking tradeoffs between different stakeholders (such as users vs. content providers) or among
embers of a stakeholder group (such as different subgroups of content providers which compete
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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or attention). Correspondingly, there are a wide variety of notions of “fairness,” which often
but not always) are framed as some sort of tradeoff. The extent to which these tradeoffs are
nherent is an open question in the research literature because there are cases where it is possible
o improve performance for one user subgroup without decreasing performance for other users.
here are multiple challenges in this area, including defining fairness, measuring it in practice,
nd designing algorithms for efficient recommendation. See Ekstrand et al. [ 98 ] for an overview. 

Several major categories of fairness have been proposed in the context of recommender systems,
oughly corresponding to the interests of different stakeholders. “C fairness” considers how well
ndividual information consumers are served, “P fairness” is concerned with the distribution of at-
ention between items or providers of content, while “CP fairness” considers both simultaneously,
s in a rental property recommender designed to protect the rights of both minority renters and
inority landlords [ 52 , 361 ]. 
Recommender systems are mostly evaluated based on average performance across all users, but

ifferent user subgroups, such as age or gender groups, might be served with differing performance
r error rates. Subgroup performance disparities can happen for a variety of reasons, including dif-
erences in group size or activity that affect the amount of training data available [ 100 , 204 ]. There
s a large body of work on mitigating group-level unfairness in classifier models, some of which can
e adapted to recommender systems. For example, [ 34 , 35 ] use pairwise comparisons of the rank-
ng of different items to generalize the well-known “equality of opportunity” and “equality of odds”

easures, showing that it is possible to equalize prediction error rates between user groups on a
arge commercial platform. However, algorithmic approaches that aim at equalizing effectiveness
isparities between user groups may make inappropriate tradeoffs: increasing recommendation
tility for one user does not necessarily require decreasing it for other users, so it is not clear that
llowing a solution that may decrease utility for well-served users is appropriate, as opposed to
ther approaches such as feature prioritization in the engineering process (Ekstrand et al., 2021
ection 5.4). 

Items and their producers, on the other hand, necessarily compete for user attention. This leads
o the concept of “exposure fairness” which may be formulated in a variety of ways [ 302 ]. Even if
redicted “relevance” scores correctly measure the value of an item to an individual user, slightly

ess relevant items may get disproportionately less attention simply because they appear farther
own, an effect known as “position bias.” Several algorithms have been proposed to ensure item
ttention is proportional to item value on average, either across a group of items or across multiple
lates of recommendations [ 37 , 85 , 361 ]. Such algorithms can be considered a correction to a type
f error or “technical bias” in the fair ranking typology of Zehlike et al . [ 383 ]. More normative
efinitions of item fairness are often desirable. For example, Spotify strives to give exposure to
ess popular artists to counteract the “superstar economics” of cultural production [ 222 ], while a
demographic parity” conception of fairness may be appropriate when qualified candidates from
ifferent groups (say, men and women) should be shown to prospective employers at the same
ate [ 127 ]. A wide variety of fairness metrics concerning the exposure of items, groups of items,
r producers have been proposed, though many of these are closely related [ 193 , 270 , 288 , 384 ]. 
Where it is possible to produce reasonable quantitative estimates of utility to different

takeholders, multi-objective optimization (MOO) can be used to balance multiple conflicting
takeholder utility and fairness objectives. One approach is to ensure that the recommender is
areto efficient, meaning that there should be no way to modify a slate of recommendations to
ake it more fair without reducing utility, or to increase utility without reducing fairness [ 374 ].
ladenov et al. [ 228 ] go beyond this by proposing a recommendation method that maximizes

ser social welfare (total user utility) by allowing small sacrifices in utility from well-served users
o drive large gains for less well-served users. RL has also been applied to multi-sided fairness,
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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hrough contextual multi-armed bandits which simultaneously optimize stakeholder utility and
airness objectives [ 222 , 223 , 375 ]. Recently, several researchers have taken a game-theoretic
pproach to the study of recommender systems. Ben-Porat and Tennenholtz [ 30 ] and Ben-Porat
t al. [ 29 ] develop approaches that account for the strategic behavior of content providers while
iming at maximizing user engagement. While all these methods hold promise for value alignment
n complex ecosystems, they have not seen practical deployment to date. 

5.3.3 Optimizing Tradeoffs. Because there is no purely “bottom up” way of making tradeoffs,
ystem designers must ultimately choose some set of overall objectives or “ground truth” signals
o serve as overall measures of value. Increasingly, AI tools are used to help make tradeoffs over
he complex design space of recommender parameters, particularly the relative “weighting” of the
ignals that feed into item ranking functions. 

Milli et al. [ 227 ] determined the relative value of different user actions including viewing a
weet, sharing it, liking it, and so on by connecting these interactions to the sparse use of the “see

ess often” control in a causal Bayesian network. This network represents dependencies such as
he fact that a user has to view a Tweet before they can share it. By taking “see less often” as a
round truth signal of negative value it was possible to infer the value of all of the other, more
ommon interactions. This idea generalizes to more complex methods for finding multiple weights
hat optimize multiple metrics. 

Bayesian optimization [ 130 , 274 ] can be used to find the weights of a ranking function that max-
mizes relevant (perhaps long-term) metrics, and automatically run data-gathering experiments to
mprove those predictions [ 140 ]. This approach requires that the designer be able to assess the
verall “utility” of any vector of performance metrics, which itself induces various tradeoffs. For
xample, is a product that has a greater number of items viewed but less total time spent and lower
eported satisfaction better than the opposite? The tools of interactive optimization and utility elic-
tation [ 42 , 388 ] could play an important role here, though these approaches have not yet found
idespread use in practical recommender design. 

 POLICY APPROACHES 

n the previous section, we have discussed design approaches to recommender systems and hu-
an values, that is, potential product changes. This section considers policy-making, which can

e a powerful lever for change. Policy-making is informed by all of the perspectives articulated
bove, including ethical, procedural, measurement, and technical issues. Chosen policies impose
onstraints on how to build a recommender system and introduce additional technical challenges.

By policy-making we mean external governance, from government, regulators, or external bod-
es with appropriate authority. All large platforms have internal policies as well, particularly
round which types of items are eligible for recommendation, but we focus on external gover-
ance as an important interface between recommender system operators and the rest of society.
ecause recommender systems are used in so many different types of products, we do not offer
pecific policy recommendations. Instead, our goal is to discuss the major categories of policies
hat have been proposed, and especially to understand how these policies could be translated into
erms of metrics and algorithms. At the current time there is a large gap in terminology and un-
erstanding between the recommender technology and policy communities, which we seek to
ighlight and begin to address. There are also policy-relevant technology gaps: the capability to
o what policy-makers ask may not yet exist, as in the “right to explanation” provisions of the
DPR [ 358 ]. 
We consider policy approaches that are relevant to recommender systems specifically, as

pposed to social media or online platforms generally (neither of which necessarily involve
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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ecommender systems). We do not discuss content moderation policy approaches here, but direct
eaders to reviews such as [ 91 , 181 , 380 ]. 

.1 Risk Management vs. Value Sensitive Design 

ne proposed policy approach would require recommender system operators to evaluate the po-
ential risk of harm from operating their systems. This is the approach taken by the EU Digital
ervices Act, which requires “very large online platforms” (currently defined as those with more
han 45 million users in the EU) to perform yearly assessments for three kinds of risks: the dis-
emination of illegal content, negative effects on fundamental rights, and “manipulation” with ef-
ects on “public health, minors, civic discourse, or actual or foreseeable effects related to electoral
rocesses and public security.” [ 104 ] Any harm found must be mitigated through various means
ncluding “adapting content moderation or recommender systems.” The proposed Digital Ser-

ices Oversight and Safety Act ( DSOSA ) of 2022 in the U.S. takes a similar approach, requiring
latforms of certain sizes and scope to conduct assessments and mitigate any risks, including by
adapting the content moderation or recommender systems (including policies and enforcement)
f the provider. 
This touches on several of the values in our table but is relatively narrow in two ways. First, a

isk-based framework is concerned only with potential harms. Second, the type of risk mitigation
nvisioned by the DSA and the DSOSA generally happens after a system is already built. Another
pproach is to require consideration of important values during the design phase, as with “pri-
acy by design” provisions [ 92 ]. Extending this to more general values, one German law requires
latforms to meet certain content diversity obligations [ 151 ]. 
The challenge for policy-makers or regulators is to be both precise and general about how harms

re to be assessed and values are to be enacted in recommender systems. In principle, this could
nvolve monitoring certain metrics, as is already done in environmental regulation and media

onopoly policy. Such regulation would face all of the challenges of choosing metrics discussed
bove, and certainly no one set of metrics will be appropriate for all recommender systems. Even
f useful metrics for harm or good can be found, there is the difficult question of what constitutes
n “acceptable” value [ 244 ]. 

.2 Accountability 

olicy approaches to the issue of accountability include provisions around transparency and evalu-
tion mechanisms such as audits. Both are instrumental in supporting other values such as agency,
ontrol, and accountability. 

Transparency has been a major focal point of legislative efforts in the United States and the Eu-
opean Union. Over the past two years, lawmakers in the United States have introduced numerous
ills that seek to compel internet platforms to provide more transparency around how they de-
elop and deploy algorithmic systems for content curation purposes [ 234 , 303 ]. The key challenge
rom a policy perspective is in defining the goal of transparency efforts, who they are meant to
erve, and what, exactly, should be disclosed. Transparency may be intended to serve users, law-
akers, researchers, journalists, and so on. [ 93 ]. There are also privacy, security, and intellectual

roperty issues that complicate disclosure [ 251 : 4 , 298 , 307 ]. Suggestions for what to publish have
ncluded the recommender source code, data on users (e.g., demographic data and their interac-
ions with the system), options for users to modify recommendation “parameters”, data used for
raining models, key metrics, and the rationale behind product features and ranking changes [ 93 ,
22 , 355 ]. Each of these has limitations. 

Production recommender code is extremely large, difficult for outsiders and non-technical
ndividuals to understand, and may not be particularly revealing without reference to the content
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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nd user data it operates on. For example, user interactions over time can be used to understand
eople’s trajectories through the system, as discussed above. However, user data is difficult to
hare because of privacy concerns. This leads to the idea of sharing aggregated data, and many
latforms already do so in the context of content moderation and targeted advertising [ 304 ,
08 ]. Then the key policy question becomes which metrics should be disclosed and how they are
efined. While recommender operators will have key insights into what is relevant to measure,
elying on them to select what is shared may pose a conflict of interest. Note that even aggregated
ser data can be used to re-identify individuals so it may need to be protected with techniques
uch as differential privacy [ 96 , 240 ]. 

A related suggestion is that recommender operators should share the policies used to guide
anking and recommendation efforts, including what types of low-quality or harmful content a
latform downranks. The policy community has pushed recommender operators to disclose the
ationale behind ongoing product changes more generally, including changes to recommender
lgorithms and parameters [ 305 , 322 ]. This leads to the idea of a “change log” or “proceedings”
hat details what the operators were trying to do with each change (e.g., increase news quality),
hat data they had in front of them (e.g., fraction of items from each news source rated false by fact

heckers), and what change they made (e.g., downrank certain sources by a certain amount). This
s especially important as metrics or algorithms alone will not tell the full story: the motivation
nd context of a change are relevant to values. Thus far, a handful of civil society organizations
ave pushed platforms to adopt change logs for recommender system-related policies [ 305 ]. 
Algorithmic auditing of AI/ML-based systems has recently gained increased attention and has
ostly focussed on fairness and discrimination concerns in decision-making systems or predictive
odels [ 353 ]. Although fairness remains a concern in recommender systems, in principle recom-
enders might be audited for any of the values discussed in this article. A recent review of 62

cademic algorithmic audits identified eight audits of recommender systems [ 20 ], of which seven
ere concerned with “distortion” effects such as echo chambers or lack of source diversity. Several
f these audits looked for, but did not find, echo chamber or filter bubble effects on Google News,
he Facebook News Feed, and Apple News [ 20 : 16 ]. They did find that a small number of news
ources make up a large percentage of the results in Google News and Apple News. 

While companies can and do perform internal algorithm audits of various types [ 70 , 272 ] reg-
lation could require external audits of recommender systems to mitigate these concerns [ 307 ].
egulation could also direct audits to evaluate specific biases or harms to users or consumers [ 49 ].
he Digital Services Act requires certain platforms to undertake yearly audits to ensure they are
eeting their risk assessment and mitigation obligations [ 104 ]. Similarly, the Algorithmic Fair-
ess Act in the United States would require covered entities to conduct and retain a five-year audit
rail which includes information on how an algorithmic system was developed, trained, and tested
 303 ]. 

The personalized nature of recommender systems complicates auditing. Consider the problem
f auditing user trajectories through recommender systems. Ribeiro et al. [ 276 ] collected data on
on-personalized recommendations across YouTube channels and then evaluated trajectories us-

ng random walks, while the Wall Street Journal used 100 TikTok bots pre-configured to watch only
ideos on particular topics [ 360 ]. Neither of these methods model real user behavior. Conversely,
osseinmardi et al. [ 156 ] used panel web browsing data collected by Nielsen to evaluate consump-

ion of YouTube videos across the political spectrum, and The Markup’s Citizen Browser project
sks users to install a browser extension that reports what they see on Facebook and YouTube [ 332 ].
hese observational studies have the advantage of involving real users, but the methods used so far
annot produce robust causal inferences about recommender effects. For example, it is currently
ot clear if social media contributes to depression or if depressed people spend more time on social
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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edia, or both. If these methodological issues cannot be solved, even extensive platform data shar-
ng may not be sufficient to answer questions of interest. In that case, on-platform experiments

ay be the only reliable approach to auditing the effects of recommender systems, which would
equire extensive collaboration between recommender system operators and external researchers.

The nature of platform access remains to be defined. Industry players assert they face constraints
hen participating in third-party audits, including concerns around privacy, security, intellectual
roperty, competitiveness, and cost [ 251 : 4 , 298 , 307 ]. Many of these concerns are also risks to
 third-party auditor, who must protect shared personal data yet typically does not possess the
ecurity resources of a platform. Additionally, many third-party auditing entities do not have the
ecessary technical skills and resources to audit recommender systems at scale [ 307 ]. 

.3 Translating Between Policy and Technology 

here has long been a miscommunication between the builders and regulators of technology. At
he present moment, many countries are drafting or passing laws that regulate recommender
ystems of various kinds, especially social media, news recommenders, or targeted advertising.
nfortunately, much of the policy discussion taking place uses terms that do not map easily to

ecommender technical affordances [ 303 ]. 
For example, Article 27 of the Digital Services Act requires recommender-based platforms to

isclose “the main parameters used in their recommender systems” as well as any available controls
o “modify or influence those main parameters.” [ 104 ] Unfortunately, it’s not clear what a “main
arameter” is [ 149 ]. While this probably doesn’t refer to the millions or billions of learned neural
etwork weights, real recommender systems involve hundreds of major interacting components
hich are continually configured and tuned in complex ways. The vast majority of such internally

onfigurable settings will not be understandable or useful to users, auditors, or regulators. A better
ormulation might arise from considering the design of recommender controls, as discussed above.

The same provision also stipulates that recommenders offer “at least one option which is not
ased on profiling.” Profiling in this context is defined in the GDPR and includes “personal prefer-
nces” and “interests” [ 103 ]. Thus, exclusion of profiling in this sense may exclude even Twitter’s
lassic reverse chronological timeline, which cannot operate without the user indicating who to
ollow. An alternative approach would be to require an option that personalizes based on explicit
ser controls only, as opposed to implicit signals such as clicks or watch time. 
“Amplification” is another word which appears in several proposed laws yet is difficult to trans-

ate into operational terms. Modern platforms can provide huge distribution to an item in a short
eriod of time via information cascades, which result from a combination of user sharing and al-
orithmic recommendation [ 23 ]. While “amplification” is a reasonable name for this phenomenon,
any definitions of “amplified” collapse to “shown” when parsed carefully, e.g., “the promotion of

ertain types of extreme content at the expense of more moderate viewpoints” [ 368 ]. The selection
f any type of content for display reduces the promotion of all other types because of the zero-sum
ature of selection, so amplification would mean any display of “extreme ” content. 
Other definitions are more specific, and compare the distribution of an item to some (often im-

licit) baseline. One approach is to define amplification as the prevalence of some type of content
n user feeds relative to the prevalence of that type among all available content. This definition can
e useful in some contexts, though it is unclear why raw prevalence should be a presumptively
eutral baseline. Indeed, this formulation leads to the perverse outcome that spamming content
ay reduce amplification (through an increase in the denominator) even though it may increase

istribution. For some systems, a chronological baseline may make sense. This is plausible for Twit-
er because it was designed around a reverse-chronological feed, and several studies compare the
lgorithmic and chronological options on Twitter [ 21 , 159 ]. However, there is no similarly natural
ACM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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aseline for systems such as YouTube, Google News, Netflix, Spotify, or Amazon where a chrono-
ogical feed makes little sense. Furthermore, purely chronological feeds can suffer from problems
hat make them unattractive baselines [ 178 , 182 ] including recency bias and the prevalence of
ow-quality content like spam. Because of these conceptual and practical issues, “amplification” is
ot a well-defined measure for most recommender systems [ 335 ]. In the U.S., legislation targeting
mplification in any of these senses is also likely to face 1st Amendment challenges [ 182 ]. 

Examples like these highlight the importance of finding new ways of bridging the knowledge
ivide between policy makers, specialized expertise, and independent research. Possible ways for-
ard include educational programs for policy makers and engineers alike, the embedding of tech-
ology expertise (such as TechCongress which recruits technologists and embeds them in Capitol
ill offices to inform tech-focused legislation), regulatory sandboxes which allow controlled ex-
erimentation, a strong commitment to evidence-based policy making, and other initiatives to
ake technical expertise more easily accessible. 

 OPEN PROBLEMS 

ased on this review of values in recommender systems from a variety of perspectives, we propose
he following list of open problems. Each of these is both consequential and challenging and would
enefit greatly from future work. 
Multi-stakeholder processes for prioritizing values. There is no widely agreed process for

ncluding the many stakeholders of recommender systems in consequential decisions, including
hich values are prioritized and tracked, how they are measured, and how tradeoffs are adjudi-

ated. This work provides important prerequisites: a list of values relevant to recommender sys-
ems (Section 2 ), techniques to measure adherence to values (Section 4 ), and a list of indicators for
pecific values (Appendix A ). We have not provided a process for eliciting input from stakehold-
rs to prioritize values and resolve tradeoffs. Broad methods such as participatory design [ 300 ]
rovide general approaches, but more specific methods will be needed. Approaches such as multi-
takeholder metric construction [ 201 , 320 ] and user juries [ 112 ] may provide a way forward, but
re not yet well developed in the context of recommender systems. 

Better measurements. Many values are not easy to operationalize. Collections of AI-relevant
etrics such as the IEEE 7010 standard [ 291 ] provide useful compendiums, but measures developed

n social science and policy may not apply directly to particular recommender contexts such as
ews recommendation or targeted advertising, and will need to be refined. 
Controls that people want to use. The controls offered to users so far have been remarkably

parse and slow to develop, despite the obvious practical, policy, and ethical advantages of better
ontrol. In part this may be a problem of under-investment, but there is also a fundamental un-
olved problem with recommender controls: most are never used by more than a few percent of
sers [ 176 ]. Better control designs might improve this situation, such as immediate feedback on
ow changing a setting changes which items are recommended [ 292 ]. Still, it is likely that most
sers will never adjust default settings, so a better strategy may be to attempt to design controls
hat elicit user feedback in the normal course of use, e.g., voting systems or a “respect” button
 324 ]. It will be important to differentiate between giving users a feeling of agency and giving
hem effective controls [ 207 , 348 ] as both are necessary. 

Non-behavioral feedback. At present essentially all feedback signals to recommender
ystems are behavioral, e.g., engagement. There are a variety of well-known problems with
nferring preferences from behavior, including self-control or addiction issues, uninformed users,
nd the contextual meaning of choices [ 9 , 334 ]. In particular, many of the values discussed above
nvolve outcomes that are unlikely to be identifiable from on-platform behavior alone, e.g.,
ell-being. One promising solution is simply to ask users about their experience by repurposing
CM Trans. Recomm. Syst., Vol. 2, No. 3, Article 20. Publication date: June 2024. 
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urvey instruments that have been developed in the social science and policy communities.
nly a small fraction of users can be surveyed, but the resulting data stream can be used to
uild and continuously validate models that predict survey responses, which can then be used
s algorithmic objectives. This is already done in industry [ 131 , 320 ] but there is essentially no
ublic research on this emerging technique. 
Long-term outcomes. Most recommender algorithms today are myopic in the sense of opti-
izing only for immediate responses. Longer-term outcomes are typically managed by product

eams who monitor richer feedback and make algorithmic adjustments. While today these teams
re typically optimizing for purchases, subscriptions, or user retention, recommender systems
ould also be managed on values-relevant outcomes. However, human management will always
ptimize against aggregated outcomes, while algorithmic optimization can be personalized and
herefore has the potential to better serve subgroups and individuals. Emerging RL methods may
ake this possible [ 5 , 229 ] but this may also require cheap and accurate individual-level proxy
etrics for the outcomes of interest. 
Causal inference of human outcomes. Recommenders may have significant effects on people

nd society, yet determining what those effects are remains extremely challenging due to sampling
nd confounding effects. Individual case studies can be instructive but are difficult to generalize
o platform scale, while even large observational studies struggle to answer questions like “does
ocial media cause depression or do depressed people use social media more?” In many cases, it
ill not be possible to say what a platform’s effect on an individual has been because there is no

ounterfactual, but it may be possible to measure group-level effects through on-platform experi-
ents. The long term effects of design decisions—and the resulting outcomes for users interacting
ith the system—are particularly difficult to study because so many other things are happening

n a user’s life. 
Industry-academic research collaborations. While a variety of external algorithmic auditing
ethods have been developed [ 286 ] many of the most important questions can only be answered

n an ecologically valid setting using private platform data or on-platform experiments [ 138 ]. Un-
ortunately, it is not easy for external researchers and platforms to work together due to concerns
round access, privacy, security, research integrity, intellectual property, competitiveness, and cost
 251 : 4 , 298 , 303 ]. External collaborations would benefit from the development of technical meth-
ds to enhance the privacy and security of shared data, and from legal or policy approaches that
et the terms of engagement so as to protect all relevant interests. 

Interdisciplinary Policy-making. There is a substantial gap between the policy community
nd the technical community (including between scholars of both). Not only is there an enor-
ous amount of specialized knowledge unknown to each side, but they use very different terms

o understand and describe the problems of recommenders. There are probably also fundamen-
al differences in values and politics between disciplines that will have to be resolved, which is
omplicated by the fact that recommender policy touches fundamental rights such as privacy and
reedom of expression. It is clear that effective policy-making must be collaborative and interdis-
iplinary, even if it is not yet clear how to achieve this. 

 CONCLUSION 

ecommender systems are a profound technology that will continue to touch many aspects
f individual and social life. At their best, they serve important interests of multiple parties.
onsumers might want accurate information, good music, or useful products, producers might
epend on recommenders to help them find their audience or customers, and platforms need
o capture some of this value to continue operating. Yet recommenders can also cause a wide
ariety of harmful effects, or they may miss opportunities to do good. Building human values
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nto recommender systems raises complex and consequential challenges, including philosophical,
egulatory, political, sociological, and technical issues. 

This article contributes to this interdisciplinary conversation and guides further research in
everal ways. We have identified some values that are relevant to recommender systems, and dis-
ussed the main issues surrounding each. We have described current industrial practice including
 sketch of modern recommender design, and an illustrative process for shifting a value in a pro-
uction system. We discussed the challenges of measuring adherence to a value, including the
ifficulty of “operationalizing” or translating a value into metrics, and the types of data sources
hat might supply useful information on values. We feel it is too early to attempt a general theory
f the value-sensitive design of recommenders, because the field is still emerging. Instead, we ar-
iculated an extensive menu of design techniques that have been applied or could likely be applied
o production systems. Finally, we surveyed developing approaches to recommender regulation,
dentifying a substantial gap in knowledge and orientation between the technology and policy
ommunities. 

While the intersection of content personalization with individual and societal flourishing is
 huge and varied area, we hope that this synthesis provides a shared language, useful starting
oints, and essential research directions for building human values into recommender systems. 

PPENDIX 

 TABLE OF VALUES 

his list was culled from a wide variety of sources and refined through multi-stakeholder con-
ultation as described above. It includes perspectives from various traditions and cultures, but is
ot intended to be a comprehensive list of the values that might be important to consider in rec-
mmender systems. Nor do we attempt to prioritize or rank these values here. Rather, this table
hould be viewed as one list of broadly important themes. 

For each value, we provide possible interpretations in the context of recommender systems,
ome indicators that might be used to assess whether a system enacts or supports that value and
xample designs that are relevant to that value. 
Value Interpretation in the context 
of recommenders 

Example Indicator Example design 

1 Usefulness “The purpose of recommenders is 
often summarized as ‘help the 
users find relevant items’” [ 167 ] 
A recommender should provide a 
useful service to the user. 

Long term user retention. 
User satisfaction surveys. 

Show people more of 
what they rate highly. 

2 Liberty A platform should respect human 

dignity and protect human rights 
and freedoms [ 116 : 61 ]; 
recommenders should 
operationalize respect for 
autonomy [ 352 ]. 
A platform should not stop users 
from exploring certain types of 
information. Users should be able 
to pursue their own good in their 
own way. 

Similar mechanisms as 
Freedom of Expression. 

Protections against 
arbitrary removal of 
content. 
Eliminating threats of 
violence designed to 
compel individuals to 
form particular 
opinions, in violation 

of article 19 in 

Universal Declaration 

of Human Rights. 
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Value 
Interpretation in the context of 

recommenders Example Indicator Example design 

3 Freedom of 
Expression 

“Everyone shall have the right to 
freedom of expression; this right 
shall include freedom to seek, 
receive and impart information and 
ideas of all kinds” [ 345 art .19] 
“The exercise of freedom of 
opinion, expression and 
information . . . is a vital factor in 

the strengthening of peace and 
international understanding” [ 342 ]. 
Platforms should not stop users 
from expressing their thoughts and 
opinions, or unduly suppress 
distribution of user posts. 

“Conducting an ex-ante 
evaluation attempts to 
predict the future 
relationship between 

[human] rights and an 

on-going or proposed 
business activity.” [ 197 ] 

Transparency around 
content which is 
suppressed. 
Appeals processes for 
removed content. 

4 Control Control “includes the system’s 
ability to allow users to revise their 
preferences, to customize received 
recommendations, and to request a 
new set of recommendations”
[ 267 : 18 ] 
“Ability to determine the nature, 
sequence and/or consequences of 
technical and operational settings, 
behavior, specific events, and/or 
experiences.” [ 162 : 17 ] 
The platform should give users 
ways to control the content 
selected for them and it should give 
users ways to control how the 
content they create is shared. 

“I feel in control of my 
news feed.” [ 348 ] 
Locus of control Scale. Ex: 
“Other people usually 
control my life” [ 289 ] 

Recommender 
controls [ 143 , 147 , 292 ] 

5 Agency, 
Autonomy, 
Efficacy 

“The sense of agency can be 
analyzed as a compound of more 
basic experiences, including the 
experience of intentional causation, 
the sense of initiation and the sense 
of control” [ 257 ] 
The platform should provide the 
capacity for intentional action and 
help users achieve their goals [ 352 ] 
The platform should not 
manipulate users for the benefit of 
other stakeholders. 

General Self-Efficacy 
Scale (GSE) 
Ex: “It is easy for me to 
stick to my aims and 
accomplish my goals”
[ 63 ] 
Autonomy Scale (AS): 
Measures components of 
autonomy including 
family loyalty autonomy, 
value autonomy, 
emotional autonomy, and 
behavioral autonomy [ 10 ] 

Recommender 
controls [ 143 , 147 , 292 ] 

6 Privacy “The protection of personal data is 
of fundamental importance to a 
person’s enjoyment of his or her 
right to respect for private and 
family life” [ 73 ] 
Users should be allowed to 
determine if and how their personal 
data is collected, processed and 
disseminated [ 116 : 21 , 162 : 71 ] 

GDPR Data Protection 

Impact Assessment [ 103 ] 
Controls to limit data 
use. 
Federated 
recommendation 

algorithms [ 268 , 373 ] . 
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Value 
Interpretation in the context of 

recommenders Example Indicator Example design 

7 Safety, 
Security 

The principle of ‘safety’ requires 
that an AI system be reliable and 
that ‘the system will do what it is 
supposed to do without harming 
living beings or [its] environment.’”
[ 116 : 38 ] 
“[System] use should not contribute 
to increasing stress, anxiety, or a 
sense of being harassed by one’s 
digital environment.” [ 347 ] 

Sense that most people 
can be trusted [ 372 ] 

Hate speech 

moderation 

Parental controls 
Option to report 
harmful content. 

8 Self- 
expression, 
authenticity 

“Self-expression is a notion that is 
closely associated with a horde of 
positive concepts, such as freedom, 
creativity, style, courage, 
self-assurance, and even healing 
and spirituality” [ 186 ] 
The platform should empower 
users to express their identity 
(including personality, attributes, 
behavior) and to decide how it is 
presented to others. [ 183 : 19 ]. 

Correlates with (but is 
not identical to) quantity 
and quality of user 
content creation 

Easy-to-use, attractive 
content 
creation/modification 

tools, e.g., SnapChat 
filters, TikTok tools. 
Content moderation 

policies that allow 

self-expression (e.g., 
don’t take down art 
because it has nudity) 

9 Well-being Well-being is a complex and 
multidimensional construct that 
encompasses many of the values 
we describe here and there is no 
universally accepted definition [ 88 ]. 
Well-being may be measured by 
both objective and subjective 
factors including satisfaction with 

life, emotions and affect, 
psychological well-being, social 
relationships, and meaning [ 205 ] 
On the platforms, users should see 
content that leads them to 
experience contentment, joy and 
pleasure, both ephemerally and 
over the long term. Platforms 
should help users feel satisfied with 

their lives. 

Satisfaction with Life 
Scale (SWLS). Ex: “The 
conditions of my life are 
excellent” [ 87 ] 
Positive Affect and 
Negative Affect Scales 
(PANAS). Ex: “Indicate 
the extent to which you 

have felt interested, 
distressed, excited, upset, 
etc over the past week”
[ 363 ] 
Scale of Psychological 
Wellbeing (SPWB) . 
Assesses psychological 
functioning across 
domains such as 
autonomy, 
self-acceptance, purpose 
in life, and positive 
relationships [ 285 ] 

Encourage active vs. 
passive use of social 
media [ 354 ] 
Usage controls, e.g., 
screen time limits 

10 Inspiration, 
Awe 

“In times of uncertainty, others are 
sought for guidance, inspiration or 
motivation, to seek ideas, goals or 
possibilities, which can influence 
ambitions, choices, and 
achievements.” [ 183 : 11 ] 
Platforms should show users 
content that will inspire, motivate, 
or guide them. 

Inspiration scale: 
Measures the experience 
of being inspired, feeling 
inspired and motivation 

to do something with that 
inspiration [ 336 ] 

Uprank content 
identified by 
Inspiration classifier 
[ 163 ] 
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Value 
Interpretation in the context of 

recommenders Example Indicator Example design 

11 Mental 
Health 

Platforms should help users protect 
and improve their mental health. 
Platforms should not encourage 
unhealthy types or amounts of use. 
“[A] state of well-being in which 

the individual realizes his or her 
own abilities, can cope with the 
normal stresses of life, can work 
productively and fruitfully, and is 
able to make a contribution to his 
or her community” [ 371 ] 

Warwick-Edinburgh 

Mental Well-Being Scale 
(WEMWBS) [ 331 ] 
Positive Mental Health 

Scale (PMH) 
Ex: “I feel that I am 

actually well equipped to 
deal with life and it’s 
difficulties” [ 211 ] 

Features that help 
users manage their 
screen time, e.g., “take 
a break” notifications, 
screen time limits. 
Option to report 
harassment or 
bullying. 

12 Physical 
Health 

Platforms should help users protect 
and improve their physical health, 
such as by providing accurate 
health information and 
encouraging behaviors that 
contribute to physical health. 

WHO Wellbeing Index 
(WHO-5) 
Ex: “I have felt active and 
vigorous” and “I woke up 
feeling fresh and rested”
[ 338 ] 

Help users develop 
healthy habits 
(exercise, diet, etc.) 
Clear platform policies 
on removing health 

misinformation, ads 
for fake cures, etc. 

13 Self- 
actualization, 
Personal 
Growth 

Platforms should enable users to 
reach their full potential. 
“Personal growth is a continuous 
improvement in life in order to find 
purpose and meaning” [ 183 : 22 ] 
“[R]ather than have people choose 
the easiest option, we wish to have 
them develop a strong sense of 
determination of having selected 
the right path” [ 187 ] 

“Feeling that the things 
one does are worthwhile”
[ 340 ] 
European Social Survey 
(ESS). Ex: “To what extent 
[do you] learn new things 
in life?” [ 247 ] 

Educational 
recommender systems 
[ 81 ] 

14 Recognition, 
Acknowl- 
edgment 

Platforms should provide ways for 
other people to recognize a user’s 
contributions or worth. 
“Whilst some esteem needs can be 
met by having self-acceptance, 
self-worth and self-value, 
validation from others is also 
important” [ 183 : 28 ] 

Social Inclusion Scale 
(SIS). Ex: ‘I have felt 
accepted by my friends’’ 
[ 370 ] 

“Celebrate” reaction 

button (as LinkedIn 

has) 

15 Knowledge, 
Informative- 
ness 

Users should see items that keep 
them informed about topics they 
care about or might care about. 
“[P]ersonalised news 
recommendations allow the media 
not only to help users find relevant 
information, but also to inform 

them better and more effectively.”
[ 148 :995] 
“Curiosity drives individuals to 
seek stimulation, information or 
new experiences, serving a purpose 
to increase knowledge and build 
skills.” [ 183 : 18 ] 

News knowledge quizzes 
[ 6 , 12 ] 
Curiosity and exploration 

inventory (CEI). Ex: “I 
would describe myself as 
someone who actively 
seeks as much 

information as I can in a 
new situation’’ [ 180 ] 

News recommender 
systems [ 179 ] 
Trending topics 
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Value 
Interpretation in the context of 

recommenders Example Indicator Example design 

16 Connection “Individuals are driven to interact 
and seek social closeness . . . The 
benefits of social connections are 
far-reaching.” [ 183 : 17 ] 

Perceived Social Support 
scale (PSS). 
Ex: “I have friends with 

whom I can share my joys 
and sorrows” and “I can 

talk about my problems 
with my friends” [ 391 ] 
Online Social Support 
Scale (OSSS). Ex: “Online, 
I belong to groups of 
people with similar 
interests” and “Online, 
people make me feel like I 
belong” [ 245 ] 

Recommendations for 
people and groups 
with similar interests 
[ 59 ] 

17 Civic 
Engagement 

“Working to make a difference in 

the civic life of one’s community 
and developing the combination of 
knowledge, skills, values and 
motivation to make that 
difference.” [ 97 :vi] 
“Creating a public forum and 
optimal conditions for engagement”
[ 148 :1005] 

Voter turnout [ 252 ] 
Attendance of peaceful 
demonstrations [ 372 ] 
Approximate total hours 
a month active in 

voluntary organizations 
[ 372 ] 
Donations to a charity in 

a month [ 242 ] 

Encourage people to 
vote [ 38 ] 

18 Community, 
Belonging 

“[T]he feeling that people matter to 
one another and to the group, and a 
shared faith that members’ needs 
will be met through their 
commitment to be together.” [ 219 ] 
“The concept of members sharing 
mutual concern and/or love for one 
another” [ 183 : 15 ]. 

Sense of belonging to a 
neighborhood 
[ 340 ] 
The General Sense of 
Belongingness Scale 
[ 212 ]. Ex: “I have a place 
at the table with others”

Recommend 
community-oriented 
groups 
User affordances for 
donating to charitable 
causes. 

19 Accessibility, 
Inclusive- 
ness 

Inclusiveness in design means that 
diverse people and perspectives 
should be involved in the design of 
AI systems. Inclusiveness in impact 
calls for a just distribution of AI 
benefits and harms.[ 116 : 51 –53 ] 

Assessing the experience 
of different user 
demographics through 

surveys and other 
methods, such as visually 
impaired or hard of 
hearing users [ 31 , 233 ] 

Implement Web 
Content and 
Accessibility 
Guidelines (WCAG) 
Variety of formats for 
cognitive impairments 
(e.g., screen readers, 
transcripts, captions) 

20 Tolerance, 
Constructive 
Discourse 

Tolerance “creates the opportunity 
for a wide range of political groups 
to express their ideas and to 
participate in public life” [ 327 ] 
Polarization divides society into 
“us” and ”them” camps and 
contributes to the erosion of 
democracy [ 218 ] 

Polarization measures 
such as issue-position or 
affective polarization [ 43 , 
256 , 378 ] 

Increase ideological 
diversity, select for 
civil conversations, 
optimize polarization 

measures [ 321 ] 

21 Duty The notion of duty and obligation is 
defined in contrast to self-interest 
[ 158 ]. 

Personal control and 
responsibility scale [ 220 ] 

User affordances for 
donating to charitable 
causes. 
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Value 
Interpretation in the context of 

recommenders 
Example 
Indicator Example design 

22 Care, Compassion, 
Empathy 

“The ethic of care emphasizes the 
importance of context, 
interdependence, relationships, and 
responsibilities to concrete others.”
[ 188 ] and is “based on the 
recognition that self and others are 
interconnected” [ 309 ]. 
These notions also appear in 

Confucian and Buddhist traditions 
[ 350 : 132 ] and in Ubuntu values 
where “a person is ‘a person 

through others’” [ 243 ]. 

Empathy quotient 
[ 22 ]. Ex: “I find it 
easy to put myself 
in somebody else’s 
shoes’’ and ‘’Seeing 
people cry doesn’t 
really upset me ‘’ 

Best practices in 

suicide prevention 

[ 278 ] 

23 Fairness, Equality, 
Equity 

“A morally justifiable distribution 

of benefits, goods, harms, and risks”
[ 351 ]. 
In multi stakeholder fairness, 
different stakeholders have 
different objectives and needs from 

the system [ 1 ]. 

Fairness metrics in 

classification and 
recommendation 

[ 34 , 271 ] 

Add fairness measures 
to the recommender 
training or serving 
objectives [ 34 , 222 ] 

24 Diversity “[D]iversity refers to the idea that 
in a democratic society, informed 
citizens construct their worldview 

from a diverse set of sources which 

helps them to make balanced and 
well-considered 
decisions.” [ 150 : 192 ]. 
“‘Cultural diversity’ refers to the 
manifold ways in which the 
cultures of groups and societies find 
expression.” [ 343 art. 4] 

Slate and feed 
diversity metrics of 
various kinds 
(Kunaver and 
Požrl, 2017) 
Perceived diversity 
and user 
satisfaction 

(Kunaver and 
Požrl, 2017) 

Methods to increase 
various types of 
diversity, including 
topical and source 
diversity, novelty, 
coverage, etc. [ 60 , 194 ] 

25 Accountability Accountability is “a component of 
the state of being responsible, 
alongside being answerable and 
being attributable” [ 215 ] 
AI principles documents include 
“verifiability and replicability,”
“impact assessments,”
“environmental responsibility,”
“evaluation and auditing 
requirements.” [ 116 : 28 ] 

Ranking Digital 
Rights Corporate 
Accountability 
Index [ 273 ] 

Explanations of 
decisions according to 
clearly defined 
principles. 
Processes for users to 
bring up problems and 
resolve them in a 
timely manner. 

26 Transparency and 
Explainability 

Transparency means that 
information provided about a 
system is a) meaningful, b) useful, 
c) accessible, d) comprehensive, and 
e) truthful [ 162 : 71 ] 
“Transparency is instrumental to 
uphold intrinsic values of human 

autonomy and justice” [ 56 : 20 ] 
Desirable properties of 
transparency metrics [ 312 ] 
“[ 162 : 49 , 312 ] 

System cards 
which provide 
stakeholders with 

an overview of 
different 
components of an 

ML system [ 4 ] 

Explanations for 
recommendations, 
answering questions 
such as “why am I 
seeing this?” or “Why 
has this been 

removed?”
Publicly disclose and 
discuss changes to 
moderation or ranking 
[ 322 ]. 
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Value 
Interpretation in the context of 

recommenders 
Example 
Indicator Example design 

27 Accuracy 
(Factuality) 

Accuracy is “an AI system’s ability 
to make correct judgements, for 
example to correctly classify 
information into the proper 
categories, or its ability to make 
correct predictions, 
recommendations, or decisions 
based on data or models” [ 365 ] 
AI systems should make “accurate 
information readily available” [ 133 ] 
and should not spread 
“untrustworthy information.” [ 347 ] 

Credibility metrics 
including 
prevalence of 
misinformation 

items among 
recommendations, 
and user 
engagement on 

this material. 

Misinformation 

classifiers [ 45 ] 
Prompts to consider 
accuracy before 
sharing [ 262 ]. 

28 Tradition, 
History 

“Heritage is a concept to which 

most people would assign a positive 
value. The preservation of material 
culture ... and intangible culture . . . 
are generally regarded as a shared 
common good by which everyone 
benefits.” [ 299 ]Practices, symbols, 
ideas, and beliefs that are developed 
by groups and represent their 
shared experience and fate. They 
often take the form of religious 
rites, beliefs, and norms of behavior 
[ 293 : 6 ]. 
Rituals or conventional norms are 
one of the five central virtues of 
Confucianism [ 77 ] 

Percentage of 
locally produced 
content. 

Promotion of cultural 
events [ 62 ] 

29 Environmental 
Sustainability 

“Respect for environment and 
natural habitat, efficiency, 
maintainability, operability, 
supportability, reliability, durability, 
resilience, forgiveness, robustness, 
redundancy, reusability, 
reconfigurability, simplicity, 
economy, renewability” [ 162 : 70 ] 
“Develop and scale up carefully 
assessed technologies, 
infrastructure and actions that 
reduce climate change and its 
associated risks.” [ 344 ] 

Product level 
carbon footprints 
[ 224 ] 

Recommender systems 
can potentially direct 
users toward 
climate-friendly 
options [ 279 : 25 ] 
Reporting on the 
energy used by ML 
models [ 152 ] 

30 Progress The International Covenant on 

Civil and Political rights includes 
the right of people to “freely pursue 
their economic, social and cultural 
development” [ 345 ] as expanded in 

the Declaration on Social Progress 
and Development [ 346 ]. 

UN Human 

Development Index 
[ 313 ] 

To the best of our 
knowledge, none 

31 Labor Meaningful work is both significant 
and positive in valence [ 281 ]. Job 
insecurity, low employability, and 
unemployment are all detrimental 
to well-being, beyond the effects of 
income loss [ 136 ] 

Work and Meaning 
Inventory [ 314 ] 

Ensure users see 
recommendations for 
jobs that they would 
want. 
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