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Outline

• What are survey calibration estimators

• Relationship to RRZ efficient estimators

• Calibration and ‘estimated weights’ paradox

• Calibration for straightforward AIPW estimators

• Semiparametric models with small codimension

Underlying question: where does the information come from

in semiparametric models with high codimension



Estimating a total

Population size N , sample size n, sampling probabilities πi,

sampling indicators Ri.

Goal: estimate
N∑

i=1

yi

Horvitz–Thompson estimator:

T̂ =
∑

Ri=1

1

πi
yi

To estimate parameters θ replace yi with loglikelihood `i(θ) or

estimating functions Ui(θ).



Auxiliary information

HT estimator is inefficient when some population data are

available.

Suppose xi known for all i.

Fit yi ∼ xiβ by (probability weighted) least squares to get β̂. Let

r2 be the proportion of variation explained.

T̂reg =
∑

Ri=1

1

πi
(yi − xiβ̂) +

N∑
i=1

xiβ̂

ie, HT estimator for sum of residuals plus population sum of

fitted values.



Auxiliary information

For large n, N and with conditions on moments and sampling

var
[
T̂reg

]
= r2var

[
T̂

]
+ O(N/

√
n) =

(
r2 + O(n−1/2)

)
var

[
T̂

]
and the relative bias of T̂reg is O(1/n)

The lack of bias does not require any assumptions about the

distribution of Y |X

β̂ is consistent for the population least squares β, for which the

mean residual is zero by construction.



Auxiliary information

Since β̂ is linear in yi we can write T̂reg as

T̂reg =
∑

Ri=1

wiyi =
∑

Ri=1

gi

πi
yi

for some (ugly) gi.

T̂reg is an IPW estimator using ‘calibrated’ or ‘tuned’ (French:

calage) weights.

General calibration problem: for a suitable metric d( , ) find gi

minimizing
∑

d(gi,1) and satisfying the calibration equations

∑
Ri=1

gi

πi
xi =

N∑
i=1

xi

[Deville et al, JASA 1993; JNK Rao et al, Sankhya 2002]



Two-phase studies

Sample N individuals and measure some variables, then sub-

sample n individuals with probabilities πi and measure more

individuals

Calibration problem: find gi minimizing
∑

d(gi,1) and satisfying

the calibration equations

∑
Ri=1

gi

πi
xi =

N∑
i=1

xi

as in single-phase sample.

To estimate parameters θ, replace yi with Ui(θ) and solve∑
Ri=1

gi

πi
Ui(θ) = 0



RRZ estimators

Class of calibration estimators same as augmented IPW estima-

tors of Robins, Rotnitzky, & Zhao.

Class contains the efficient estimator in the non-parametric

phase-1 model (efficient design-based estimator) — the most

efficient estimator that is consistent for the same limit as if we

had complete data.

Typically not fully efficient if model assumptions are imposed at

phase 1 — eg, Cox model assumes infinitely many constraints

at phase 1, and efficient two-phase estimator is known (Mark

& Katki, 2006; Nan 2004) and is more efficient than calibration

estimator.



Estimated weights

The fact that ∑
Ri=1

1

πi
Ui(θ) = 0

is strictly less efficient than an estimator based on estimated

sampling probabilities π̂i ∑
Ri=1

1

πi
Ui(θ) = 0

is widely regarded as a paradox.

But as calibration estimators the gain in efficiency is intuitively

clear: it is the same as the gain in efficiency from adjusting for

pre-randomization variables in a randomized trial



Estimated weights

Issue is not ‘estimated weights’ vs ‘known weights’ but ‘known

totals’ vs ‘estimated totals’ for the auxiliary variables by imposing

the calibration equations.

Information is gained to the extent that Ui(θ) is predictable from

auxiliary variables, and this gain can be large.



Choice of auxiliaries

The other heuristic gain from the calibration viewpoint is in

choosing predictors for estimating π.

The regression formulation shows that the predictors should have

strong linear relationships with Ui(θ).

If Ui(θ) is of a form such as

ziwi(yi − µi(θ))

then zi is approximately uncorrelated with Ui

So, don’t use a variable correlated with a phase-2 predictor as

a calibration variable, use a variable correlated with the phase-2

score function.



Survival example

Kulich & Lin (JASA, 2004) gave an example of a (pretend) two-

phase study of Wilm’s Tumor

• Phase 1: age at onset, tumor diameter, stage, histology

(from local lab), time to relapse

• Phase 2: histology from gold-standard central lab.

Phase 2 is a stratified subsample base on relapse and on local-lab

histology report.

[In fact, gold-standard histology available for everyone, so we can

compare efficiency to full-cohort analysis] Kulich & Lin (following



Survival example

RRZ) used local-lab histology and other phase-1 variables in
logistic regression to estimate π̂ (in fact, separately for each
time point).

Effectively the same as calibration using phase-1 variables as
auxiliary variables

Alternative:

• estimate misclassification in local-lab histology using phase
two.

• Fit a measurement-error model to phase one using Prentice
(1982) first-order approximation.

• Use the individual estimating functions U∗
i as calibration

variables.

U∗
i and Ui should be more strongly correlated than local-lab

histology and Ui.



Results: key

• U vs Z: auxiliary variable is estimating function (U) or raw

variable (Z)

• Calib vs Est wt: calibration or weights estimated from

probabilities from fitted logistic regression.

• t: indicates time-dependent weights (3 time periods)

• IPW: plain Horvitz-Thompson estimator

• full: Full cohort

Area of circle indicated estimated relative efficiency. Rows are

estimators, columns are parameters.



Results



Gene-environment independence

Calibration can also be used to fit semiparametric models of

finite codimension.

An example is a case–control study of drug–gene interaction

logit P [Y = 1] = α + βgI(gene) + βdI(drug) + γI(drug ∩ gene)

Often plausible that drug and genetic variant are independent in

the population.



Gene-environment independence

For 2×2×2 table and rare events, case-only estimation exploits

the independence [Piegorsch et al, 1994]

G
E 0 1

Case 0 a b
1 c d

Control 0 e f
1 g h

case-control estimator:
ad/bc
eh/gf

case-only estimator:
ad
bc



Calibration to independence

Find gi so that∑
Ri=1, y=0

gi

πi
(gene−µg)(drug−µd) = E [(gene− µg)(drug − µd)] = 0

This reproduces the case-only estimator exactly. Same approach

can be used with more complex models, by calibrating interaction

terms to zero.

For discrete data there are only finitely many terms, for

continuous data use basis functions such as polynomials or

splines.

For rare events calibration to independence is almost fully

efficient, implying that no information comes from the structure

of the logistic model.



Calibration to independence

For non-rare events calibration is slightly more complicated, and

is not fully efficient. It captures about half the efficiency gain

possible from the NPMLE. (Dai 2007+)

Likelihood-based approaches to this problem exist (?abound):

Chatterjee, Carrol, McNeney, Graham.

Calibration is interesting because it is easy and because it tells

us about the sources of information.



Conclusions

Survey calibration is a useful way to think about RRZ-style

estimators: intuition is easier

Calibration is a useful way to construct estimators in models of

low co-dimension

Calibration estimators are typically usefully more efficient than

the HT estimator (though not always)

Calibration estimators are often less efficient than semiparamet-

ric likelihood estimators, but the extra information really does

come from the phase-one model assumptions.
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