
Analyzing moderately large data sets

Thomas Lumley

R Core Development Team

useR — Rennes

Problem

Analyzing a data set that contains N observations on P variables,

where N × P is inconveniently large (from 100Mb on small

computers up to many Gb).

I will mostly assume that any tasks can be broken down into

pieces that use only p variables, where p is small.

Since N is assumed large, only tasks with complexity (nearly)

linear in N are feasible.

Mixture of concrete implementations for linear models, general

ideas.

Outline

• Technologies

– Connections

– netCDF

– SQL

– Memory profiling

• Strategies

– Load only the necessary variables

– Incremental bounded-memory algorithms

– Randomized subset algorithms

– Outsource the computing to SQL

Examples

Linear regression and subset selection on large data sets (large

N , small P)

Analysis of large surveys (N ≈ 450000, P ≈ 500, p ≈ 10)

Whole-genome association studies (N ≈ 5000, P ≈ 106, p ≈ 1)

Whole-genome data cleaning (P ≈ 5000, N ≈ 106, p ≈ 1)

File connections

file() opens a connection to a file.

read.table() and friends can read incrementally from the con-

nection

• read 1000 records

• process them

• lather, rinse, repeat

Examples: summaryRprof(), read.fwf()

Chunk size should be small enough not to cause disk thrashing,

large enough that the fixed costs of read.table() don’t matter.

Empirically, performance is constant over a fairly wide range.

File connections

Since read.table() is the bottleneck, make sure to use it

efficiently

• Specify correct types in colClasses= argument to get faster

conversions

• Specify "NULL" for columns that you don’t need to read.

netCDF

netCDF is an array-structured storage format developed for

atmospheric science research (HDF5 from NCSA is similar, but

R support is not as good).

Allows efficient reading of rows, columns, layers, general hyper-

rectangles of data.

We have used this for whole-genome genetic data. Martin

Morgan (FHCRC) reports that this approach to whole-genome

data scales to a cluster with hundreds of nodes.

Large data

netCDF was designed by the NSF-funded UCAR

consortium, who also manage the National

Center for Atmospheric Research.

Atmospheric data are often array-oriented: eg temperature,

humidity, wind speed on a regular grid of (x, y, z, t).

Need to be able to select ‘rectangles’ of data – eg range of

(x, y, z) on a particular day t.

Because the data are on a regular grid, the software can work out

where to look on disk without reading the whole file: efficient

data access.

WGA

Array oriented data (position on genome, sample number) for

genotypes, probe intensities.

Potentially very large data sets:

2,000 people × 300,000 = tens of Gb

16,000 people × 1,000,000 SNPs = hundreds of Gb.

Even worse after imputation to 2,500,000 SNPs.

R can’t handle a matrix with more than 231−1 ≈ 2 billion entries

even if your computer has memory for it. Even data for one

chromosome may be too big.

Using netCDF data

With the ncdf package:

open.ncdf() opens a netCDF file and returns a connection to the

file (rather than loading the data)

get.var.ncdf() retrieves all or part of a variable.

close.ncdf() closes the connection to the file.

Dimensions

Variables can use one or more array dimensions of a file

!"#$

!%&'()$

*)+,-.')/$

012,&,/,&)$

Example

Finding long homozygous runs (possible deletions)

nc <- open.ncdf("hapmap.nc")

read all of chromosome variable

chromosome <- get.var.ncdf(nc, "chr", start=1, count=-1)

set up list for results

runs<-vector("list", nsamples)

for(i in 1:nsamples}{

read all genotypes for one person

genotypes <- get.var.ncdf(nc, "geno", start=c(1,i),count=c(-1,1))

zero for htzygous, chrm number for hmzygous

hmzygous <- genotypes != 1

hmzygous <- as.vector(hmzygous*chromosome)

Example

consecutive runs of same value

r <- rle(hmzygous)

begin <- cumsum(r$lengths)

end <- cumsum(c(1, r$lengths))

long <- which (r$lengths > 250 & r$values !=0)

runs[[i]] <- cbind(begin[long], end[long], r$lengths[long])

}

close.ncdf(nc)

Notes

• chr uses only the ’SNP’ dimension, so start and count are
single numbers
• geno uses both SNP and sample dimensions, so start and
count have two entries.
• rle compresses runs of the same value to a single entry.

Creating netCDF files

Creating files is more complicated

• Define dimensions

• Define variables and specify which dimensions they use

• Create an empty file

• Write data to the file.

Dimensions

Specify the name of the dimension, the units, and the allowed

values in the dim.def.ncdf function.

One dimension can be ’unlimited’, allowing expansion of the file

in the future. An unlimited dimension is important, otherwise

the maximum variable size is 2Gb.

snpdim<-dim.def.ncdf("position","bases", positions)

sampledim<-dim.def.ncdf("seqnum","count",1:10, unlim=TRUE)

Variables

Variables are defined by name, units, and dimensions

varChrm <- var.def.ncdf("chr","count",dim=snpdim,

missval=-1, prec="byte")

varSNP <- var.def.ncdf("SNP","rs",dim=snpdim,

missval=-1, prec="integer")

vargeno <- var.def.ncdf("geno","base",dim=list(snpdim, sampledim),

missval=-1, prec="byte")

vartheta <- var.def.ncdf("theta","deg",dim=list(snpdim, sampledim),

missval=-1, prec="double")

varr <- var.def.ncdf("r","copies",dim=list(snpdim, sampledim),

missval=-1, prec="double")

Creating the file

The file is created by specifying the file name ad a list of

variables.

genofile<-create.ncdf("hapmap.nc", list(varChrm, varSNP, vargeno,

vartheta, varr))

The file is empty when it is created. Data can be written using

put.var.ncdf(). Because the whole data set is too large to read,

we might read raw data and save to netCDF for one person at

a time.

for(i in 1:4000){

geno<-readRawData(i) ## somehow

put.var.ncdf(genofile, "geno", genc,

start=c(1,i), count=c(-1,1))

}

SQL

Relational databases are the natural habitat of many large data

sets. They are good at

• Data management

• Merging data sets

• Selecting subsets

• Simple data summaries

Relational databases all speak Structured Query Language

(SQL), which is more or less standardized. Most of the

complications of SQL deal with transaction processing, which

we don’t have.

Initially we care about the SELECT statement.

SQL

SELECT var1, var2 FROM table WHERE condition

SELECT sum(var1) as svar1, sum(var2) as svar2 FROM table

GROUP BY category

SELECT * FROM table limit 1

SELECT count(*) FROM table

SELECT count(*) FROM table GROUP BY category

SQL

DBI package defines an interface to databases, implemented by

eg RSQLite.

RODBC defines a similar but simpler interface to ODBC (predom-

inantly a Windows standard interface).

SQLite (http://www.sqlite.org), via RSQLite or sqldf, is the

easiest database to use. It isn’t suitable for very large databases

or for large numbers of simultaneous users, but it is designed to

be used as embedded storage for other programs.

Gabor Grothendieck’s sqldf package makes it easier to load data

into SQLite and manipulate it in R.

http://www.sqlite.org

DBI/RSQLite

library(RSQLite)

sqlite <- dbDriver("SQLite")

conn <- dbConnect(sqlite, "~/CHIS/brfss07.db")

dbGetQuery(conn, "select count(*) from brfss")

results <- dbSendQuery(conn, "select HSAGEIR from brfss")

fetch(results,10)

fetch(results,10)

dbClearResult(result)

Change the dbDriver() call to connect to a different database

program (eg Postgres).

Memory profiling

When memory profiling is compiled into R

• tracemem(object) reports all copying of object

• Rprof(,memory.profling=TRUE) writes information on duplica-
tions, large memory allocations, new heap pages at each tick
of the time-sampling profiler

• Rprofmem() is a pure allocation profiler: it writes a stack trace
for any large memory allocation or any new heap page.

Bioconductor programmers have used tracemem() to cut down
copying for single large data objects.

Rprofmem() showed that foreign::read.dta() had a bottleneck in
as.data.frame.list(), which copies each column 10 times.(!)

Load-on-demand

Use case: large surveys.

The total data set size is large (eg N ∼ 105, P ∼ 103), but any

given analysis uses only p ∼ 10 variables.

Loading the whole data set is feasible on 64-bit systems, but not

on my laptop.

We want an R object that represents the data set and can load

the necessary variables when they are needed.

Difficult in general: data frames work because they are special-

cased by the internal code, especially model.frame()

Formula + data.frame interface is tractable, as is formula +

expression.

Basic idea

doSomething <- function(formula, database){

varlist <- paste(all.vars(formula), collapse=", ")

query <- paste("select",varlist,"from",database$tablename)

dataframe <- dbGetQuery(database$connection, query)

now actually do Something

fitModel(formula, dataframe)

}

First construct a query to load all the variables you need, then

submit it to the database to get the data frame, then proceed

as usual.

Refinements: some variables may be in memory, not in the

database, we may need to define new variables, we may want

to wrap an existing set of code.

Wrapping existing code

Define a generic function to dispatch on the second (data)

argument

doSomething <- function(formula, data, ...){

UseMethod("doSomething", data)

}

and set the existing function as the default method

doSomething.database <- (formula, database, ...){

varlist <- paste(all.vars(formula), collapse=", ")

query <- paste("select",varlist,"from",database$tablename)

dataframe <- dbGetQuery(database$connection, query)

now actually do Something

doSomething(formula, dataframe, ...)

}

Allowing variables in memory

To allow the function to pick up variables from memory, just

restrict the database query to variables that are in the database

dbvars <- names(dbGetQuery(conn, "select * from table limit 1"))

formulavars <- all.vars(formula)

varlist <- paste(setdiff(formulavars, dbvars), collapse=", ")

[In practice we would find the list of names in the database first

and cache it in an R object]

Now model.frame() will automatically pick up variables in mem-

ory, unless they are masked by variables in the database table —

the same situation as for data frames.

Allowing updates

Three approaches:

• Write new variables into the database with SQL code: needs

permission, reference semantics, restricted to SQL syntax

• Create new variables in memory and save to the database:

needs permission, reference semantics, high network traffic

• Store the expressions and create new variables on data load:

wasted effort

The third strategy wins when data loading is the bottleneck and

the variable will eventually have to be loaded into R.

Design

A database object stores the connection, table name, new
variable information

New variables are created with the update method

mydata <- update(mydata, avgchol = (chol1 + chol2)/2,

hibp = (systolic>140) | (diastolic>90))

• An expression can use variables in the database or previously
defined ones, but not simultaneously defined ones.
• Multiple update()s give a stack of lists of expressions
• Use all.vars going down the stack to find which variables to

query
• Return up the stack making the necessary transformations

with eval()

Implemented in survey, mitools packages.

Object structure

survey.design objects contain a data frame of variables, and a

couple of matrices of survey design metadata.

DBIsvydesign contain the survey metadata and database infor-

mation: connection, table name, driver name, database name.

All analysis functions are already generic, dispatching on the type

of survey metadata (replicate weights vs strata and clusters).

Define methods for DBIsvydesign that load the necessary variables

into the $variables slot and call NextMethod to do the work

Ideally we would just override model.frame(), but it is already

generic on its first argument, probably a mistake in hindsight.

Object structure

> svymean

function (x, design, na.rm = FALSE, ...)

{

.svycheck(design)

UseMethod("svymean", design)

}

> survey:::svymean.DBIsvydesign

function (x, design, ...)

{

design$variables <- getvars(x, designdbconnection,

designdbtablename,

updates = design$updates)

NextMethod("svymean", design)

}

Incremental algorithms: biglm

Linear regression takes O(np2 +p3) time, which can’t be reduced

easily (for large p you can replace p3 by plog2 7, but not usefully).

The R implementation takes O(np+p2) memory, but this can be

reduced dramatically by constructing the model matrix in chunks.

• Compute XTX and XTy in chunks and use β̂ = (XTX)−1XTy

• Compute the incremental QR decomposition of X to get R

and QTY , solve Rβ = QTy

The second approach is slightly slower but more accurate.

Coding it would be a pain, but Alan Miller has done it.(Applied

Statistics algorithm 274)

Fortran subroutine INCLUD in biglm and in leaps updates R and

QTY by adding one new observation.

Incremental algorithms: biglm

The only new methodology in biglm is an incremental computa-

tion for the Huber/White sandwich variance estimator.

The middle term in the sandwich is
n∑
i=1

xi(yi − xiβ̂)2xTi

and since β̂ is not known in advance this appears to require a

second pass through the data.

In fact, we can accumulate a (p+1)2×(p+1)2 matrix of products

of x and y that is sufficient to compute the sandwich estimator

without a second pass.

biglm: interface

biglm() uses the traditional formula/ data.frame interface to set

up a model

update() adds a new chunk of data to the model.

The model matrices have to be compatible, so data-dependent

terms are not allowed. Factors must have their full set of levels

specified (not necessarily present in the data chunk), splines must

use explicitly specified knots, etc.

One subtle issue is checking for linear dependence. This can’t

be done until the end, because the next chunk of data could fix

the problem. The checking is done by the coef() and vcov()

methods.

bigglm

Generalized linear models require iteration, so the same data has

to be used repeatedly.

The bigglm() function needs a data source that can be reread

during each iteration.

The basic code is in bigglm.function(). It iterates over calls to

biglm, and uses a data() function with one argument

data(reset=FALSE) supplies the next chunk of data or NULL or a

zero-row data frame if there is no more.

data(reset=TRUE) resets to the start of the data set, for the next

iteration.

bigglm and SQL

One way to write the data() function is to load data from a SQL

query.

The query needs to be prepared once, in the same way as for

load-on-demand databases.

modelvars <- all.vars(formula)

dots <- as.list(substitute(list(...)))[-1]

dotvars <- unlist(lapply(dots, all.vars))

vars <- unique(c(modelvars, dotvars))

tablerow <- dbGetQuery(data, paste("select * from ", tablename,

" limit 1"))

tablevars <- vars[vars %in% names(tablerow)]

query <- paste("select ", paste(tablevars, collapse = ", "),

" from ", tablename)

bigglm and SQL

The query is resent when reset=TRUE and otherwise a chunk of
the result set is loaded.

chunk <- function(reset = FALSE) {

if (reset) {

if (got > 0) {

dbClearResult(result)

result <<- dbSendQuery(data, query)

got <<- 0

}

return(TRUE)

}

rval <- fetch(result, n = chunksize)

got <<- got + nrow(rval)

if (nrow(rval) == 0)

return(NULL)

return(rval)

}

bigglm iterations

If p is not too large and the data are reasonably well-behaved so

that the loglikelihood is well-approximated by a quadratic, three

iterations should be sufficient and good starting values will cut

this to two iterations or even to one.

Good starting values may be available by fitting the model to a

subsample.

If p is large or the data are sparse it may be preferable to use a

fixed small number of iterations as a regularization technique.

Subset selection and biglm

Forward/backward/exhaustive search algorithms for linear mod-

els need only the fitted QR decomposition or matrix of sums and

products, so forward search is O(np2 + p3 + p2) and exhaustive

search is O(np2 + p3 + 2p)

In particular, the leaps package uses the same AS274 QR

decomposition code and so can easily work with biglm

The subset selection code does not have to fit all the regression

models, only work out the residual sum of squares for each model.

The user has to fit the desired models later; the package has

vcov() and coef() methods.

Subset selection and glm

For a generalized linear model it is not possible to compute the

loglikelihood without a full model fit, so the subset selection

shortcuts do not work.

They do work approximately, which is good enough for many

purposes.

• Fit the maximal model with bigglm

• Do subset selection on the QR decomposition object, which

represents the last iteration of weighted least squares,

returning several models of each size (eg nbest=10)

• Refit the best models with bigglm to compute the true

loglikelihood, AIC, BIC, CIC, DIC, . . . ,MIC(key mouse)∗.

∗joke (c) Scott Zeger

Random subsets

Even when analyzing a random subset of the data is not enough
for final results it can be a useful step.

• Fitting a glm to more than
√
N observations and then taking

one iteration from these starting values for the full data is
asymptotically equivalent to the MLE.

• Computing a 1 − ε confidence interval for the median on a
subsample, followed up by one pass through the data will
be successful with probability 1 − ε; otherwise repeat until
successful. The same trick works for quantile regression.

• Averaging an estimator over a lot of random subsamples will
be valid and close to efficient for any

√
n-consistent estimator

if the subsamples are large enough for the first-order term in
the sampling error to dominate.

Median

Take a subset at random of size n� N

Construct a 99.99% confidence interval (l, u) for the median.

The interval will cover about 2/
√
n fraction of your data.

Take one pass through the data, counting how many observa-

tions ml are below l and how many mu above u, and loading any

that are between l and u. This takes about 2N/
√
n memory

If ml < N/2 and mu < N/2 the median is the N/2−mlth element

of those loaded into memory, and this happens with probability

99.99%.

Otherwise repeat until it works (average number of trials is

1.0001).

Median

Total memory use is n + 2N/
√
n, optimized by n = N2/3. With

N = 106, n = 104, ie, 99% reduction

If the data are already in random order we can use the first n

for the random subsample, so a total of only one pass is needed.

Otherwise need two passes.

Potentially large improvement over sorting, which takes lgN−lgn

passes to sort N items with working memory that holds n.

For quantile regression the same idea works with n = (Np)2/3.

See Roger Koenker’s book.

Two-phase sampling

For survival analysis and logistic regression, can do much better

than random sampling.

When studying a rare event, most of the information comes from

the small number of cases.

The case–cohort design uses the cases and a stratified random

sample of non-cases, to achieve nearly full efficiency at much

reduced computational effort. Used in analyzing large national

health databases in Scandinavia.

Analyse using cch() in the survival package.

Outsourcing to SQL

SQL can do addition and multiplication within a record and sums

across records

This means it can construct the design matrix X and XTX and

XTy for a linear regression of y on X

R can then do the last step of matrix inversion and multiplication

to compute β̂.

This approach is bounded-memory and also bounded data

transfer (if the database is on a remote computer). There is

no upper limit on data set size except limits on the database

server.

Model frame and model matrix

The structure of the design matrix does not depend on the

data values and so can be computed by model.frame() and

model.matrix() even from a zero-row version of the data.

Current implementation allows only contr.treatment contrasts,

and interactions are allowed only between factor variables.

Model frame and model matrix are created as new tables in the

database (views might be better), and a finalizer is registered to

drop the tables when the objects are garbage-collected.

Subsetting is handled by using zero weight for observations

outside the subset.

Not the most efficient implementation, but never modifies tables

and has pass-by-value semantics.

Model frame and model matrix

> source("sqlm.R")
> sqlapi<-sqldataset("api.db",table.name="apistrat",weights="pw")
Loading required package: DBI
Warning message:
In is.na(rows) : is.na() applied to non-(list or vector) of type ’NULL’
> s1<-sqllm(api00~api99+emer+stype,sqlapi)
> s1

_api99 _emer stypeH stypeM _Intercept_
0.9204156 -0.1812528 -31.2287266 -13.7715494 91.1844749

attr(,"var")
_api99 _emer stypeH stypeM _Intercept_

_api99 0.0002747833 0.001558717 0.002124677 0.003343941 -0.1920906
_emer 0.0015587169 0.028337396 -0.024989203 -0.027430740 -1.3068199
stypeH 0.0021246766 -0.024989203 29.733980360 4.438515636 -5.3971393
stypeM 0.0033439408 -0.027430740 4.438515636 23.256192238 -6.1452341
Intercept -0.1920905578 -1.306819915 -5.397139270 -6.145234104 141.0270977
> sqrt(diag(attr(s1,"var")))

_api99 _emer stypeH stypeM _Intercept_
0.01657659 0.16833715 5.45288734 4.82246744 11.87548305

Model frame and model matrix

> dbListTables(sqlapi$conn)
[1] "_mf_10d63af1" "_mm_60b7acd9" "apiclus1" "apiclus2" "apistrat"
> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 225559 6.1 407500 10.9 350000 9.4
Vcells 122856 1.0 786432 6.0 364412 2.8
> dbListTables(sqlapi$conn)
[1] "apiclus1" "apiclus2" "apistrat"

Other models

Chen & Ripley (DSC 2003) described how to use this approach

more generally: the iterative optimization for many models can

be written as arithmetic on large data sets and parameters to

create a small update vector, followed by a small amount of

computation to get new parameter values.

For example, fitting a glm by IWLS involves repeated linear

model fits, with the working weights and working response

recomputed after each fit.

In a dialect of SQL that has EXP() the working weights and

working response can be computed by a select statement.

	Problem
	Outline
	Examples
	File connections
	netCDF
	Large data
	WGA
	Using netCDF data
	Dimensions
	Example
	Creating netCDF files
	Dimensions
	Variables
	Creating the file
	SQL
	DBI/RSQLite
	Memory profiling
	Load-on-demand
	Basic idea
	Wrapping existing code
	Allowing variables in memory
	Allowing updates
	Design
	Object structure
	Incremental algorithms: biglm
	biglm: interface
	bigglm
	bigglm and SQL
	bigglm iterations
	Subset selection and biglm
	Subset selection and glm
	Random subsets
	Median
	Two-phase sampling
	Outsourcing to SQL
	Model frame and model matrix
	Other models

