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Outline

Weighted estimators in two-phase designs are not semiparametric-

efficient. In some models the efficient estimator is known.

Should we be using it?

• Two-phase designs and estimators

• Sensitivity to model misspecification

Themes: where does the information come from?



Two-phase studies

Sample a cohort of N people from population and measure some

variables (Z, Y ) then subsample n of them and measure more

variables X.

Ri = 1 indicates that person i is sampled. The sampling

probabilities E[Ri|Z, Y ] = πi are known for everyone in the

sample.

Examples:

• New measurements: new assays on frozen blood samples

• Coding of free-text responses

• Validation of self-report, discharge diagnosis, billing code

• Validation of cheap assay with accurate assay

[sampling should be stratified as finely as possible: not covered]



Modelling

We have some semiparametric outcome model (eg logistic,
Cox) for Y that we would know how to fit with complete data,
by solving estimating equations.

N∑
i=1

Ui(θ) = 0

A simple estimator is the ‘Horvitz-Thompson’ estimator, the
solution to

N∑
i=1

Ri
πi
Ui(θ) = 0

Since Ri ⊥ Ui |Y, Z,

E

 N∑
i=1

Ui(θ)

 = E

 N∑
i=1

Ri
πi
Ui(θ)


whether or not Y really follows the outcome model.



RRZ estimators

Robins, Rotnitzky & Zhao (JASA, 1995) defined Augmented

IPW estimators for two-phase designs.

N∑
i=1

Ri
πi
Ui(θ) +

N∑
i=1

(
Ri
πi
− 1

)
Ai(θ) = 0

where Ui(θ) is the complete-data efficient influence function and

Ai() can be any function of phase-1 data.

The AIPW estimator can be rewritten as

N∑
i=1

Ri
πi

[Ui(θ)−Ai(θ)] +
N∑
i=1

Ai(θ) = 0

so it gains precision when (Ui − Ai) is less variable than Ui, ie,

when Ai is correlated with Ui.



RRZ estimators

Asymptotically we can guarantee the AIPW is at least as good

at the HT estimator by adding parameters

Write Ûi(θ) = α0 + α1Ai(θ), use linear regression to estimate α

N∑
i=1

Ri
πi

[
Ui(θ)− Ûi(θ)

]
+

N∑
i=1

Ûi(θ) = 0

A survey regression estimator of the population total of Ui(θ),

using Ûi(θ) from the whole cohort.

The same as survey calibration estimators, implemented in

the R survey package.

[Deville & Särndal, 1994 JASA]



What predictors?

Ai(θ) needs to be linearly correlated with Ui(θ), so it needs to

be an estimating function for a similar model.

Strategy

• Impute X using Y , Z

• Fit a model to phase-one data using imputed X

• Extract score or influence functions from the model, use as

Ai(θ)

Similar efficiency to just relying on imputation, but validity does

not rely on valid imputation model.



Example: Wilms’ Tumor

Rare childhood kidney tumour, 90% curable.

National Wilms’ Tumor Study Group clinical trials recruit nearly

all cases.

Interest is in long-term outcomes: identifying lower-risk patients

for less aggressive treatment.

NWTS central pathologist invented the histologic classifications,

is more accurate than anyone else.

Unfavorable (high-risk) histology is rare (about 10%). Other

hospital pathologists miss about 25% of the high-risk samples.

[Breslow, Lumley et al., Am J Epi 2009; Breslow, Lumley, et al., Stats in

Biosciences 2009]



Example: Wilms’ Tumor

Imaginary two-phase design

• Classify on outcome (relapse) and local-hospital histology

(favorable/unfavorable)

• Sample all relapses, all unfavorable histology according to

local lab, 10% of remainder

• At phase two, determine central-lab histology on subsample.



Example: Wilms’ Tumor

Analysis

• Impute central-lab histology using outcome, local-hospital

histology, other covariates

• Fit logistic model to phase-one data using imputed central-

lab histology, to estimate effect of histology on relapse

• Extract influence functions from the model, use as Ai(θ)

• Fit the same logistic model to phase-two data using mea-

sured central-lab histology.

Compare: HT estimator, calibrated estimator, imputation esti-

mator, full data.



Example: Wilms’ Tumor

Two-phase sample full data
HT calibration imputation

Coefficient estimate
histology 1.808 2.113 2.108 1.932
age 0.055 0.101 0.101 0.096
stage > 2 1.411 1.435 1.432 1.389
tumor diameter 0.043 0.061 0.061 0.058
histology:age -0.116 -0.159 -0.159 -0.144
stage> 2:diameter -0.074 -0.084 -0.083 -0.079
Standard error
histology 0.221 0.171 0.174 0.157
age 0.023 0.014 0.016 0.016
stage > 2 0.361 0.276 0.249 0.250
tumor diameter 0.021 0.016 0.014 0.014
histology:age 0.054 0.039 0.040 0.035
stage > 2:diameter 0.030 0.022 0.020 0.020



Example: Wilms’ Tumor

• Imputation uses data from whole cohort, biased if imputation

model is wrong.

• Calibration uses data from whole cohort, loss of efficiency

but no bias if imputation model is wrong

• Using data from the whole cohort increases efficiency for all

coefficients

• Gain is larger for variables available on whole cohort.



Validity, Efficiency

All AIPW estimators are consistent for the same limit as if we

had complete data, whether or not the outcome model is

correct.

They are the only such estimators.

AIPW estimators are typically not fully efficient if we assume the

outcome model is correct.

The actual loss of efficiency when the outcome model is known

to be correct can be substantial.



Efficient estimator

Robins, Rotnitzky, and Zhao also characterized efficient estima-

tors assuming exactly correct outcome model.

Calculating V ( ) from its definition can be hard: profile likelihood

approaches are more practical.

Methods and software available for generalized linear models with

discrete data at phase one. (Scott, Wild, co-workers)



Loss of efficiency

The efficient estimators can be usefully more efficient in some

examples.

Simplest example is classical case–control design:

• unweighted logistic regression is efficient

• logistic regression using sampling weights is best AIPW

estimator.

Efficiency can be as low as 50% in realistic simulations.

Where does the extra information come from?

We already used E[Ui(θ)|whole cohort]



Loss of efficiency

Loss of efficiency in weighted logistic regression often attributed

to variability in sampling weights.

Explanation doesn’t fit facts. Regardless of variation in sampling

weights, weighted logistic regression:

• is fully efficient at β = 0

• is fully efficient for saturated models

• is close to fully efficient with small numbers of discrete

covariates.

Efficiency gain is actually related to power for detecting model

misspecification: relying on the model helps most when it is hard

to validate.



Asymptotics for misspecification

Need asymptotic approximations because exact distributions are

too complicated

We are interested in ‘nearly true’ models, where the misspecifi-

cation can’t be reliably detected

Among ‘nearly true’ models we will look at the worst-case

misspecification (more later).



Asymptotics for misspecification

Asymptotics for a fixed data-generating distribution are not

useful: we can always distinguish correct from incorrect models

with enough data.

If Pn ∈ P is a sequence of distributions exactly satisfying a model

P, say that the model is nearly true in a sequence Qn that is

mutually contiguous with Pn.



Contiguity

Contiguity means (equivalently)

• For any sequence of events An: Pn(An) → 0 if and only if

Qn(An)→ 0

• The likelihood ratio Qn/Pn is bounded in probability under

Qn.

In particular, even if we knew Pn and Qn, the sequence of

Neyman–Pearson tests for whether the data come from Pn or

Qn would not be consistent.



What is truth?

When the model is misspecified we need to define the target of

estimation in order to talk about efficiency.

One reasonable definition is the quantity that would be estimated

if we had complete data: that is how two-phase sampling is

motivated, and is certainly the target of inference with missing

data.

Define θ∗ as the limit of the estimator of θ from complete data,

as N →∞.



Results

Suppose
√
n
(
θ̂eff − θ

∗
)
Pn→ N(0, σ2)

and
√
n
(
θ̂AIPW − θ∗

)
Pn→ N(0, ω2 + σ2)

Under Qn
√
n
(
θ̂eff − θ

∗
)
Pn→ N(−2kρω, σ2)

and
√
n
(
θ̂AIPW − θ∗

)
Pn→ N(0, ω2 + σ2)

where k measures the size of misspecification and ρ measures

the direction

[Convolution theorem plus LeCam’s third lemma, applied to
√
n(θ̂AIPW− θ̂eff)]



Efficiency: asymptotic
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Simulations

SImplest two-phase model: case–control

X ∼ N(0,1), outcome model based on logistic model

logitE[Y = 1|X = x] = α+ βx

with (α, β) = (−3.5, 1), distorted in the most unfavorable

direction.

Measure Y at phase 1 in population N = 10000, subsample all

(≈ 500) cases and same number of controls, and measure X.

Compare maximum likelihood and weighted likelihood, fitting the

misspecified model

logitE[Y = 1] = α+Xβ



Efficiency: empirical
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Fitted curves
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Model robustness

Extra precision is available, but only if the model is known to

be correct.

Issue can’t be evaded by talking about diagnostics, goodness-of-

fit, careful model specification:

• the information bound is strictly worse if you don’t a priori

know that the model is correct.

• Non-magical procedures cannot improve on the information

bound in large samples (Convolution theorem/LAM)



Tradeoffs

If the model is correct, (θ̂eff − θ̂AIPW) is the gain from using the

efficient estimator.

If the model is not correct, E
[
θ̂eff − θ̂AIPW

]
is the bias

• If ω2 is small the threshold for undetectable bias is strict, but

the gain in precision from the efficient estimator is small

• If ω2 is large, the gain in precision from the efficient estimator

is large, but undetectable biases can be quite large.

...or in other words



http://www.flickr.com/photos/eric/8850/

http://www.flickr.com/photos/eric/8850/


Final notes

• Caring about efficiency commits you to caring about O(n−1/2)
biases

• If there is substantial extra work in constructing the efficient
estimator it may not be justified

• Behavior under contiguous model misspecification is a useful
way to think about estimators.

• Constructing a reasonably good AIPW estimator is worth-
while (and not that hard).

Technical report available from http://www.bepress.com/uwbiostat/

Slides from http://faculty.washington.edu/tlumley/taupo.pdf

http://www.bepress.com/uwbiostat/
http://faculty.washington.edu/tlumley/taupo.pdf
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