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Outline

1. In which we review basic concepts and attempt to match

terminology

2. In which we meet R and describe surveys to it.

3. Mid-morning break: in which refreshment is supplied

4. In which we make pictures

5. Lunch break: in which we are sent out to forage

6. In which lines are drawn

7. Mid-afternoon break: in which refreshment is supplied

8. In which adjustments are made
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Outline: Session 1

In which we review basic concepts and attempt to match

terminology — survey design features: strata, clusters, un-

equal probabilities — variance estimation for totals: Horvitz-

Thompson estimator, replicate weights — variance estimation

for complex statistics: influence functions, replicate weights

In which we meet R and describe surveys to it the

’survey’ package and multistage stratified samples — the ’survey’

package and replicate weights — connecting to a relational

database — some basic descriptive statistics
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Outline: Session 2

In which we make pictures — visualizing categorical data

with graphs of estimated population tables — boxplots and

histograms — scatterplots for large, weighted data sets: bubble

plots, hexagonal binning, transparency — scatterplot smoothers

and density estimators — conditioning plots. — biplots for

principal components.
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Outline: Session 3

In which lines are drawn — comparisons between model-

based and design-based regression models: assumptions, goals,

generalizability — sampling-weighted least squares as a criterion

— when is it safe to ignore weights? Is it ever preferable to ignore

weights? — worked example from NHANES — worked examples

of other forms of regression for survey data – generalized linear

models, in particular, logistic regression
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Outline: Session 4

In which adjustments are made - regression models for pre-

diction lead to the regression estimator of a total — calibration

allows the same process to be carried out by adjusting weights

— how to do calibration when the goal of inference is regression

coefficients — application to two-phase subsampling of existing

cohorts, with Cox proportional hazards model
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Complex sampling

To reduce cost, most large surveys do not use iid sampling

• Stratified sampling: fix the number sampled from a popula-

tion stratum, to make the sample more representative

• Cluster sampling: recruit participants in clusters, eg, to

reduce travel time between interviews

• Unequal probability: oversample important subgroups, eg,

ethnic minorities, high-poverty neighbourhoods,...

Goal is inference about the finite population or the process that

created it, not about the sampling process.
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Basic estimation ideas

Individuals are sampled with known probabilities πi from a

population of size N to end up with a sample of size n. The

‘population’ can be a full population or an existing sample such

as a cohort.

We write Ri = 1 if individual i is sampled, Ri = 0 otherwise

The design-based inference problem is to estimate what any

statistic of interest would be if data from the whole population

were available.

For most of today we will pretend that πi really is known, ignoring

non-response.
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Basic estimation ideas

For a population total this is easy: an unbiased estimator of

TX =
N∑

i=1

xi

is the Horvitz–Thompson estimator

T̂X =
∑

i:Ri=1

1

πi
Xi

Standard errors follow from formulas for the variance of a sum:

main complication is that we do need to know cov[Ri, Rj], which

depends on the pairwise sampling probabilities πij
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Basic estimation ideas

Other statistics follow from sums: if the statistic on the whole
population would solve the estimating equation

Ū(θ) =
N∑

i=1

Ui(θ) = 0

then a design-based estimate will solve

̂̄U(θ) =
∑

i:Ri=1

1

πi
Ui(θ) = 0

If the statistic on the whole population would maximize

`(θ) =
N∑

i=1

`i(θ)

then a design-based estimate will maximize

`̂(θ) =
∑

i:Ri=1

1

πi
`i(θ)
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Standard errors

Standard errors for other statistics come from the delta method

or from resampling.

var[θ̂] ≈
(

∂θ̂

∂ ̂̄U(θ)

)T
var

[ ̂̄U(θ)
] ( ∂θ̂

∂ ̂̄U(θ)

)

≈

∂

̂̄U(θ)

∂θ



−1
∣∣∣∣∣∣∣
θ=θ̂

var
[ ̂̄U(θ̂)

]∣∣∣
θ=θ̂


∂

̂̄U(θ)

∂θ



−1
∣∣∣∣∣∣∣
θ=θ̂

where the middle term comes from the variance of a total,

and the outer terms are typically byproducts of the optimisation

process.
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Standard errors

Linearisation estimators are very similar to ‘sandwich’ or ‘HAC’

estimators for regression models.

They can also be interpreted nicely with influence functions.

In the population, for least-squares regression

β̂ − β =
N∑

i=1

(XTX)−1xi(yi − µi)

so β̂ is approximately a population total of influence functions.

Applying the formula for variance of a sum to the influence

functions gives the linearization estimator.
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Resampling (replicate weights)

A simple bootstrap or jackknife won’t work because the obser-
vations are not exchangable, but similar things do work.

• BRR: split the data into two independent halves, compute
(θ̂A − θ̂B)2, average over lots of splits.

• cluster jackknife: leave out one cluster (primary sampling
unit) at a time

• cluster bootstrap: Sample m− 1 from m PSUs with replace-
ment (Rao & Wu)

• multistage bootstrap: works with large sampling fractions at
multiple stages (Preston)
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Resampling (replicate weights)

All the resampling estimators can be written as

K
M∑

i=1

ri(θ̂i − θ̂)2

or

K
M∑

i=1

ri(θ̂i − ¯̂θ)2

The choice of centering doesn’t matter asymptotically or for

totals. R defaults to the second version, but can optionally use

the first.

[The jackknife estimators don’t work for quantiles and similar

non-smooth statistics, but bootstrap and BRR do]
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Quantiles

Quantiles are tricky

• Too many definitions

• Not a smooth estimating function

We use Woodruff’s method: estimate a confidence interval for

P (Y > quantile) and transform into a confidence interval for the

quantile. Divide length by 2× 1.96 to get SE estimate.

We use two definitions of quantile: interpolation between order

statistics, and interpolation between distinct order statistics

(?matches SUDAAN).
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Domains

A domain or subpopulation (eg women) typically has random

sample size; not correct simply to subset the data.

Domain total:
∑

i:Ri=1

1

πi
Diyi

where Di is the indicator that observation i is in the domain

Similarly, for estimating functions, solve

∑

i:Ri=1

1

πi
DiUi(θ) = 0

Some ambiguity with constraints: eg in binomial regression with

log link, should the constraint exp(xiβ) ≤ 1 be enforced for i not

in the domain?

← → 15



The survey package

← →

R Survey package

http://faculty.washington.edu/tlumley/survey/

← → 17



R Survey package

Version 3.28-2 is current, containing approximately 12000 lines

of interpreted R code.

Version 2.3 was published in Journal of Statistical Software.

Major changes since then: finite population corrections for mul-

tistage sampling and PPS sampling, calibration and generalized

raking, tests of independence in contingency tables, better tables

of results, simple two-phase designs, loglinear models, ordinal

regression models, Rao-Scott likelihood ratio tests for regression

models, survival curves, more resampling methods, database-

backed designs for large surveys

← → 18

The book of the package

← → 19



Design principles

• Ease of maintenance and debugging by code reuse

• Speed and memory use not initially a priority: don’t optimize

until there are real use-cases to profile.

• Rapid release, so that bugs and other infelicities can be found

and fixed.

• Emphasize features that look like biostatistics (regression,

calibration, survival analysis, exploratory graphics)

← → 20

Intended market

• Methods research (because of programming features of R)

• Teaching (because of cost, use of R in other courses)

• Secondary analysis of national surveys (regression features,

R is familiar to non-survey statisticians)

• Two-phase designs in epidemiology

← → 21



Objects and Formulas

Collections of related information should be kept together in an

object.

For surveys this means the data and the survey meta-data.

Instead of the data= argument in most non-survey R functions

there is a design= argument

The way to specify variables from a data frame or object in R is

a formula

~a + b + I(c < 5*d)

The survey package always uses formulas to specify variables in

a survey data set.

← → 22

Describing surveys to R

• svydesign() creates a survey design object from design

variables

• svrepdesign() creates a survey design object from replicate

weights

• twophase() creates a two-phase design object from design

variables

and as.svrepdesign() creates replicate weights for an existing

design object

← → 23



Describing surveys to R

Stratified independent sample (without replacement) of Califor-
nia schools

data(api)

dstrat <- svydesign(id=~1,strata=~stype, weights=~pw,

data=apistrat, fpc=~fpc)

• stype is a factor variable for elementary/middle/high school
• fpc is a numeric variable giving the number of schools in each

stratum. If omitted we assume sampling with replacement
• id=∼1 specifies independent sampling.
• apistrat is the data frame with all the data.
• pw contains sampling weights (1/πi). These could be omitted

since they can be computed from the population size.

Note that all the variables are in apistrat and are specified as
formulas.
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Describing surveys to R

> dstrat
Stratified Independent Sampling design
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,
fpc = ~fpc)
> summary(dstrat)
Stratified Independent Sampling design
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,
fpc = ~fpc)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02262 0.02262 0.03587 0.04014 0.05339 0.06623
Stratum Sizes:
E H M
obs 100 50 50
design.PSU 100 50 50
actual.PSU 100 50 50
Population stratum sizes (PSUs):
E M H
4421 1018 755
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...

← → 25



Describing surveys to R

Cluster sample of school districts, using all schools within a
district.

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

• dnum is a (numeric) identifier for school district

• No stratification, so no strata= argument

> summary(dclus1)
1 - level Cluster Sampling design
With (15) clusters.
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...

← → 26

Describing surveys to R

Two-stage sample: 40 school districts and up to 5 schools from
each

dclus2 <- svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

• dnum identifies school district, snum identifies school
• fpc1 is the number of school districts in population,fpc2 is

number of schools in the district.
• Weights are computed from fpc1 and fpc2

> summary(dclus2)
2 - level Cluster Sampling design
With (40, 126) clusters.
svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.003669 0.037740 0.052840 0.042390 0.052840 0.052840
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...

← → 27



Replicate weights

California Health Interview Survey has 80 sets of replicate

weights instead of design information

chis_adult <- read.dta("adult.dta")

chis <- svrepdesign(variables=chis_adult[,1:418],

repweights=chis_adult[,420:499],

weights=chis_adult[,419], combined.weights=TRUE,

type="other", scale=1, rscales=1)

scale and rscales are the K and ri from page 13

Can also specify, eg,repweights="rakedw[1-9]" for all variables

beginning raked followed by a non-zero digit

← → 28

Replicate weights

For JK1, JKn, BRR, and bootstrap, R knows the correct K and

ri.

Otherwise use type="other" and specify them.

Help page ?svrepdesign has notes for JK2 and for ACS data.

← → 29



Replicate weights

Can also create replicate weights with as.svrepdesign(), using

jackknife, three types of bootstrap, or BRR.

## one-stage cluster sample

dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

## convert to JK1 jackknife

rclus1<-as.svrepdesign(dclus1)

## convert to bootstrap

bclus1<-as.svrepdesign(dclus1, type="subbootstrap", replicates=100)

## two-stage sample with multistage bootstrap

dclus2<-svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2,

data = apiclus2)

mrbclus2<-as.svrepdesign(dclus2, type="mrb",replicates=100)

← → 30

BRR: R knows Hadamard matrices

Sylvester: 64 == 26 Paley: 60 == 59 ++ 1

Stored: 28 Constructed: 96 == 23 ×× ((11 ++ 1))

← → 31



Describing surveys: database-based

library(RSQLite)

brfss <- svydesign(id=~X_PSU, strata=~X_STATE, weight=~X_FINALWT,

data="brfss", dbtype="SQLite", dbname="brfss07.db",

nest=TRUE)

The data argument is the name of a database table or view,
dbtype and dbname specify the database.

Only the design meta-data are loaded into the design object.
Other variables are temporarily loaded as needed when an
analysis is run.

Can use any database with an ODBC, JDBC, or R-DBI interface:
anything on Windows, SQLite, Postgres, Oracle.

BRFSS 2007 is about as large as a 1Gb laptop can handle with
this approach: 430,000 records.

← → 32

Summary statistics

svymean, svytotal, svyratio, svyvar, svyquantile

All take a formula and design object as arguments, return an
object with coef, vcov, SE, cv methods.

Mean and total on factor variables give tables of cell means/totals.

Mean and total have deff argument for design effects and the
returned object has a deff method.

> svymean(~api00, dclus1, deff=TRUE)

mean SE DEff

api00 644.169 23.542 9.3459

> svymean(~factor(stype),dclus1)

mean SE

factor(stype)E 0.786885 0.0463

factor(stype)H 0.076503 0.0268

factor(stype)M 0.136612 0.0296

← → 33



Summary statistics

> svymean(~interaction(stype, comp.imp), dclus1)

mean SE

interaction(stype, comp.imp)E.No 0.174863 0.0260

interaction(stype, comp.imp)H.No 0.038251 0.0161

interaction(stype, comp.imp)M.No 0.060109 0.0246

interaction(stype, comp.imp)E.Yes 0.612022 0.0417

interaction(stype, comp.imp)H.Yes 0.038251 0.0161

interaction(stype, comp.imp)M.Yes 0.076503 0.0217

> svyvar(~api00, dclus1)

variance SE

api00 11183 1386.4

> svytotal(~enroll, dclus1, deff=TRUE)

total SE DEff

enroll 3404940 932235 31.311

← → 34

Summary statistics

> mns <- svymean(~api00+api99,dclus1)

> mns

mean SE

api00 644.17 23.542

api99 606.98 24.225

> coef(mns)

api00 api99

644.1694 606.9781

> SE(mns)

api00 api99

23.54224 24.22504

> vcov(mns)

api00 api99

api00 554.2371 565.7856

api99 565.7856 586.8526

> cv(mns)

api00 api99

0.03654666 0.03991090

← → 35



Domain estimation

The correct standard error estimate for a subpopulation that

isnt a stratum is not just obtained by pretending that the

subpopulation was a designed survey of its own.

However, the subset function and "[" method for survey design

objects handle all these details automagically, so you can ignore

this problem.

The package test suite (tests/domain.R) verifies that subpopu-

lation means agree with derivations from ratio estimators and

regression estimator derivations. Some more documentation is

in the domain vignette.

Note: subsets of design objects don’t necessarily use less memory

than the whole objects.

← → 36

Prettier tables

Two main types

• totals or proportions cross-classified by multiple factors

• arbitrary statistics in subgroups

← → 37



Computing over subgroups

svyby computes a statistic for subgroups specified by a set of

factor variables:

> svyby(~api99, ~stype, dclus1, svymean)

stype statistics.api99 se.api99

E E 607.7917 22.81660

H H 595.7143 41.76400

M M 608.6000 32.56064

~api99 is the variable to be analysed, ~stype is the subgroup

variable, dclus1 is the design object, svymean is the statistic to

compute.

Lots of options for eg what variance summaries to present

← → 38

Computing over subgroups

> svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5,ci=TRUE)
stype statistics.quantiles statistics.CIs se var

E E 615 525.6174, 674.1479 37.89113 1435.738
H H 593 428.4810, 701.0065 69.52309 4833.46
M M 611 527.5797, 675.2395 37.66903 1418.955

> svyby(~api99, list(school.type=apiclus1$stype), dclus1, svymean)
school.type statistics.api99 se.api99

E E 607.7917 22.81660
H H 595.7143 41.76400
M M 608.6000 32.56064

> svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE)
> svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE)

stype statistics.api99 statistics.api00 se.api99 se.api00
E E 607.7917 648.8681 22.81660 22.36241
H H 595.7143 618.5714 41.76400 38.02025
M M 608.6000 631.4400 32.56064 31.60947

DEff.api99 DEff.api00
E 5.895734 6.583674
H 2.211866 2.228259
M 2.226990 2.163900

← → 39



Computing over subgroups

stype sch.wide statistic.api99 statistic.api00
E.No E No 601.6667 596.3333
H.No H No 662.0000 659.3333
M.No M No 611.3750 606.3750
E.Yes E Yes 608.3485 653.6439
H.Yes H Yes 577.6364 607.4545
M.Yes M Yes 607.2941 643.2353

← → 40

Computing over subgroups

> (a<-svyby(~enroll, ~stype, rclus1, svytotal, deff=TRUE,
+ vartype=c("se","cv","cvpct","var")))

stype statistics.enroll se cv.enroll cv%.enroll var DEff
E E 2109717.1 631349.4 0.2992578 29.92578 398602047550 125.039075
H H 535594.9 226716.6 0.4232987 42.32987 51400414315 4.645816
M M 759628.1 213635.5 0.2812369 28.12369 45640120138 13.014932

> deff(a)
[1] 125.039075 4.645816 13.014932
> SE(a)
[1] 631349.4 226716.6 213635.5
> cv(a)
[1] 0.2992578 0.4232987 0.2812369
> coef(a)
[1] 2109717.1 535594.9 759628.1

> svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean,
+ drop.empty.groups=FALSE)

comp.imp sch.wide statistics.api00 se.api00
No.No No No 608.0435 28.98769
Yes.No Yes No NA NA
No.Yes No Yes 654.0741 32.66871
Yes.Yes Yes Yes 648.4060 22.47502
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Functions of estimates

svycontrast computes linear and nonlinear combinations of

estimated statistics (in the same object).

> a <- svytotal(~api00 + enroll + api99, dclus1)

> svycontrast(a, list(avg = c(0.5, 0, 0.5), diff = c(1,

0, -1)))

contrast SE

avg 3874804 873276

diff 230363 54921

> svycontrast(a, list(avg = c(api00 = 0.5, api99 = 0.5),

diff = c(api00 = 1, api99 = -1)))

contrast SE

avg 3874804 873276

diff 230363 54921

← → 42

Functions of estimates

> svycontrast(a, quote(api00/api99))

nlcon SE

contrast 1.0613 0.0062

> svyratio(~api00, ~api99, dclus1)

Ratio estimator: svyratio.survey.design2(~api00, ~api99, dclus1)

Ratios=

api99

api00 1.061273

SEs=

api99

api00 0.006230831

confint() works on most objects to give confidence intervals.
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Crosstabs

svyby or svymean and svytotal with interaction will produce the

numbers, but the formatting is not pretty.

ftable provides formatting:

> d<-svyby(~api99 + api00, ~stype + sch.wide, rclus1, svymean,
keep.var=TRUE, vartype=c("se","cvpct"))

> round(ftable(d),1)
sch.wide No Yes

statistics.api99 statistics.api00 statistics.api99 statistics.api00
stype
E svymean 601.7 596.3 608.3 653.6

SE 70.0 64.5 23.7 22.4
cv% 11.6 10.8 3.9 3.4

H svymean 662.0 659.3 577.6 607.5
SE 40.9 37.8 57.4 54.0
cv% 6.2 5.7 9.9 8.9

M svymean 611.4 606.4 607.3 643.2
SE 48.2 48.3 49.5 49.3
cv% 7.9 8.0 8.2 7.7
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Crosstabs

svyby knows enough to structure the table without help. For
other analyses more information is needed

> a<-svymean(~interaction(stype,comp.imp), design=dclus1, deff=TRUE)
> b<-ftable(a, rownames=list(stype=c("E","H","M"),comp.imp=c("No","Yes")))
> round(100*b,1)

stype E H M
comp.imp
No mean 17.5 3.8 6.0

SE 2.6 1.6 2.5
Deff 87.8 131.7 200.4

Yes mean 61.2 3.8 7.7
SE 4.2 1.6 2.2
Deff 137.2 131.4 124.7
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Testing in tables

svychisq does four variations on the Pearson χ2 test: corrections

to the mean or mean and variance of X2 (Rao and Scott) and

two Wald-type tests (Koch et al).

The exact asymptotic distribution of the Rao–Scott tests (linear

combination of χ2
1) and a saddlepoint approximation to it are

also available.

> svychisq(~sch.wide+stype, dclus1)

Pearson’s X^2: Rao & Scott adjustment

data: svychisq(~sch.wide + stype, dclus1)

F = 5.1934, ndf = 1.495, ddf = 20.925, p-value = 0.02175

← → 46

Testing in tables

> svychisq(~sch.wide+stype, dclus1, statistic="adjWald")

Design-based Wald test of association

data: svychisq(~sch.wide + stype, dclus1, statistic = "adjWald")

F = 2.2296, ndf = 2, ddf = 13, p-value = 0.1471

← → 47



Learning to draw

← →

Graphs

Common difficulties with graphics based on survey data include

• Weights

• Large data sets

• Maps

The goal is to create a graph in which we can see patterns when

they are there and not see them when they aren’t there.

← → 49



Displaying a table

The default is a mosaic plot

plot(svytable(~sch.wide+stype, dstrat))

← → 50

Displaying a table

svytable(~sch.wide + stype, dstrat)

sch.wide

st
yp
e

No Yes

E
H

M
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Displaying a table

nhanes<-update(nhanes, sex=factor(RIAGENDR,labels=c("m","f")),
raceeth=factor(RIDRETH1,

labels=c("Mex","Hisp","White n/h","Black n/h","other")) )
mns <- svyby(~BPXSAR+BPXDAR, ~sex+raceeth, svymean, design=nhanes,na.rm=TRUE)

dotchart(mns,cex=0.8,col=rep(c("royalblue","magenta"),each=4),
xlab="mean blood pressure (mmHg)")

par(mar=c(4,10,1,1),las=1)
barplot(mns,horiz=TRUE,xlab="mmHg")
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Displaying a table

m.Mex

f.Mex

m.Hisp

f.Hisp

m.White n/h

f.White n/h

m.Black n/h

f.Black n/h

m.other

f.other

mmHg

0 20 40 60 80 100 120
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Displaying a table

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

BPXSAR
BPXDAR

m.Mex

f.Mex

m.Hisp

f.Hisp

m.White n/h

f.White n/h

m.Black n/h

f.Black n/h

m.other

f.other

70 80 90 100 110 120

mean blood pressure (mmHg)
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Pie charts

raceethMex

raceethHisp

raceethWhite n/h

raceethBlack n/h

raceethother

pie(svymean(~raceeth,nhanes,na.rm=TRUE))
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Pie charts

pie(svytotal(~raceeth,

subset(nhanes,

((BPXDAR>140) | (BPXSAR>90)) & !(BPQ020==1 & BPQ050A==1)),

na.rm=TRUE),

labels=c("Mexican","Other Hisp","White n/hisp",

"Black n/hisp","other"),

main="Untreated hypertensives")
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Pie charts
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other
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Pie charts

This is the only legitimate use for pie charts
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Comparing associations

A fourfold plot shows associations across a set of 2× 2 tables.

dnhanes<-update(dnhanes, hisys= BPXSAR>140, hidia=BPXDAR>90)

dnhanes<-update(dnhanes, agegp=cut(RIDAGEYR,c(0,40,60,70,Inf)))

fourfoldplot(svytable(~hisys+hidia+agegp,dnhanes,round=1),

std="ind.max")
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Comparing associations
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Estimating populations

Boxplots and histograms display estimates of the population

distribution function for a variable.

We can substitute the survey estimates: boxplots use quantiles,

histograms need tables.

R: boxplot of enrollment by school type (Elementary/Middle/High)

boxplot(enroll~stype, apipop)

svyboxplot(enroll~stype, dstrat,all.outliers=TRUE,ylim=c(0,4000))
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Estimating populations
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Histograms

Drawing a histograms involves dividing the sample into bins and

counting the number in each bin. In survey data we use the

estimated population number in each bin.

In R

svyhist(~DR1TSODI, nhanes, col="orange",

xlab="Daily sodium intake (mg)")
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Histograms
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Density estimates

Kernel density estimates are smoother than histograms and give

better estimates of continuous densities. They work by smearing

out the weight of each observation over a small window, and then

adding up the contributions from each point.

You can specify the ‘bandwidth’ of the smoother (usually by the

Goldilocks method), or use the default that it works out for you.

plot(svysmooth(~DR1TSODI, nhanes,

xlab="Daily sodium intake (mg)",bandwidth=250),

col="purple",lwd=2,xlab="Daily sodium intake (mg)")
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Density estimates

0 5000 10000 15000

0.
00
00
0

0.
00
01
0

0.
00
02
0

Daily sodium intake (mg)

D
en
si
ty

← → 66

Effect of weighting
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Effect of weighting

The impact is subtle, but ignoring the weights does underesti-

mate sodium consumption:

> svymean(~I(DR1TSODI>3000),nhanes,na.rm=TRUE)

mean SE

I(DR1TSODI > 3000)FALSE 0.44666 0.0087

I(DR1TSODI > 3000)TRUE 0.55334 0.0087

> mean(nhanesbp$DR1TSODI>3000,na.rm=TRUE)

[1] 0.5165171

← → 68

Scatterplots

This approach doesn’t work for scatterplots. We need to

incorporate weights in the plotting symbols.

One approach is the bubble plot: radius or area of circle

proportional to sampling weight.

In R, svyplot

svyplot(api00~api99, design=stratrs, style="bubble")
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Scatterplots
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Scatterplots
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Scatterplots

Another approach is differential transparency: color weight

proportional to sampling weight.

It doesn’t work well for small samples. In particular, the visual

effect depends strongly on how the weights are scaled. The two

graphs on the next slide scale the largest weight to solid black

or 50% black and look fairly dissimilar.

← → 72
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23,000 people

Transparency works better in large samples: the next slide show

BMI vs age for 23,000 people from the National Health Interview

Survey, where transparency works better than bubbles.

svyplot(,type="transparent") in R
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23,000 people
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Binning and smoothing

Hexagonal binning divides the plotting area into hexagons,

counts the number in each hexagon [Carr, 1987, JASA]. In dense

regions this has similar effect to transparency, but allows outliers

to be seen, and produces much smaller graphics files.

For survey data we just add up the weight in each bin to get the

estimated population numbers in each bin.

svyplot(bmi~age_p,style="hex",

design=subset(nhis,bmi<90),

xlab="Age",ylab="BMI",legend=0)

Currently doesn’t allow colours to indicate groups; Auckland

student Jie Fu Yu is working on this.
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Binning and smoothing
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Binning and smoothing

Scatterplot smoothers fit a smooth curve through the middle
of the data. There are many variants, but they all work by
estimating the mean value of Y using points in a small interval
of values of x.
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The important thing to tune is the width of the interval, which
affects the smoothness of the curve
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Binning and smoothing

In R use svysmooth to create a smooth curve and then plot to

draw it.

plot(svysmooth(DR1TSODI~DR1TPOTA,

design=nhanes,bandwidth=500),

xlab="Potassium (mg)",ylab="Sodium (mg)")plot(smth)
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Binning and smoothing
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Binning and smoothing
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Quantile smoothers

For a continuous variable, the variation may be as important as

the mean.

Plot a set of smooth quantile estimates to indicate the shape of

the conditional distributions

Linear regression minimises (Y − µ)2 to give means.

L1 regression minimises |Y − µ| = (Y − µ)+ − (Y − µ)− to give

medians

Quantile regression minimises p(Y − µ)+ − (1 − p)(Y − µ)−, to

give pth quantiles

← → 82

Quantile smoothers

> library(foreign)
> demo<-read.xport("~/STATSdotcom/demo_c.xpt")
> bp<-read.xport("~/STATSdotcom/bpx_c.xpt")
> nhanes<-merge(demo,bp)
> dnhanes<-svydesign(id=~SDMVPSU,strata=~SDMVSTRA, weights=~WTMEC2YR,

data=nhanes,nest=TRUE)
> svyplot(BPXDAR~BPXSAR,design=subset(dnhanes, BPXDAR>0), style="trans",

pch=19, basecol="darkred",alpha=c(0,0.5), xlab="Systolic pressure",
ylab="Diastolic pressure")
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Quantile smoothers
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Quantile smoothers

> lines(svysmooth(BPXDAR~BPXSAR, design=subset(dnhanes, BPXDAR>0), df=4,
method="quantreg", quantile=0.1),lty=3)

> lines(svysmooth(BPXDAR~BPXSAR, design=subset(dnhanes, BPXDAR>0), df=4,
method="quantreg", quantile=0.25),lty=2)

> lines(svysmooth(BPXDAR~BPXSAR, design=subset(dnhanes, BPXDAR>0), df=4,
method="quantreg", quantile=0.5))

> lines(svysmooth(BPXDAR~BPXSAR, design=subset(dnhanes, BPXDAR>0), df=4,
method="quantreg", quantile=0.75),lty=2)

> lines(svysmooth(BPXDAR~BPXSAR, design=subset(dnhanes, BPXDAR>0), df=4,
method="quantreg", quantile=0.9),lty=3)

[Note: should probably have truncated the highest values as well

as the zeroes]
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Quantile smoothers
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Synthetic data

Researchers are good at interpreting scatterplots of independent,

equally-weighted observations, so we could estimate the popu-

lation distribution and then draw a simple random sample (with

replacement).

We will end up with duplicate points, so try adding random noise

to them (’jittering’). In California API data, the median absolute

year-to-year change was 25, so this is a reasonable noise level.

svyplot(api00~api99, design=dclus2, style="subsample",

amount=list(x=25,y=25))
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Synthetic data
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Conditioning plots

Three-dimensional ’false perspective’ plots are useless, but 3-d

and 4-d relationships can be shown by conditioning.

svycoplot(BPXSAR~BPXDAR|equal.count(RIDAGEMN), style="hex",

design=subset(dhanes,BPXDAR>0), xbins=20,

strip=strip.custom(var.name="AGE"),

xlab="Diastolic pressure",ylab="Systolic pressure")

svycoplot(sysbp~diabp|agegp, style="transparent",

basecol=function(d) c("magenta","royalblue")[d$sex]

data=nhanes_design)
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Conditioning plots
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Conditioning plots
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Biplots

Biplots show the first two left and right singular vectors of the

data on the same graph, ie, project variables and observations

on to a two-dimensional scatterplot.

> data(api)

> dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

> pc <- svyprcomp(~api99+api00+ell+hsg+meals+emer, design=dclus2,

scale=TRUE,scores=TRUE)

> biplot(pc, weight="scaled", max.cex=1.5, xlabs=~dnum)
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Maps

Maps are a form of graph for a table: compute estimates for

each geographic region and then use them to color the map.

library(sp)
library(maptools)
## map data from BRFSS website
states<-readShapePoly("brfss_state_2007_download")
states<-states[order(states$ST_FIPS),]

brfss<-update(brfss, agegp=cut(AGE, c(0,35,50,65,Inf)))
hlth<-svyby(~I(HLTHPLAN==1), ~agegp+X_STATE, svymean,

design=brfss)

hlthdata<-reshape(hlth[,c(1,2,4)],idvar="X_STATE",
direction="wide",timevar="agegp")

names(hlthdata)[2:5]<-paste("age",1:4,sep="")

states@data<-merge(states,hlthdata,
by.x="ST_FIPS",by.y="X_STATE",all=FALSE)

spplot(states,c("age1","age2","age3","age4"),
names.attr=c("<35","35-50","50-65","65+"))

← → 94

Maps
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Regression modelling

← →

Available regression models

• svyglm for linear and generalized linear models (and regression

estimator of total via predict()

• svyolr for proportional odds and other cumulative link

models.

• svycoxph for Cox model

• svyloglin for loglinear models

others via withReplicates() or svymle()
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What is being estimated

Design-based regression inference is estimating a population

summary statistic, not a model parameter

eg, least-squares estimates the β that minimizes population

residual sum of squares

β∗ = argmin
β

N∑

i=1

(yi − xiβ)2

by

β̂ = argmin
β

∑

i:Ri=1

1

πi
(yi − xiβ)2

No assumptions are made about the distribution of Y : strictly,

Y isn’t even random
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What is being estimated

For least squares, can define β without reference to a model

• For two points i,j, the best-fitting line just joins them

• For N points, the slope of the best-fitting line is an average
over pairs of points, with weights (xi − xj)2
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What is being estimated

On the other hand, β∗ is only a useful summary if the first-order

linear trend is interesting: eg, not in a seasonal time series.

Generalizability to populations other than the measured one does

rely on assumptions about the stability of the data-generating

process

Depending on the application, more assumptions may be re-

quired: eg out-of-sample prediction requires accurate approxi-

mation to conditional distribution of Y |X.

← → 100

Weights

If the sampling design variables were all correctly specified in the

model, then Y ⊥ R |X, and the sampling is ignorable.

If the sampling is ignorable, ignoring it increases precision,

potentially by a lot.

For large surveys, bias is likely more important than variance, so

ignoring weights is risky.

And the design variables may not be appropriate for inclusion in

the model

But for smaller surveys, ignoring weights may improve mean

squared error noticeably.
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Models for associations

Often want inference about relationships between variables.

Using data from NHANES: does a higher-sodium diet lead to

higher blood pressure?

Model choice now needs to address confounding.

A fixed finite population doesnt have effects: we need to think

of the population as the result of a data-generating process (or

superpopulation)

← → 102

Models for associations

The weighted least squares estimate gives an approximately

unbiased, asymptotically Normal estimator of the least-squares

linear approximation to the conditional mean in the data-

generating process.

If the model includes a complete set of confounders for the effect

of X on Y , the slope of the linear approximation to the mean

of the process is an average causal effect of X on Y , and the

weighted least squares estimator is approximately unbiased for

this.

[Of course, you usually can’t get a complete set of confounders]
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Models for associations

Useful predictor variables can be divided into

• exposure of interest: this is the one we care about

• confounders: these are thought to affect the outcome and be

associated with the exposure of interest, and not be affected

by the exposure of interest

• precision variables: these are associated with the outcome

and independent of the predictor of interest.

These decisions should be made in advance, not based on the

data, in order for the standard errors and p-values to be correct.

← → 104

Example

In NHANES, is there evidence that a high sodium diet leads to

higher blood pressure?

Main variables

• BPXSAR, BPXDAR: systolic and diastolic BP

• BPQ030, BPQ040, BPQ050: Has your doctor ever told

you?, Have you ever been prescribed? Are you currently

taking?

• DR1TSODI, DR1TPOTA, DR1TKCAL: sodium, potassium,

calories

• RIDRETH1, RIDAGEYR, RIAGENDR: race/ethnicity, age,

gender

• SDMVPSU, SDMVSTRA,fouryearwt: (pseudo) PSU, stra-

tum, sampling weight.
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Example

nhanesbp <- read.csv("nhanesbp.csv")

nhanes <- svydesign(id=~SDMVPSU, strata=~SDMVSTRA,

weight=~fouryearwt, data=nhanesbp, nest=TRUE)

nhanes <- update(nhanes, trt = !is.na(BPQ050A) & BPQ050A==1)

summary(svyglm(BPXSAR~DR1TSODI+DR1TPOTA, design=nhanes))

summary(svyglm(BPXSAR~DR1TSODI+DR1TPOTA+RIAGENDR+factor(RIDRETH1)

+I(RIDAGEYR/10), design=nhanes))

summary(svyglm(BPXSAR~DR1TSODI+DR1TPOTA+RIAGENDR+factor(RIDRETH1)

+I(RIDAGEYR/10) +DR1TKCAL+trt, design=nhanes))
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Example

Call:

svyglm(formula = BPXSAR ~ DR1TSODI + DR1TPOTA + RIAGENDR

+ factor(RIDRETH1) + I(RIDAGEYR/10), design = nhanes)

Survey design:

update(nhanes, trt = !is.na(BPQ050A) & BPQ050A == 1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.066e+02 1.447e+00 73.720 < 2e-16 ***

DR1TSODI 6.076e-04 1.840e-04 3.303 0.003241 **

DR1TPOTA -1.072e-03 1.997e-04 -5.366 2.18e-05 ***

RIAGENDR -3.562e+00 4.370e-01 -8.150 4.33e-08 ***

factor(RIDRETH1)2 -8.226e-02 1.554e+00 -0.053 0.958262

factor(RIDRETH1)3 -1.274e+00 7.618e-01 -1.672 0.108657

factor(RIDRETH1)4 3.747e+00 8.353e-01 4.485 0.000184 ***

factor(RIDRETH1)5 9.914e-01 1.168e+00 0.849 0.405061

I(RIDAGEYR/10) 4.981e+00 1.278e-01 38.986 < 2e-16 ***
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Results

Adjustments
none age, sex, race cal,treat

Sodium (mmHg/g/day) -0.57 0.61 0.12
(SE) (0.17) (0.18) (0.20)
Potassium (mmHg/g/day) 0.06 -1.07 -1.53
(SE) (0.25) (0.20) (0.18)

The associations are in the expected directions, but surprisingly

weak (1g/day is a big difference in intake, 1 mmHg is a very

small difference in BP)
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Model criticism

termplot(model,col.res="#00000010",partial=TRUE,se=TRUE,pch=19, terms=c(1,2))
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Model criticism

termplot(model,smooth=make.panel.svysmooth(nhanes[-model$na.action,]), se=TRUE,
terms=c(1,2), rug=TRUE, partial=TRUE,col.res=0, col.smth="royalblue",
data=model.frame(nhanes[-model$na.action,]),lty.smth=1)
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Model criticism

No sign of non-linearity.

Age might be nonlinear, but modelling age with splines doesn’t

change the coefficients we are interested in.

Perhaps an age interaction?

intmodel<-svyglm(BPXSAR~(DR1TSODI+DR1TPOTA)*RIDAGEYR

+RIAGENDR*RIDAGEYR+ factor(RIDRETH1)+ns(RIDAGEYR,3)

+DR1TKCAL+trt, design=nhanes)

Some evidence that the potassium association changes with age,

but not for sodium

DR1TSODI:RIDAGEYR 1.424e-05 1.036e-05 1.376 0.189163

DR1TPOTA:RIDAGEYR -3.085e-05 1.191e-05 -2.590 0.020502 *
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Model criticism

But the associations are still weak at all ages

> svycontrast(intmodel, quote(DR1TPOTA+30*‘DR1TPOTA:RIDAGEYR‘))

nlcon SE

contrast -0.00099654 2e-04

> svycontrast(intmodel, quote(DR1TPOTA+40*‘DR1TPOTA:RIDAGEYR‘))

nlcon SE

contrast -0.0013051 2e-04

> svycontrast(intmodel, quote(DR1TPOTA+50*‘DR1TPOTA:RIDAGEYR‘))

nlcon SE

contrast -0.0016136 2e-04

> svycontrast(intmodel, quote(DR1TPOTA+80*‘DR1TPOTA:RIDAGEYR‘))

nlcon SE

contrast -0.0025391 5e-04

Measurement error is part of the problem: even good dietary
data is bad.
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Logistic regression model

Internet use in Scotland (2001) by age, sex, and income.

shs<-svydesign(id=~psu, strata=~stratum, weight=~grosswt,

data=shs_data)

bys<-svyby(~intuse,~age+sex,svymean,design=shs)

plot(svysmooth(intuse~age,

design=subset(shs,sex=="male" & !is.na(age)),

bandwidth=5),ylim=c(0,0.8),ylab="% using internet")

lines(svysmooth(intuse~age,

design=subset(shs,sex=="female" & !is.na(age)),

bandwidth=5),lwd=2,lty=3)

points(bys$age,bys$intuse,pch=ifelse(bys$sex=="male",19,1))

legend("topright",pch=c(19,1),lty=c(1,3),lwd=c(1,2),

legend=c("Male","Female"),bty="n")

byinc<-svyby(~intuse, ~sex+groupinc, design=shs)

barplot(byinc)
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Age (cohort) effect
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Code

> m<-svyglm(intuse~I(age-18)*sex,design=shs,

family=quasibinomial())

> m2<-svyglm(intuse~(pmin(age,35)+pmax(age,35))*sex,

design=shs,family=quasibinomial)

> summary(m)

svyglm(intuse ~ I(age - 18) * sex, design = shs,

family = quasibinomial())

Survey design:

svydesign(id = ~psu, strata = ~stratum, weight = ~grosswt,

data = ex2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.804113 0.047571 16.903 < 2e-16 ***

I(age - 18) -0.044970 0.001382 -32.551 < 2e-16 ***

sexfemale -0.116442 0.061748 -1.886 0.0594 .

I(age - 18):sexfemale -0.010145 0.001864 -5.444 5.33e-08 ***
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Code

> summary(m2)

Call:

svyglm(intuse ~ (pmin(age, 35) + pmax(age, 35)) * sex,

design = shs, family = quasibinomial)

Survey design:

svydesign(id = ~psu, strata = ~stratum, weight = ~grosswt,

data = ex2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.152291 0.156772 13.729 < 2e-16 ***

pmin(age, 35) 0.014055 0.005456 2.576 0.010003 *

pmax(age, 35) -0.063366 0.001925 -32.922 < 2e-16 ***

sexfemale 0.606718 0.211516 2.868 0.004133 **

pmin(age, 35):sexfemale -0.017155 0.007294 -2.352 0.018691 *

pmax(age, 35):sexfemale -0.009804 0.002587 -3.790 0.000151 ***
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Code

> svycontrast(m2,

quote(‘pmin(age, 35)‘ +‘pmin(age, 35):sexfemale‘))

nlcon SE

contrast -0.0031 0.0049

> svycontrast(m2,

quote(‘pmax(age, 35)‘ + ‘pmax(age, 35):sexfemale‘))

nlcon SE

contrast -0.07317 0.0018
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Loglinear models

svyloglin() does loglinear models

a<-svyloglin(~backpain+neckpain+sex+sickleave, nhis)

a2<-update(a, ~.^2)

a3<-update(a,~.^3)

b1<-update(a,~.+(backpain*neckpain*sex)+sex*sickleave)

b2<-update(a,~.+(backpain+neckpain)*sex+sex*sickleave)

b3<-update(a,~.+backpain:neckpain+sex:backpain+sex:neckpain

+sex:sickleave)

anova() method computes Rao–Scott working loglikelihood and
working score tests, with the two Rao–Scott approximations for
the p-value and the exact asymptotic distribution.
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Loglinear models

> anova(a,a2)
Analysis of Deviance Table
Model 1: y ~ backpain + neckpain + sex + sickleave

Model 2: y ~ backpain + neckpain + sex + sickleave + backpain:neckpain +
backpain:sex + backpain:sickleave + neckpain:sex + neckpain:sickleave +
sex:sickleave

Deviance= 3563.795 p= 0
Score= 4095.913 p= 0
> anova(a2,a3)
Analysis of Deviance Table
Model 1: y ~ backpain + neckpain + sex + sickleave + backpain:neckpain +

backpain:sex + backpain:sickleave + neckpain:sex + neckpain:sickleave +
sex:sickleave

Model 2: y ~ backpain + neckpain + sex + sickleave + backpain:neckpain +
backpain:sex + backpain:sickleave + neckpain:sex + neckpain:sickleave +
sex:sickleave + backpain:neckpain:sex + backpain:neckpain:sickleave +
backpain:sex:sickleave + neckpain:sex:sickleave

Deviance= 11.55851 p= 0.02115692
Score= 11.58258 p= 0.02094331
> print(anova(a2,a3),pval="saddlepoint")
[...snip...]
Deviance= 11.55851 p= 0.02065965
Score= 11.58258 p= 0.02044939
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Other models

Can extend the modelling in two ways

• svymle() takes a loglikelihood and score function for a
single observation and maximizes the weighted population
loglikelihood estimate, inserting linear predictors for any
parameters.

• withReplicates() runs arbitrary code, supplying each set of
replicate weights, and combines the answers to give standard
errors.

Appendix E of the book has a worked example for negative
binomial regression.

Neither approach works for mixed models, which are difficult and
currently not implemented.
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Adjustment of weights

← →

Post-stratification and calibration

Post-stratification and calibration are ways to use auxiliary

information on the population (or the phase-one sample) to

improve precision.

They are closely related to the Augmented Inverse-Probability

Weighted estimators of Jamie Robins and coworkers, but are

easier to understand.
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Auxiliary information

HT estimator is inefficient when some additional population data

are available.

Suppose xi is known for all i

Fit y ∼ xβ by (probability-weighted) least squares to get β̂. Let

r2 be proportion of variation explained.

T̂reg =
∑

Ri=1

1

πi
(yi − xiβ̂) +

N∑

i=1

xiβ̂

ie, HT estimator for sum of residuals, plus population sum of

fitted values
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Auxiliary information

Let β∗ be true value of β (ie, least-squares fit to whole

population).

Regression estimator

T̂reg =
∑

Ri=1

1

πi
(yi − xiβ∗) +




N∑

i=1

xi


β∗+

N∑

i=1

(
1− Ri

πi

)
xi(β̂ − β∗)

compare to HT estimator

T̂ =
∑

Ri=1

1

πi
(yi − xiβ∗) +


 ∑

Ri=1

1

πi
xi


β∗

Second term uses known vs observed total of x, third term is

estimation error for β, of smaller order.
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Auxiliary information

For large n, N and under conditions on moments and sampling

schemes

var
[
T̂reg

]
= (1−r2) var

[
T̂
]
+O(N/

√
n) =

(
1− r2 +O(n−1/2)

)
var

[
T̂
]

and the relative bias is O(1/n)

The lack of bias does not require any assumptions about [Y |X]

β̂ is consistent for the population least squares slope β, for which

the mean residual is zero by construction.
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Reweighting

Since β̂ is linear in y, we can write xβ̂ as a linear function of y

and so T̂reg is also a linear function of Y

T̂reg =
∑

Ri=1

wiyi =
∑

Ri=1

gi
πi
yi

for some (ugly) wi or gi that depend only on the xs

For these weights

N∑

i=1

xi =
∑

Ri=1

gi
πi
xi

T̂reg is an IPW estimator using weights that are ‘calibrated’ or

‘tuned’ (French: calage) so that the known population totals are

estimated correctly.
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Calage

← → 128

Calibration

The general calibration problem: given a distance function d(·, ·),
find calibration weights gi minimizing

∑

Ri=1

d(gi, 1)

subject to the calibration constraints

N∑

i=1

xi =
∑

Ri=1

gi
πi
xi

Lagrange multiplier argument shows that gi = η(xiβ) for some
η(), β; and γ can be computed by iteratively reweighted least
squares.

For example, can choose d(, ) so that gi are bounded below (and
above).

[Deville et al JASA 1993; JNK Rao et al, Sankhya 2002; Lumley
et al (Int Stat. Rev. 2011)]
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Calibration

When the calibration model in x is saturated, the choice of

d(, ) does not matter: calibration equates estimated and known

category counts.

In this case calibration is also the same as estimating sampling

probabilities with logistic regression, which also equates esti-

mated and known counts.

Calibration to a saturated model gives the same analysis as

pretending the sampling was stratified on these categories: post-

stratification

Post-stratification is a much older method, and is computation-

ally simpler, but calibration can make more use of auxiliary data.
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Standard errors

Standard errors come from the regression formulation

T̂reg =
∑

Ri=1

1

πi
(yi − xiβ̂) +

N∑

i=1

xiβ̂

The variance of the second term is of smaller order and is ignored.

The variance of the first term is the usual Horvitz–Thompson

variance estimator, applied to residuals from projecting y on the

calibration variables.
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Computing

postStratify() and rake() take marginal tables as input

calibrate() is more general, allowing continuous variables. It

takes column totals of a design matrix as input (the latest version

also allows lists of marginal tables, as in rake)
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Post-stratification

Stratified sampling uses population data on the stratifying

variable to add information to the survey, so that variation

between strata doesn’t show up in the standard error.

We often have population data that were not used to stratify

• The variable is useful for our analysis, but not for other

analyses of the data.

• The variable does not appear on sampling lists, so can’t be

used to stratify.

• The sampling is clustered and the variable is defined for

individuals.
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Stratified sampling

Suppose we take a simple random sample of 100 schools from

California, and end up with

> table(apisrs$stype)

E H M

76 7 17

We could have obtained exactly the same data from a stratified

random sample with stratum sizes nE = 76, nH = 7, nM = 17.

This is true for any simple random sample: we can define a

corresponding set of stratum sizes that would make the sample

possible.

Conversely, any sample that could have occurred by stratified

sampling could also have occured by simple random sampling.
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Stratified sampling

We can slice up the set of all possible simple random samples

into pieces corresponding to all possible sets of stratified random

samples.

Every sample is in exactly one slice.

This mean we can convert a simple random sample into a

stratified random sample by observing which slice it lies in, and

adjusting the weights from N/n to Nh/nh for that slice.

The adjustment of weights makes sure that we get exactly the

right estimate for Nh, just as we would in a stratified sample.

In statistical terms, we condition on the observed nh.
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Efficiency gain

Post-stratification is not quite as good as stratification: Suppose

the variance is the same in each stratum, so that sampling with

equal πi is optimal.

Our standard errors from the post-stratified sample are the same

as if we had done a stratified random sample with nE = 76,

nH = 7, nM = 17.

But in a stratified random sample of 100 schools with equal πi
in each stratum we would choose nE = 71, nH = 12, nM = 17,

and get slightly smaller standard errors.
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Efficiency gain

Also, the standard errors ignore the uncertainty that comes from

having to estimate the sampling weights: Nh/nh is random under

post-stratification, fixed under stratification.

This uncertainty is negligible as long as nh is not too small.

In contrast to stratification, post-stratification with very small

strata is not efficient.
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Example

> dsrs<-svydesign(id=~1,data=apisrs, fpc=~popsize)

> pop.types <- data.frame(stype=c("E","H","M"),

Freq=c(4421,755,1018))

> dps<-postStratify(dsrs, strata=~stype, pop=pop.types)

> svymean(~enroll+stype, dsrs)

mean SE

enroll 586.24 38.9173

stypeE 0.76 0.0426

stypeH 0.07 0.0254

stypeM 0.17 0.0374

> svymean(~enroll+stype, dps)

mean SE

enroll 633.65869 34.864

stypeE 0.71376 1.780e-17

stypeH 0.12189 8.603e-18

stypeM 0.16435 6.002e-18
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Simulation

one.sim<-function(){

srs_rows<-sample(6157,100) #no missing

dsrs<-svydesign(id=~1,fpc=~popsize,data=apipop[srs_rows,])

dps<-postStratify(dsrs, strata=~stype, pop=pop.types)

unstrat<-svytotal(~enroll, dsrs,na.rm=TRUE)

poststrat<-svytotal(~enroll, dps,na.rm=TRUE)

c(coef(unstrat),coef(poststrat))

}

manysim<-replicate(500,one.sim())
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Simulation

> mean(manysim[,1]-3811472)

[1] -404056.3

> mean(manysim[,2]-3811472)

[1] -34256.03

> sd(manysim[,1])

[1] 94477.48

> sd(manysim[,2])

[1] 55961.21

Post-stratification gives more accurate estimates.
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Clustering

If post-strata cut across clusters we can’t just treat the data as

a stratified multistage sample.

Post-stratification still works, but computations are done differ-

ently.

The variable is centered at the mean for the group, and the

standard error is computed for the residuals.

Yi = (Yi − ȳ) + ȳ

This is valid when the post-strata are reasonably large, as

the group mean has se2 proportional to 1/nh, which can be

neglected. It breaks down when nh is too small.
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Example:CA schools

Cluster sample of schools: all schools from 15 districts.

Can’t stratify on school type: clusters contain multiple school

types

Can post-stratify on school type

• gives exact estimates of numbers of schools of each type

• improves estimation for variables that differ by school type
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Example:CA schools

> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
> svymean(~api00, dclus1)

mean SE
api00 644.17 23.542
> svytotal(~enroll, dclus1)

total SE
enroll 3404940 932235
> svytotal(~stype, dclus1)

total SE
stypeE 4873.97 1333.32
stypeH 473.86 158.70
stypeM 846.17 167.55

> pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
> dclus1p<-postStratify(dclus1, ~stype, pop.types)
> summary(dclus1p)
1 - level Cluster Sampling design
With (15) clusters.
postStratify(dclus1, ~stype, pop.types)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01854 0.03257 0.03257 0.03040 0.03257 0.03257
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Example:CA schools

> svytotal(~stype, dclus1p)
total SE

stypeE 4421 0
stypeH 755 0
stypeM 1018 0
> svymean(~api00, dclus1p)

mean SE
api00 642.31 23.921
> svytotal(~enroll, dclus1p)

total SE
enroll 3680893 406293
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Post-stratification and regression

The post-stratification estimate of a mean or total is exactly the

regression estimator for a model that has indicator variables for

all the groups.

The known population cell sizes for each group are used to

compute the predicted values, and the variance of the residuals

is used to compute the standard error estimate

> dclus1<-update(dclus1, middle=as.numeric(stype=="M"),
high=as.numeric(stype=="H"))

> m<-svyglm(enroll~middle+high,design=dclus1)
> predict(m, total=6194,newdata=data.frame(middle=1018,high=755))

link SE
1 3680893 406293
> svytotal(~enroll, dclus1p)

total SE
enroll 3680893 406293
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Post-stratification

Post-stratification requires the population joint distribution of all

the post-stratum variables.

eg, post-stratifying on agegroup, race, sex requires counts for

each age-race-sex combination.

• Post-strata may be too small for good estimation

• Joint distributions may not be available
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Raking

Suppose we have population data on age and on income, but

not jointly.

We could

• Post-stratify on age, ignoring income; or

• Post-stratify on income, ignoring age

Why not both: post-stratify on age, then on income?
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Raking

Post-stratifying on income can affect the age totals and vice

versa, but we can iterate until the estimates settle down.

If there are no zeros in the sample table, the estimates will

converge. If there are zeros, the estimates may converge or

may oscillate.

In the survey world this algorithm is called

raking. In loglinear modelling, the same

algorithm is called iterative proportional

fitting.
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Standard errors

For replicate weights the standard errors come from raking each

set of replicates.

For standard errors based on the sampling design we iterate the

procedure of centering the variables around the post-stratum

mean.

Raking will typically give larger standard errors than post-

stratification on the same variables: it uses less population

information.
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Computing

Using replicate weights that have already been raked does not

require any special software.

The sampling weights in large surveys have often been raked,

but the raking strata are not given. Analysing the data as if the

weights were simply sampling weights is conservative..

R has a rake function, which works by calling the postStratify

function iteratively.

SUDAAN can do raking, SPSS, SAS and Stata do not have it

built in, but there are user-written macros available.
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Example

rclus1 is a cluster sample of 15 California school districts: 183

schools. Using jackknife weights (leave out one cluster).

> rclus1

Call: as.svrepdesign(dclus1)

Unstratified cluster jacknife (JK1) with 15 replicates.

> ## population marginal totals for each stratum

> pop.types <- data.frame(stype=c("E","H","M"),

Freq=c(4421,755,1018))

> pop.schwide <- data.frame(sch.wide=c("No","Yes"),

Freq=c(1072,5122))

> rclus1r <- rake(rclus1, list(~stype,~sch.wide),

list(pop.types, pop.schwide))
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Example

> xtabs(~stype, apipop)

stype

E H M

4421 755 1018

> svytable(~stype, rclus1r, round=TRUE)

stype

E H M

4421 755 1018

> xtabs(~sch.wide, apipop)

sch.wide

No Yes

1072 5122

> svytable(~sch.wide, rclus1r, round=TRUE)

sch.wide

No Yes

1072 5122
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Example

> ## joint totals don’t correspond

> xtabs(~stype+sch.wide, apipop)

sch.wide

stype No Yes

E 472 3949

H 334 421

M 266 752

> svytable(~stype+sch.wide, rclus1r, round=TRUE)

sch.wide

stype No Yes

E 478 3943

H 201 554

M 393 625
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Example

> ## but much closer than before raking

> svytable(~stype+sch.wide,rclus1,round=TRUE)

sch.wide

stype No Yes

E 406 4468

H 102 372

M 271 575

>## Some means

> svymean(~comp.imp+enroll+stype, rclus1r)

mean SE

comp.impNo 0.31984 0.0167

comp.impYes 0.68016 0.0167

enroll 588.84405 74.8322

stypeE 0.71375 4.793e-05

stypeH 0.12189 1.465e-05

stypeM 0.16436 3.335e-05
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Example

> svymean(~comp.imp+enroll+stype, rclus1)

mean SE

comp.impNo 0.273224 0.0303

comp.impYes 0.726776 0.0303

enroll 549.715847 50.4611

stypeE 0.786885 0.0514

stypeH 0.076503 0.0278

stypeM 0.136612 0.0332
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More complex raking

It is possible to rake on any set of tables, even partly overlapping.

For example, suppose we have population tables of age by sex by

region and age by ethnicity by region, and age by sex by ethnicity,

but not age by sex by ethnicity by region.

We can still post-stratify iteratively on the three tables we have

until the estimates converge.
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More complex raking

pop.table <- xtabs(~stype+sch.wide,apipop)

pop.table2 <- xtabs(~stype+comp.imp,apipop)

rakeclus1r<-rake(dclus1,

sample=list(~stype+sch.wide, ~stype+comp.imp),

population=list(pop.table, pop.table2))
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Raking and regression

Can approximately think of raking as a logistic regression model
for the probability of being sampled. The sampling weights
provide odds πi/(1−πi), and raking modifies these to giπi/(1−πi)

Raking with just two marginal tables fits a logistic regression
model with main effects and no interactions.

Post-stratification fits all the interactions.

Since the null model is true (πi are the correct sampling
probabilities), inference is valid for any model and we trade off
the precision gain from adjusting the sampling to the precision
loss from estimating more parameters.

More complicating raking procedures with overlapping tables
correspond to more complicated logistic models with some
interactions included.
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Family Resources Survey

Data for Scotland, via PEAS at Napier University.

This is a set of 4695 observations of households in a cluster

sample, clustered by postcode.

We can define a survey design and estimate the mean income

for all households, households with children, and single-parent

households.

The weights as supplied have already been raked, using council

tax band and housing tenure type (rented, owned, etc), so the

usual weighted analysis is conservative.

Raking the weights doesn’t change the point estimates (because

they are already raked) but allows R to take advantage of the

increase in precision.
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Family Resources Survey

> frs.des <- svydesign(id=~PSU, weights=~GROSS2, data=frs)

> svymean(~HHINC, subset(frs.des, ADULTH==1 & DEPCHLDH>0),

+ deff=TRUE)

mean SE DEff

HHINC 276.5555 8.4954 1.0101

> svymean(~HHINC, subset(frs.des, DEPCHLDH>0),deff=TRUE)

mean SE DEff

HHINC 611.205 15.599 1.7622

> svymean(~HHINC, frs.des,deff=TRUE)

mean SE DEff

HHINC 483.091 10.639 2.9066
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Family Resources Survey

> pop.ctband <- data.frame(CTBAND=1:9,

+ Freq=c(515672, 547548, 351599, 291425,

+ 266257, 147851, 87767, 9190, 19670))

> pop.tenure <- data.frame(TENURE=1:4,

+ Freq=c(1459205,493237, 128189, 156348))

> frs.raked <- rake(frs.des, sample=list(~CTBAND, ~TENURE),

+ population=list(pop.ctband, pop.tenure))

> svymean(~HHINC, frs.raked)

mean SE

HHINC 483.09 7.5781

> svymean(~HHINC, subset(frs.raked, DEPCHLDH>0))

mean SE

HHINC 611.21 12.541

> svymean(~HHINC, subset(frs.raked, DEPCHLDH>0 & ADULTH==1))

mean SE

HHINC 276.56 8.4417
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Compared to regression

> frs.des <- update(frs.des,

+ ctband1=CTBAND==1, ctband2=CTBAND==2,

+ ctband3=CTBAND==3, ctband4=CTBAND==4,ctband5=CTBAND==5,

+ ctband6=CTBAND==6,ctband7=CTBAND==7, ctband8=CTBAND==8,

+ ctband9=CTBAND==9,

+ tenure1=TENURE==1, tenure2=TENURE==2, tenure3=TENURE==3,

+ tenure4=TENURE==4)

> m <- svyglm(HHINC~ctband2+ctband3+ctband4+ctband5+ctband6

+ +ctband7+ctband8+ctband9+tenure2+tenure3+tenure4,

+ design=frs.des)

> totals <- c(2236979, 547548, 351599, 291425, 266257, 147851,

+ 87767, 9190, 19670, 493237, 128189, 156348)

> names(totals) <- c("(Intercept)", "ctband2", "ctband3",

+ "ctband4", "ctband5", "ctband6", "ctband7", "ctband8",

+ "ctband9", "tenure2", "tenure3", "tenure4")

> totals <- as.data.frame(t(totals))
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Compared to regression

> totincome <- predict(m, newdata=totals, total= 2236979)

> svycontrast(totincome, 1/2236979)

contrast SE

contrast 483.09 7.5046
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Calibration and regression

• Regression estimators of the population total

• Calibration of weights

← → 164

Estimating totals

A fitted linear regression model

E[Yi] = α̂+ β̂xi

gives predictions for y when x is known.

If x is known for the whole population we can predict y for the

whole population and estimate the total

T̂y =
N∑

i=1

(
α̂+ β̂xi

)

In fact this simplifies to

T̂y = Nα̂+ β̂
N∑

i=1

xi

so we only need the population total of x, not the individual xs.
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Calibration

Three basic types of calibration

• Linear (or regression) calibration: identical to regression

estimator

• Raking: multiplicative model for weights, guarantees gi > 0

• Logit calibration: logit link for weights, popular in Europe,

provides upper and lower bounds for gi
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Calibration

Upper and lower bounds for gi can also be specified for linear and

raking calibration (these may not be achievable, but we try).

Trimming of weights is available for when the desired bounds

can’t be achieved.

Calibration to cluster totals is allowed, as is enforcing constant

calibration adjustments within clusters (eg, to make sampling

weights the same for all members of a household).

The user can specify other calibration loss functions (eg,

mathematical statisticians keep asking about Hellinger distance).
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Calibration

The calibrate() function takes three main arguments

• a survey design object

• a model formula describing the design matrix of auxiliary

variables

• a vector giving the column sums of this design matrix in the

population.

and additional arguments describing the type of calibration.
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Calibration

> data(api)

> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

> pop.totals<-c(‘(Intercept)‘=6194, stypeH=755, stypeM=1018)

> (dclus1g<-calibrate(dclus1, ~stype, pop.totals))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype, pop.totals)

> svymean(~api00, dclus1g)

mean SE

api00 642.31 23.921

> svymean(~api00,dclus1)

mean SE

api00 644.17 23.542
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Calibration

> svytotal(~enroll, dclus1g)

total SE

enroll 3680893 406293

> svytotal(~enroll,dclus1)

total SE

enroll 3404940 932235

> svytotal(~stype, dclus1g)

total SE

stypeE 4421 1.118e-12

stypeH 755 4.992e-13

stypeM 1018 1.193e-13
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Calibration

> (dclus1g3 <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069))

> svymean(~api00, dclus1g3)

mean SE

api00 665.31 3.4418

> svytotal(~enroll, dclus1g3)

total SE

enroll 3638487 385524

> svytotal(~stype, dclus1g3)

total SE

stypeE 4421 1.179e-12

stypeH 755 4.504e-13

stypeM 1018 9.998e-14
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Calibration

> range(weights(dclus1g3)/weights(dclus1))

[1] 0.4185925 1.8332949

> (dclus1g3b <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069),bounds=c(0.6,1.6)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

bounds = c(0.6, 1.6))

> range(weights(dclus1g3b)/weights(dclus1))

[1] 0.6 1.6
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Calibration

> svymean(~api00, dclus1g3b)

mean SE

api00 665.48 3.4184

> svytotal(~enroll, dclus1g3b)

total SE

enroll 3662213 378691

> svytotal(~stype, dclus1g3b)

total SE

stypeE 4421 1.346e-12

stypeH 755 4.139e-13

stypeM 1018 8.238e-14
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Calibration

> (dclus1g3c <- calibrate(dclus1, ~stype+api99, c(pop.totals,

+ api99=3914069), calfun="raking"))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "raking")

> range(weights(dclus1g3c)/weights(dclus1))

[1] 0.5342314 1.9947612

> svymean(~api00, dclus1g3c)

mean SE

api00 665.39 3.4378
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Calibration

> (dclus1g3d <- calibrate(dclus1, ~stype+api99, c(pop.totals,

+ api99=3914069), calfun="logit",bounds=c(0.5,2.5)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "logit", bounds = c(0.5, 2.5))

> range(weights(dclus1g3d)/weights(dclus1))

[1] 0.5943692 1.9358791

> svymean(~api00, dclus1g3d)

mean SE

api00 665.43 3.4325
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Raking-like syntax

pop.table <- xtabs(~stype+sch.wide,apipop)

pop.table2 <- xtabs(~stype+comp.imp,apipop)

rakeclus1r<-rake(dclus1,

sample=list(~stype+sch.wide, ~stype+comp.imp),

population=list(pop.table, pop.table2))

calclus1r<-calibrate(dclus1,

formula=list(~stype+sch.wide, ~stype+comp.imp),

population=list(pop.table, pop.table2),

calfun="raking")
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Trimming

> dclus1tr <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069),bounds=c(0.5,2),

trim=c(2/3,3/2))

37 weights were trimmed

> svymean(~stype+api00, design=dclus1tr)

mean SE

stypeE 0.72598 0.0000

stypeH 0.11057 0.0000

stypeM 0.16345 0.0000

api00 662.72890 3.4388

Also trimWeights to trim weights rather than calibration adjust-

ments.
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Types of calibration

Post-stratification allows much more flexibility in weights, in

small samples can result in very influential points, loss of

efficiency.

Calibration allows for less flexibility (cf stratification vs regression

for confounding)

Different calibration methods make less difference

Example from Kalton & Flores-Cervantes (J. Off. Stat, 2003):

a 3× 4 table of values.
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Types of calibration
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Calibration to estimate β

Calibration on raw variables doesn’t help with estimating regres-

sion coefficients

Reason:

β̂ = β +
∑

i∈sample
(XTWX)−1xiwi(yi − µi)

and the raw variables x and y are nearly uncorrelated with

xiwi(yi − µi).

Need to calibrate on variables correlated with xiwi(yi−µi), more

generally, correlated with the influence function for the parameter

of interest.
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Influence functions

If we have another estimator for the same parameter, its

influence functions must be correlated (Convolution Theorem)

So: use auxiliary variables z to get imputed x̂i for everyone in

population, regress y on x̂, use the influence functions from that

model.

More reasonable in two-phase cohort design: use z measured on

a whole cohort to impute x measured on a subsample.
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Influence functions

Extreme example: California schools.

We want to fit api00~ell+mobility+emer

Assume that the predictor variables and api99 are available for

the whole population.

Calibration on the predictor variables has little impact on

precision; calibration on api99 reduces standard error only for

intercept.

Fit a population model api99~ell+mobility+emer and calibrate on

its influence functions to get large gains in precision
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Influence functions

> m0 <- svyglm(api00~ell+mobility+emer, clus1)

> var_cal <- calibrate(clus1, formula=~api99+ell+mobility+emer,

pop=c(6194,3914069, 141685, 106054, 70366),

bounds=c(0.1,10))

> m1<-svyglm(api00~ell+mobility+emer, design=var_cal)

> popmodel <- glm(api99~ell+mobility+emer, data=apipop,

na.action=na.exclude)

> inffun <- dfbeta(popmodel)

> index <- match(apiclus1$snum, apipop$snum)

> clus1if <- update(clus1, ifint = inffun[index,1],

ifell=inffun[index,2], ifmobility=inffun[index,3],

ifemer=inffun[index,4])

> if_cal <- calibrate(clus1if,

formula=~ifint+ifell+ifmobility+ifemer,

pop=c(6194,0,0,0,0))

> m2<-svyglm(api00~ell+mobility+emer, design=if_cal)
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Influence functions

> coef(summary(m0))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 780.459500 30.0210123 25.997108 3.156974e-11

ell -3.297892 0.4689026 -7.033215 2.173478e-05

mobility -1.445370 0.7342887 -1.968395 7.473627e-02

emer -1.814215 0.4233504 -4.285374 1.287085e-03

> coef(summary(m1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 785.408240 13.7640081 57.062466 5.912274e-15

ell -3.273108 0.6242978 -5.242864 2.756024e-04

mobility -1.464732 0.6651257 -2.202188 4.989506e-02

emer -1.676541 0.3742041 -4.480284 9.309647e-04
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Influence functions

> coef(summary(m2))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 790.631553 5.8409844 135.359298 4.480786e-19

ell -3.260976 0.1300765 -25.069679 4.678967e-11

mobility -1.405554 0.2247022 -6.255187 6.214930e-05

emer -2.240431 0.2150534 -10.418024 4.902863e-07
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More realistic example

Data from National Wilms’ Tumor Study, via Norm Breslow.

Histology (cell weirdness) is hard to assess; NWTS central lab

pathologist is better than anyone else.

Suppose we had all tumors assessed by local hospital lab and a

subsample reassessed by central lab.

Use calibration to bring in information from outside the subsam-

ple (more model-robust than multiple imputation)
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More realistic example

Two-phase sampling

• superpopulation sampling at phase 1, modelled as SRS with

replacement

• stratified sampling without replacement at phase 2

twophase() function is similar to svydesign, but has two of

everything, and a subset argument specifying which observations

are in phase 2.
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More realistic example

• Step 1: impute central-lab histology from local institutional

histology and other variables

• Step 2: Fit the desired Cox model to the whole sample using

just the imputed data

• Step 3: Extract the influence functions and calibrate using

them (raking, to avoid negative weights)

• Step 4: Fit the model to the calibrated subsample
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More realistic example

impmodel <- glm(histol~instit+I(age>10)+I(stage==4)*study,

data=nwts, subset=in.subsample, family=binomial)

nwts$imphist <- predict(impmodel, newdata=nwts, type="response")

ifmodel <- coxph(Surv(trel,relaps)~imphist*age+I(stage>2)*tumdiam,

data=nwts)

inffun <- resid(ifmodel, "dfbeta")

colnames(inffun) <- paste("if",1:6,sep="")

nwts_if <- cbind(nwts, inffun)

if_design <- twophase(id = list(~1, ~1), subset = ~in.subsample,

strata = list(NULL, ~interaction(instit, relaps)),

data = nwts_if)

if_cal <- calibrate(if_design, phase=2, calfun="raking"

~if1+if2+if3+if4+if5+if6+relaps*instit)
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More realistic example

m1 <- svycoxph(Surv(trel, relaps)~histol*age+I(stage>2)*tumdiam,

design=nwts_design)

m2 <- svycoxph(Surv(trel, relaps)~histol*age+I(stage>2)*tumdiam,

design=if_cal)

Result: phase-two contribution to variance is eliminated for

variables other than histol, reduced proportionally to imputation

accuracy for histol.

Same gains as multiple imputation, but would be valid under

model misspecification.
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More realistic example

Two-phase sample Full data
sampling weights raked direct imputation

Coefficient estimate
histology 1.808 2.113 2.108 1.932
age 0.055 0.101 0.101 0.096
stage > 2 1.411 1.435 1.432 1.389
tumor diameter 0.043 0.061 0.061 0.058
histology:age -0.116 -0.159 -0.159 -0.144
stage > 2:diameter -0.074 -0.084 -0.083 -0.079
Standard error
histology 0.221 0.171 0.174 0.157
age 0.023 0.014 0.016 0.016
stage > 2 0.361 0.276 0.249 0.250
tumor diameter 0.021 0.016 0.014 0.014
histology:age 0.054 0.039 0.040 0.035
stage > 2:diameter 0.030 0.022 0.020 0.020
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That’s all, folks

Any (more) questions?
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Bonus track: multiply-imputed data
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Using multiply-imputed data

Multiple imputation of missing data: fit a model to the data,

simulate multiple possibilities for the missing data from the

predictive distribution of the model. (Rubin, 1978)

Do the same analysis to each completed data set

Point estimate is the average of the point estimates

Variance estimate is the average variance + variance between

point estimates.

Simple approach is technically valid only for ‘proper’ imputations

including posterior uncertainty in model parameters, which is

inefficient. [Wang & Robins, Bka 1998]
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Using multiply-imputed data

Need code to do repeated analysis, combine results.

• imputationList() wraps a list of data frames or database

tables

• svydesign() can take an imputationList as the data argument

to give a set of designs.

• with(designs, expr) runs expr, with design= each one of the

designs in turn

• MIcombine() combines the results.
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NHANES III imputations

> library(mitools)

> library(RSQLite)

> impdata <- imputationList(c("set1","set2","set3","set4","set5"),

dbtype="SQLite", dbname="~/nhanes/imp.db")

> impdata

MI data with 5 datasets

Call: imputationList(c("set1", "set2", "set3", "set4", "set5"),

dbtype = "SQLite", dbname = "~/nhanes/imp.db")

> designs <- svydesign(id=~SDPPSU6, strat=~SDPSTRA6,

weight=~WTPFQX6, data=impdata, nest=TRUE)

> designs

DB-backed Multiple (5) imputations: svydesign(id = ~SDPPSU6,

strat = ~SDPSTRA6, weight = ~WTPFQX6,

data = impdata, nest = TRUE)
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NHANES III imputations

> designs<-update(designs,

age=ifelse(HSAGEU==1, HSAGEIR/12, HSAGEIR))

> designs<-update(designs,

agegp=cut(age,c(20,40,60,Inf),right=FALSE))

> res <- with(subset(designs, age>=20),

svyby(~BDPFNDMI, ~agegp+HSSEX, svymean))

> summary(MIcombine(res))

Multiple imputation results:

with(subset(designs, age >= 20), svyby(~BDPFNDMI,

~agegp + HSSEX, svymean, design = .design))

MIcombine.default(res)

results se (lower upper) missInfo

[20,40).1 0.9355049 0.003791945 0.9279172 0.9430926 28 %

[40,60).1 0.8400738 0.003813224 0.8325802 0.8475674 10 %

[60,Inf).1 0.7679224 0.004134875 0.7598032 0.7760416 8 %

[20,40).2 0.8531107 0.003158246 0.8468138 0.8594077 26 %

[40,60).2 0.7839377 0.003469386 0.7771144 0.7907610 11 %

[60,Inf).2 0.6454393 0.004117235 0.6370690 0.6538096 38 %
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