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R Survey package

Version 3.21-1 is current, containing approximately 11000 lines

of interpreted R code.

Version 2.3 was published in Journal of Statistical Software.

Major changes since then: finite population corrections for mul-

tistage sampling and PPS sampling, calibration and generalized

raking, tests of independence in contingency tables, better tables

of results, simple two-phase designs, loglinear models, ordinal

regression models, simple mulitivariate analyses, survival curves



The book of the package

http://faculty.washington.edu/tlumley/svybook/

http://faculty.washington.edu/tlumley/svybook/


Design principles

• Ease of maintenance and debugging by code reuse

• Speed and memory use not initially a priority: don’t optimize

until there are real use-cases to profile.

• Rapid release, so that bugs and other infelicities can be found

and fixed.

• Emphasize features that look like biostatistics (regression,

calibration, survival analysis, exploratory graphics, two-phase

sampling)



Intended market

• Methods research (because of programming features of R)

• Teaching (because of cost, use of R in other courses)

• Secondary analysis of national surveys (regression features,

R is familiar to non-survey statisticians)

• Two-phase designs in epidemiology



Outline

• Describing survey designs: svydesign()

• Database-backed designs

• Summary statistics: mean, total, quantiles, design effect

• Tables of summary statistics, domain estimation.

• Contigency tables: svychisq(), svyloglin()

• Graphics: histograms, hexbin scatterplots, smoothers.

• Regression modelling: svyglm(), svyolr(),

• Calibration

• Multiply-imputed data

• Two-phase designs, PPS sampling.



Objects and Formulas

Collections of related information should be kept together in an

object. For surveys this means the data and the survey meta-

data.

The way to specify variables from a data frame or object in R is

a formula

~a + b + I(c < 5*d)

The survey package always uses formulas to specify variables in

a survey data set.



Basic estimation ideas

Individuals are sampled with known probabilities πi from a

population of size N to end up with a sample of size n. The

population can be a full population or an existing sample such

as a cohort.

We write Ri = 1 if individual i is sampled, Ri = 0 otherwise

The design-based inference problem is to estimate what any

statistic of interest would be if data from the whole population

were available.



Basic estimation ideas

For a population total this is easy: an unbiased estimator of

TX =
N∑
i=1

xi

is

T̂X =
∑

i:Ri=1

1

πi
Xi

Standard errors follow from formulas for the variance of a sum:

main complication is that we do need to know cov[Ri, Rj].



Basic estimation ideas

The general Horvitz–Thompson formula is

v̂ar =
n∑

i,j=1

∆̌ijx̌ix̌j

where ∆ is the covariance of sampling indicators and the check

indicates multiplication by the sampling weight (for x) or pairwise

sampling weight (for ∆)

For multistage stratified/clustered designs this can be most

easily computed by a recursive algorithm over the stages of

sampling, in svyrecvar().



Basic estimation ideas

Other statistics follow from sums: if the statistic on the whole

population would solve the estimating equation

N∑
i=1

Ui(θ) = 0

then a design-based estimate will solve∑
i:Ri=1

1

πi
Ui(θ) = 0

Standard errors come from the delta method or from resampling

(actually reweighting).

Theoretical details can become tricky, especially if Ui() is not a

function of just one observation (eg Cox model)



Describing surveys to R

Stratified independent sample (without replacement) of Califor-

nia schools

data(api)

dstrat <- svydesign(id=~1,strata=~stype, weights=~pw,

data=apistrat, fpc=~fpc)

• stype is a factor variable for elementary/middle/high school

• fpc is a numeric variable giving the number of schools in each

stratum. If omitted we assume sampling with replacement

• id=∼1 specifies independent sampling.

• apistrat is the data frame with all the data.

• pw contains sampling weights (1/πi). These could be omitted

since they can be computed from the population size.

Note that all the variables are in apistrat and are specified as

formulas.



Describing surveys to R

> dstrat
Stratified Independent Sampling design
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,
fpc = ~fpc)
> summary(dstrat)
Stratified Independent Sampling design
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,
fpc = ~fpc)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02262 0.02262 0.03587 0.04014 0.05339 0.06623
Stratum Sizes:
E H M
obs 100 50 50
design.PSU 100 50 50
actual.PSU 100 50 50
Population stratum sizes (PSUs):
E M H
4421 1018 755
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...



Describing surveys to R

Cluster sample of school districts, using all schools within a
district.

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

• dnum is a (numeric) identifier for school district

• No stratification, so no strata= argument

> summary(dclus1)
1 - level Cluster Sampling design
With (15) clusters.
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...



Describing surveys to R

Two-stage sample: 40 school districts and up to 5 schools from
each

dclus2 <- svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

• dnum identifies school district, snum identifies school
• fpc1 is the number of school districts in population,fpc2 is

number of schools in the district.
• Weights are computed from fpc1 and fpc2

> summary(dclus2)
2 - level Cluster Sampling design
With (40, 126) clusters.
svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.003669 0.037740 0.052840 0.042390 0.052840 0.052840
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...



Replicate weights

California Health Interview Survey has 50 sets of replicate

weights instead of design information

chis_adult <- read.dta("adult.dta")

chis <- svrepdesign(variables=chis_adult[,1:418],

repweights=chis_adult[,420:499],

weights=chis_adult[,419], combined.weights=TRUE,

type="other", scale=1, rscales=1)

Can also create replicate weights with as.svrepdesign(), using

jackknife, bootstrap, or BRR.



BRR: R knows Hadamard matrices

Sylvester: 64 == 26 Paley: 60 == 59 ++ 1

Stored: 28 Constructed: 96 == 23 ×× ((11 ++ 1))



Describing surveys: database-based

library(RSQLite)

brfss <- svydesign(id=~X_PSU, strata=~X_STATE, weight=~X_FINALWT,

data="brfss", dbtype="SQLite", dbname="brfss07.db",

nest=TRUE)

The data argument is the name of a database table or view,
dbtype and dbname specify the database.

Only the design meta-data are loaded into the design object.
Other variables are temporarily loaded as needed when an
analysis is run.

Can use any database with an ODBC, JDBC, or R-DBI interface:
anything on Windows, SQLite, Postgres, Oracle.

BRFSS is about as large as a 1Gb laptop can handle with this
approach: 430,000 records.



Summary statistics

svymean, svytotal, svyratio, svyvar, svyquantile

All take a formula and design object as arguments, return an

object with coef, vcov, SE, cv methods.

Mean and total on factor variables give tables of cell means/totals.

Mean and total have deff argument for design effects and the

returned object has a deff method.



Summary statistics

confint() works on most objects to give confidence intervals.

> svymean(~api00, dclus1, deff=TRUE)

mean SE DEff

api00 644.169 23.542 9.3459

> svymean(~factor(stype),dclus1)

mean SE

factor(stype)E 0.786885 0.0463

factor(stype)H 0.076503 0.0268

factor(stype)M 0.136612 0.0296



Summary statistics

> svymean(~interaction(stype, comp.imp), dclus1)

mean SE

interaction(stype, comp.imp)E.No 0.174863 0.0260

interaction(stype, comp.imp)H.No 0.038251 0.0161

interaction(stype, comp.imp)M.No 0.060109 0.0246

interaction(stype, comp.imp)E.Yes 0.612022 0.0417

interaction(stype, comp.imp)H.Yes 0.038251 0.0161

interaction(stype, comp.imp)M.Yes 0.076503 0.0217

> svyvar(~api00, dclus1)

variance SE

api00 11183 1386.4

> svytotal(~enroll, dclus1, deff=TRUE)

total SE DEff

enroll 3404940 932235 31.311



Summary statistics

> mns <- svymean(~api00+api99,dclus1)

> mns

mean SE

api00 644.17 23.542

api99 606.98 24.225

> coef(mns)

api00 api99

644.1694 606.9781

> SE(mns)

api00 api99

23.54224 24.22504



Summary statistics

> vcov(mns)

api00 api99

api00 554.2371 565.7856

api99 565.7856 586.8526

> cv(mns)

api00 api99

0.03654666 0.03991090

> confint(mns)

2.5 % 97.5 %

api00 598.0275 690.3113

api99 559.4979 654.4583



Proportions

Proportions are just means, but there are better approaches to

confidence intervals for proportions near 0 or 1.

svyciprop() also provides

• logistic regression interval

• ‘likelihood’ interval based on Rao–Scott test

• binomial ci based on effective sample size (Korn & Graubard

1998)

• arcsin–sqrt transformation.



Domain estimation

The correct standard error estimate for a subpopulation that

isnt a stratum is not just obtained by pretending that the

subpopulation was a designed survey of its own.

However, the subset function and "[" method for survey design

objects handle all these details automagically, so you can ignore

this problem.

The package test suite (tests/domain.R) verifies that subpopu-

lation means agree with derivations from ratio estimators and

regression estimator derivations. Some more documentation is

in the domain vignette.

Note: subsets of design objects don’t necessarily use less memory

than the whole objects.



Quantiles

Confidence intervals use Woodruff’s method by default

• Estimate the median m̂

• Treat m̂ as fixed and get a confidence interval for P (X > m̂)

• Estimate the quantiles corresponding to the endpoints of the

interval. This is the confidence interval



Quantiles: details

Two options for interpolation in the presence of ties

• discrete: the CDF has vertical steps at tied observations,

interpolates linearly between distinct values

• rounded: the CDF is continuous, tied observations are treated

as a single observation with the total weight

Default confidence interval is Normal-based, option interval="betaWald"

uses the binomial distribution with a design effect (Korn &

Graubard 1998, Shah & Vaish 2006).

Standard error is estimated by dividing the confidence interval

length by twice the Normal critical value (eg 2× 1.96)



Prettier tables

Two main types

• totals or proportions cross-classified by multiple factors

• arbitrary statistics in subgroups



Computing over subgroups

svyby computes a statistic for subgroups specified by a set of

factor variables:

> svyby(~api99, ~stype, dclus1, svymean)

stype statistics.api99 se.api99

E E 607.7917 22.81660

H H 595.7143 41.76400

M M 608.6000 32.56064

~api99 is the variable to be analysed, ~stype is the subgroup

variable, dclus1 is the design object, svymean is the statistic to

compute.

Lots of options for eg what variance summaries to present



Computing over subgroups

> svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5,ci=TRUE)
stype statistics.quantiles statistics.CIs se var

E E 615 525.6174, 674.1479 37.89113 1435.738
H H 593 428.4810, 701.0065 69.52309 4833.46
M M 611 527.5797, 675.2395 37.66903 1418.955

> svyby(~api99, list(school.type=apiclus1$stype), dclus1, svymean)
school.type statistics.api99 se.api99

E E 607.7917 22.81660
H H 595.7143 41.76400
M M 608.6000 32.56064

> svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE)
> svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE)

stype statistics.api99 statistics.api00 se.api99 se.api00
E E 607.7917 648.8681 22.81660 22.36241
H H 595.7143 618.5714 41.76400 38.02025
M M 608.6000 631.4400 32.56064 31.60947

DEff.api99 DEff.api00
E 5.895734 6.583674
H 2.211866 2.228259
M 2.226990 2.163900



Computing over subgroups

stype sch.wide statistic.api99 statistic.api00
E.No E No 601.6667 596.3333
H.No H No 662.0000 659.3333
M.No M No 611.3750 606.3750
E.Yes E Yes 608.3485 653.6439
H.Yes H Yes 577.6364 607.4545
M.Yes M Yes 607.2941 643.2353



Computing over subgroups

> (a<-svyby(~enroll, ~stype, rclus1, svytotal, deff=TRUE,
+ vartype=c("se","cv","cvpct","var")))

stype statistics.enroll se cv.enroll cv%.enroll var DEff
E E 2109717.1 631349.4 0.2992578 29.92578 398602047550 125.039075
H H 535594.9 226716.6 0.4232987 42.32987 51400414315 4.645816
M M 759628.1 213635.5 0.2812369 28.12369 45640120138 13.014932

> deff(a)
[1] 125.039075 4.645816 13.014932
> SE(a)
[1] 631349.4 226716.6 213635.5
> cv(a)
[1] 0.2992578 0.4232987 0.2812369
> coef(a)
[1] 2109717.1 535594.9 759628.1

> svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean,
+ drop.empty.groups=FALSE)

comp.imp sch.wide statistics.api00 se.api00
No.No No No 608.0435 28.98769
Yes.No Yes No NA NA
No.Yes No Yes 654.0741 32.66871
Yes.Yes Yes Yes 648.4060 22.47502



Functions of estimates

svycontrast computes linear and nonlinear combinations of

estimated statistics (in the same object).

> a <- svytotal(~api00 + enroll + api99, dclus1)

> svycontrast(a, list(avg = c(0.5, 0, 0.5), diff = c(1,

0, -1)))

contrast SE

avg 3874804 873276

diff 230363 54921

> svycontrast(a, list(avg = c(api00 = 0.5, api99 = 0.5),

diff = c(api00 = 1, api99 = -1)))

contrast SE

avg 3874804 873276

diff 230363 54921



Functions of estimates

> svycontrast(a, quote(api00/api99))

nlcon SE

contrast 1.0613 0.0062

> svyratio(~api00, ~api99, dclus1)

Ratio estimator: svyratio.survey.design2(~api00, ~api99, dclus1)

Ratios=

api99

api00 1.061273

SEs=

api99

api00 0.006230831

The nonlinear transformation is useful for programming: was

used to implement Cohen’s kappa and the arcsin-sqrt transfor-

mation for proportions.



Crosstabs

svyby or svymean and svytotal with interaction will produce the

numbers, but the formatting is not pretty.

ftable provides formatting:

> d<-svyby(~api99 + api00, ~stype + sch.wide, rclus1, svymean,
keep.var=TRUE, vartype=c("se","cvpct"))

> round(ftable(d),1)
sch.wide No Yes

statistics.api99 statistics.api00 statistics.api99 statistics.api00
stype
E svymean 601.7 596.3 608.3 653.6

SE 70.0 64.5 23.7 22.4
cv% 11.6 10.8 3.9 3.4

H svymean 662.0 659.3 577.6 607.5
SE 40.9 37.8 57.4 54.0
cv% 6.2 5.7 9.9 8.9

M svymean 611.4 606.4 607.3 643.2
SE 48.2 48.3 49.5 49.3
cv% 7.9 8.0 8.2 7.7



Crosstabs

svyby knows enough to structure the table without help. For
other analyses more information is needed

> a<-svymean(~interaction(stype,comp.imp), design=dclus1, deff=TRUE)
> b<-ftable(a, rownames=list(stype=c("E","H","M"),comp.imp=c("No","Yes")))
> round(100*b,1)

stype E H M
comp.imp
No mean 17.5 3.8 6.0

SE 2.6 1.6 2.5
Deff 87.8 131.7 200.4

Yes mean 61.2 3.8 7.7
SE 4.2 1.6 2.2
Deff 137.2 131.4 124.7



Testing in tables

svychisq does four variations on the Pearson χ2 test: corrections

to the mean or mean and variance of X2 (Rao and Scott) and

two Wald-type tests (Koch et al).

The exact asymptotic distribution of the Rao–Scott tests (linear

combination of χ2
1) is also available.



Loglinear models

svyloglin() does loglinear models

a<-svyloglin(~backpain+neckpain+sex+sickleave, nhis)

a2<-update(a, ~.^2)

a3<-update(a,~.^3)

b1<-update(a,~.+(backpain*neckpain*sex)+sex*sickleave)

b2<-update(a,~.+(backpain+neckpain)*sex+sex*sickleave)

b3<-update(a,~.+backpain:neckpain+sex:backpain+sex:neckpain

+sex:sickleave)

anova() method computes Rao–Scott working loglikelihood and
working score tests, with the two Rao–Scott approximations for
the p-value and the exact asymptotic distribution.



Loglinear models

> anova(a,a2)
Analysis of Deviance Table
Model 1: y ~ backpain + neckpain + sex + sickleave

Model 2: y ~ backpain + neckpain + sex + sickleave + backpain:neckpain +
backpain:sex + backpain:sickleave + neckpain:sex + neckpain:sickleave +
sex:sickleave

Deviance= 3563.795 p= 0
Score= 4095.913 p= 0
> anova(a2,a3)
Analysis of Deviance Table
Model 1: y ~ backpain + neckpain + sex + sickleave + backpain:neckpain +

backpain:sex + backpain:sickleave + neckpain:sex + neckpain:sickleave +
sex:sickleave

Model 2: y ~ backpain + neckpain + sex + sickleave + backpain:neckpain +
backpain:sex + backpain:sickleave + neckpain:sex + neckpain:sickleave +
sex:sickleave + backpain:neckpain:sex + backpain:neckpain:sickleave +
backpain:sex:sickleave + neckpain:sex:sickleave

Deviance= 11.55851 p= 0.02115692
Score= 11.58258 p= 0.02094331
> print(anova(a2,a3),pval="saddlepoint")
[...snip...]
Deviance= 11.55851 p= 0.02065965
Score= 11.58258 p= 0.02044939



Graphics

When complex sampling designs are analyzed with regression

models it is more important to have good exploratory analysis

methods.

Problems with survey data

• large data

• unequal weights.



Estimating populations

Boxplots, barplots, and histograms display estimates of the

population distribution function for a variable.

We can substitute the survey estimates: boxplots use quantiles,

histograms and barplots need tables. eg boxplot of enrollment

by school type (Elementary/Middle/High)

svyboxplot(enroll~stype, design=srs)



Estimating populations
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R does maps

maptools and sp packages handle geographical data (eg ArcGIS

shapefiles)

Estimate regional summaries with svyby(), merge output with

GIS data, and then draw a map.

Example: health insurance by age and state, from BRFSS 2007.

GIS data for state outlines also come from BRFSS web site.



Health insurance coverage
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Health insurance coverage

library(RSQLite)

brfss <- svydesign(id=~X_PSU, strata=~X_STATE, weight=~X_FINALWT,

data="brfss", dbtype="SQLite", dbname="brfss07.db", nest=TRUE)

brfss<-update(brfss, agegp=cut(AGE, c(0,35,50,65,Inf)))

hlth<-svyby(~I(HLTHPLAN==1), ~agegp+X_STATE, svymean, design=brfss)

hlthdata<-reshape(hlth[,c(1,2,4)],idvar="X_STATE",

direction="wide",timevar="agegp")

names(hlthdata)[2:5]<-paste("age",1:4,sep="")

states@data<-merge(states,hlthdata, by.x="ST_FIPS",by.y="X_STATE",

all=FALSE)

spplot(states,c("age1","age2","age3","age4"),

names.attr=c("<35","35-50","50-65","65+"))



Scatterplots

This approach doesn’t work for scatterplots. We need to

incorporate weights in the plotting symbols.

One approach is the bubble plot: radius or area of circle

proportional to sampling weight.

Another is transparent color: opacity for each point is propor-

tional to sampling weight, giving a density estimation effect.

Bubble plots work well with small data sets, badly with large

data sets.

Transparency works well with large data sets, badly with small

data sets.

Transparency allows color.



Scatterplots
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Scatterplots
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Scatterplots



Binning and smoothing

Hexagonal binning divides the plotting area into hexagons,

counts the number in each hexagon [Carr et al, 1987, JASA]. In

dense regions this has similar effect to transparency, but allows

outliers to be seen, and produces much smaller graphics files.

For survey data we just add up the weight in each bin to get the

estimated population numbers in each bin.

In R: svyplot(bmi~age_p, design=nhis, style="hex")}



Binning and smoothing

Scatterplot smoothers fit a smooth curve through the middle

of the data. There are many variants, but they all work by

estimating the mean value of Y using points in a small interval

of values of x. svysmooth() has a binned kernel smoother for the

mean and a quantile regression spline smoother for quantiles.

In R use svysmooth to create a smooth curve and then plot to

draw it.

smth <- svysmooth(api00~api99, stratrs, bandwidth=40)

plot(smth)



Binning and smoothing
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Conditioning plots

svycoplot() does conditioning plots, which can either use hexag-

onal binning or transparency

svycoplot(BPXSAR~BPXDAR|equal.count(RIDAGEMN), style="hex",

design=subset(dhanes,BPXDAR>0), xbins=20,

strip=strip.custom(var.name="AGE"),

xlab="Diastolic pressure",ylab="Systolic pressure")

svycoplot(BPXSAR~BPXDAR|equal.count(RIDAGEMN), style="trans",

design=subset(dhanes,BPXDAR>0),

strip=strip.custom(var.name="AGE"),

xlab="Diastolic pressure",ylab="Systolic pressure",

basecol=function(d) ifelse(d$RIAGENDR==2,"magenta","blue"))



Conditioning plots
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Conditioning plots



Multivariate data

Biplots of principal components are useful for summarizing

multivariate data

• (population) principal components estimated from singular

value decomposition of weighted data matrix

• biplot() shows points and singular vectors for the first

two components, with sampling weights indicated by trans-

parency or scale

> data(api)

> dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

> pc <- svyprcomp(~api99+api00+ell+hsg+meals+emer, design=dclus2,

scale=TRUE,scores=TRUE)

> pc



Multivariate data

Standard deviations:

[1] 2.006147 1.067846 0.728197 0.515939 0.188624 0.055115

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

api99 0.38311 -0.59436 0.083068 -0.069799 0.0223023 -0.6983489

api00 0.39349 -0.57188 0.038367 -0.077049 -0.0082088 0.7145931

ell 0.44937 0.20566 -0.256407 0.587637 0.5871150 0.0010088

hsg 0.40895 0.35068 -0.213175 -0.776285 0.2480553 -0.0139542

meals 0.45944 0.23847 -0.321126 0.192964 -0.7685087 -0.0329332

emer 0.34369 0.31234 0.881656 0.063414 -0.0509340 0.0196242



Multivariate data
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Regression models

• svyglm for linear and generalized linear models (and regression

estimator of total via predict()

• svyolr for proportional odds and other cumulative link

models.

• svycoxph for Cox model

For these models the point estimates are the same for frequency

weights, sampling weights, or precision weights, so the point

estimation can just reuse the ordinary regression code.



Regression model

Internet use in Scotland (2001) by age, sex, and income.

shs<-svydesign(id=~psu, strata=~stratum, weight=~grosswt,

data=shs_data)

plot(svysmooth(intuse~age,

design=subset(shs,sex=="male" & !is.na(age)),

bandwidth=5),ylim=c(0,0.8),ylab="% using internet")

lines(svysmooth(intuse~age,

design=subset(shs,sex=="female" & !is.na(age)),

bandwidth=5),lwd=2,lty=3)

points(bys$age,bys$intuse,pch=ifelse(bys$sex=="male",19,1))

legend("topright",pch=c(19,1),lty=c(1,3),lwd=c(1,2),

legend=c("Male","Female"),bty="n")

byinc<-svyby(~intuse, ~sex+groupinc, design=shs)

barplot(byinc)



Age (cohort) effect
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Code

> m<-svyglm(intuse~I(age-18)*sex,design=shs,

family=quasibinomial())

> m2<-svyglm(intuse~(pmin(age,35)+pmax(age,35))*sex,

design=shs,family=quasibinomial)

> summary(m)

svyglm(intuse ~ I(age - 18) * sex, design = shs,

family = quasibinomial())

Survey design:

svydesign(id = ~psu, strata = ~stratum, weight = ~grosswt,

data = ex2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.804113 0.047571 16.903 < 2e-16 ***

I(age - 18) -0.044970 0.001382 -32.551 < 2e-16 ***

sexfemale -0.116442 0.061748 -1.886 0.0594 .

I(age - 18):sexfemale -0.010145 0.001864 -5.444 5.33e-08 ***



Code

> summary(m2)

Call:

svyglm(intuse ~ (pmin(age, 35) + pmax(age, 35)) * sex,

design = shs, family = quasibinomial)

Survey design:

svydesign(id = ~psu, strata = ~stratum, weight = ~grosswt,

data = ex2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.152291 0.156772 13.729 < 2e-16 ***

pmin(age, 35) 0.014055 0.005456 2.576 0.010003 *

pmax(age, 35) -0.063366 0.001925 -32.922 < 2e-16 ***

sexfemale 0.606718 0.211516 2.868 0.004133 **

pmin(age, 35):sexfemale -0.017155 0.007294 -2.352 0.018691 *

pmax(age, 35):sexfemale -0.009804 0.002587 -3.790 0.000151 ***



Code

> svycontrast(m2,

quote(‘pmin(age, 35)‘ +‘pmin(age, 35):sexfemale‘))

nlcon SE

contrast -0.0031 0.0049

> svycontrast(m2,

quote(‘pmax(age, 35)‘ + ‘pmax(age, 35):sexfemale‘))

nlcon SE

contrast -0.07317 0.0018



Simulations

One advantage of having survey analysis tools in a statistical

programming environment is that simulations are easy.

Example: comparing quantile confidence intervals:

• take cluster sample of school districts from California

• estimate quantiles of ell and confidence intervals

• repeat.



Simulations

apipop$ndnum <- 757

one.sim <- function(p=0.1, m=15){

districts <- sample(unique(apipop$dnum), m)

design <- svydesign(id=~dnum, fpc=~ndnum,

data=subset(apipop, dnum %in% districts))

svyquantile(~ell, design, quantiles=p, ci=TRUE)$CIs

}



Simulations

Test the code

> one.sim()

, , ell

0.1

(lower 0

upper) 2

> one.sim(.5,400)

, , ell

0.5

(lower 12

upper) 16

> system.time(replicate(3, one.sim()))

user system elapsed

0.089 0.017 0.110



Simulations

> system.time(results<-replicate(1000, one.sim(.1)))

user system elapsed

30.262 5.926 36.320

> str(results)

num [1:2, 1:1000] 0 4 2.12 12 0.851 ...

> mean(results[1,] > 1)

[1] 0.021

> mean(results[2,] < 1)

[1] 0.002

> mean(results[1,] >= 1)

[1] 0.063

> mean(results[2,] <= 1)

[1] 0.081



Simulations

Now repeat for interval.type="betaWald"

> mean(results1[1,] > 1)

[1] 0.034

> mean(results1[2,] < 1)

[1] 0

> mean(results1[1,] >= 1)

[1] 0.099

> mean(results1[2,] <= 1)

[1] 0.008

Slightly better coverage: less conservatism

## now try other quantiles

results.all<-lapply(c(0.1,0.25,0.5, 0.75,0.9),

function(p) replicate(1000, one.sim(p)))

Coverage is much worse at higher quantiles.



Post-stratification and calibration

Post-stratification and calibration are ways to use auxiliary

information on the population (or the phase-one sample) to

improve precision.

They are closely related to the Augmented Inverse-Probability

Weighted estimators of Jamie Robins and coworkers, but are

easier to understand.



Auxiliary information

HT estimator is inefficient when some additional population data

are available.

Suppose xi is known for all i

Fit y ∼ xβ by (probability-weighted) least squares to get β̂. Let

r2 be proportion of variation explained.

T̂reg =
∑
Ri=1

1

πi
(yi − xiβ̂) +

N∑
i=1

xiβ̂

ie, HT estimator for sum of residuals, plus population sum of

fitted values



Auxiliary information

Let β∗ be true value of β (ie, least-squares fit to whole

population).

Regression estimator

T̂reg =
∑
Ri=1

1

πi
(yi − xiβ∗) +

 N∑
i=1

xi

β∗+
N∑
i=1

(
1−

Ri
πi

)
xi(β̂ − β∗)

compare to HT estimator

T̂ =
∑
Ri=1

1

πi
(yi − xiβ∗) +

 ∑
Ri=1

1

πi
xi

β∗

Second term uses known vs observed total of x, third term is

estimation error for β, of smaller order.



Auxiliary information

For large n, N and under conditions on moments and sampling

schemes

var
[
T̂reg

]
= (1−r2) var

[
T̂
]
+O(N/

√
n) =

(
1− r2 +O(n−1/2)

)
var

[
T̂
]

and the relative bias is O(1/n)

The lack of bias does not require any assumptions about [Y |X]

β̂ is consistent for the population least squares slope β, for which

the mean residual is zero by construction.



Reweighting

Since β̂ is linear in y, we can write xβ̂ as a linear function of y

and so T̂reg is also a linear function of Y

T̂reg =
∑
Ri=1

wiyi =
∑
Ri=1

gi
πi
yi

for some (ugly) wi or gi that depend only on the xs

For these weights

N∑
i=1

xi =
∑
Ri=1

gi
πi
xi

T̂reg is an IPW estimator using weights that are ‘calibrated’ or

‘tuned’ (French: calage) so that the known population totals are

estimated correctly.



Calibration

The general calibration problem: given a distance function d(·, ·),
find calibration weights gi minimizing∑

Ri=1

d(gi, 1)

subject to the calibration constraints

N∑
i=1

xi =
∑
Ri=1

gi
πi
xi

Lagrange multiplier argument shows that gi = η(xiβ) for some
η(), β; and γ can be computed by iteratively reweighted least
squares.

For example, can choose d(, ) so that gi are bounded below (and
above).

[Deville et al JASA 1993; JNK Rao et al, Sankhya 2002]



Calibration

When the calibration model in x is saturated, the choice of

d(, ) does not matter: calibration equates estimated and known

category counts.

In this case calibration is also the same as estimating sampling

probabilities with logistic regression, which also equates esti-

mated and known counts.

Calibration to a saturated model gives the same analysis as

pretending the sampling was stratified on these categories: post-

stratification

Post-stratification is a much older method, and is computation-

ally simpler, but calibration can make more use of auxiliary data.



Standard errors

Standard errors come from the regression formulation

T̂reg =
∑
Ri=1

1

πi
(yi − xiβ̂) +

N∑
i=1

xiβ̂

The variance of the second term is of smaller order and is ignored.

The variance of the first term is the usual Horvitz–Thompson

variance estimator, applied to residuals from projecting y on the

calibration variables.

v̂ar =
n∑

i,j=1

∆̌ijgiřigj řj



Computing

R provides calibrate() for calibration (and postStratify() for

post-stratification)

Three basic types of calibration

• Linear (or regression) calibration: identical to regression

estimator

• Raking: multiplicative model for weights, guarantees gi > 0

• Logit calibration: logit link for weights, popular in Europe,

provides upper and lower bounds for gi



Computing

Upper and lower bounds for gi can also be specified for linear and

raking calibration (these may not be achievable, but we try).

There is also an option to trim weights to specified bounds, even

if these do not achieve the calibration constraints.

The user can specify other calibration loss functions (eg Hellinger

distance).



Computing

The calibrate() function takes three main arguments

• a survey design object

• a model formula describing the design matrix of auxiliary

variables

• a vector giving the column sums of this design matrix in the

population.

and additional arguments describing the type of calibration.



Computing

> data(api)

> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

> pop.totals<-c(‘(Intercept)‘=6194, stypeH=755, stypeM=1018)

> (dclus1g<-calibrate(dclus1, ~stype, pop.totals))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype, pop.totals)

> svymean(~api00, dclus1g)

mean SE

api00 642.31 23.921

> svymean(~api00,dclus1)

mean SE

api00 644.17 23.542



Computing

> svytotal(~enroll, dclus1g)

total SE

enroll 3680893 406293

> svytotal(~enroll,dclus1)

total SE

enroll 3404940 932235

> svytotal(~stype, dclus1g)

total SE

stypeE 4421 1.118e-12

stypeH 755 4.992e-13

stypeM 1018 1.193e-13



Computing

> (dclus1g3 <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069))

> svymean(~api00, dclus1g3)

mean SE

api00 665.31 3.4418

> svytotal(~enroll, dclus1g3)

total SE

enroll 3638487 385524

> svytotal(~stype, dclus1g3)

total SE

stypeE 4421 1.179e-12

stypeH 755 4.504e-13

stypeM 1018 9.998e-14



Computing

> range(weights(dclus1g3)/weights(dclus1))

[1] 0.4185925 1.8332949

> (dclus1g3b <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069),bounds=c(0.6,1.6)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

bounds = c(0.6, 1.6))

> range(weights(dclus1g3b)/weights(dclus1))

[1] 0.6 1.6



Computing

> svymean(~api00, dclus1g3b)

mean SE

api00 665.48 3.4184

> svytotal(~enroll, dclus1g3b)

total SE

enroll 3662213 378691

> svytotal(~stype, dclus1g3b)

total SE

stypeE 4421 1.346e-12

stypeH 755 4.139e-13

stypeM 1018 8.238e-14



Computing

> (dclus1g3c <- calibrate(dclus1, ~stype+api99, c(pop.totals,

+ api99=3914069), calfun="raking"))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "raking")

> range(weights(dclus1g3c)/weights(dclus1))

[1] 0.5342314 1.9947612

> svymean(~api00, dclus1g3c)

mean SE

api00 665.39 3.4378



Computing

> (dclus1g3d <- calibrate(dclus1, ~stype+api99, c(pop.totals,

+ api99=3914069), calfun="logit",bounds=c(0.5,2.5)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "logit", bounds = c(0.5, 2.5))

> range(weights(dclus1g3d)/weights(dclus1))

[1] 0.5943692 1.9358791

> svymean(~api00, dclus1g3d)

mean SE

api00 665.43 3.4325



Types of calibration

Post-stratification allows much more flexibility in weights, in

small samples can result in very influential points, loss of

efficiency.

Calibration allows for less flexibility (cf stratification vs regression

for confounding)

Different calibration methods make less difference

Example from Kalton & Flores-Cervantes (J. Off. Stat, 2003):

a 3× 4 table of values.



Types of calibration
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Using multiply-imputed data

Multiple imputation of missing data: fit a model to the data,

simulate multiple possibilities for the missing data from the

predictive distribution of the model. (Rubin, 1978)

Do the same analysis to each completed data set

Point estimate is the average of the point estimates

Variance estimate is the average variance + variance between

point estimates.

Simple approach is technically valid only for ‘proper’ imputations

including posterior uncertainty in model parameters, which is

inefficient. [Wang & Robins, Bka 1998]



Using multiply-imputed data

Need code to do repeated analysis, combine results.

• imputationList() wraps a list of data frames or database

tables

• svydesign() can take an imputationList as the data argument

to give a set of designs.

• with(designs, expr) runs expr, with design= each one of the

designs in turn

• MIcombine() combines the results.



NHANES III imputations

> library(mitools)

> library(RSQLite)

> impdata <- imputationList(c("set1","set2","set3","set4","set5"),

dbtype="SQLite", dbname="~/nhanes/imp.db")

> impdata

MI data with 5 datasets

Call: imputationList(c("set1", "set2", "set3", "set4", "set5"),

dbtype = "SQLite", dbname = "~/nhanes/imp.db")

> designs <- svydesign(id=~SDPPSU6, strat=~SDPSTRA6,

weight=~WTPFQX6, data=impdata, nest=TRUE)

> designs

DB-backed Multiple (5) imputations: svydesign(id = ~SDPPSU6,

strat = ~SDPSTRA6, weight = ~WTPFQX6,

data = impdata, nest = TRUE)



NHANES III imputations

> designs<-update(designs,

age=ifelse(HSAGEU==1, HSAGEIR/12, HSAGEIR))

> designs<-update(designs,

agegp=cut(age,c(20,40,60,Inf),right=FALSE))

> res <- with(subset(designs, age>=20),

svyby(~BDPFNDMI, ~agegp+HSSEX, svymean))

> summary(MIcombine(res))

Multiple imputation results:

with(subset(designs, age >= 20), svyby(~BDPFNDMI,

~agegp + HSSEX, svymean, design = .design))

MIcombine.default(res)

results se (lower upper) missInfo

[20,40).1 0.9355049 0.003791945 0.9279172 0.9430926 28 %

[40,60).1 0.8400738 0.003813224 0.8325802 0.8475674 10 %

[60,Inf).1 0.7679224 0.004134875 0.7598032 0.7760416 8 %

[20,40).2 0.8531107 0.003158246 0.8468138 0.8594077 26 %

[40,60).2 0.7839377 0.003469386 0.7771144 0.7907610 11 %

[60,Inf).2 0.6454393 0.004117235 0.6370690 0.6538096 38 %



Two-phase subsampling

• Phase 1: sample people according to some probability design

π1,i, measure variables

• Phase 2: subsample people from the phase 1 sample using

the variables measured at phase 1, π2|1,i and measure more

variables

Sampling probability πi = π1,i × π2|1,i and use 1/πi as sampling

weights.

These are not (in general) the marginal probability that i is in the

sample, because π2|1,i may depend on which other observations

are in the phase-one sample.



Two-phase subsampling

Two sources of uncertainty:

• Phase-1 sample is only part of population

• Phase 2 observes full set of variables on only a subset of

people.

Uncertainties at the two phases add.



Minimal phase 1

The classic survey example is ‘two-phase sampling for stratifi-

cation’. This is useful when a good stratifying variable is not

available for the population but is easy to measure.

• Take a large simple random sample or cluster sample and

measure stratum variables

• Take a stratified random sample from phase 1 for the survey

If the gain from stratification is larger than the cost of phase 1

we have won.

The case–control design is probably the most important example,

although it usually isn’t analyzed using sampling weights.



Minimal phase 2

Many large cohorts exist in epidemiology. These can be modelled

as simple random samples. They have a lot of variables

measured.

It is common to want to measure a new variable

• New assay on stored blood

• Coding of open-text questionnaire

• Re-interview

The classic designs are a simple random sample and a case–

control sample.

It is often more useful to sample based on multiple phase-1

variables: outcome, confounders, surrogates for phase-2 variable.



Math

We know the phase-one sampling probabilities πi,1 and the

probability of being sampled for phase 2 conditional on the actual

phase-one sample, πi,1|2.

We can use the reciprocal of π∗i = πi,1× πi,1|2 as a weight to get

unbiased estimation.

The actual sampling probability for observation i is the average

of π∗i over all phase-1 samples including observation i, which is

not feasible to compute, but the estimator based on π∗i works

just like the Horvitz–Thompson estimator.



Variance Algorithms

When phase 1 is simple random sampling there are shortcuts,

but in general it seems easiest to use the general form

v̂ar[T̂x] =
n∑

i,j=1

∆̌∗ijx̌ix̌j

where ∆∗ = π∗ij − π
∗
i π
∗
j and the check refers to scaling by the

weights.

Often ∆∗ is a sparse matrix, so this is not as inefficient as it

looks and ∆̌∗ is easy to compute from ∆ at each phase.



Two-phase case–control

The case–control design stratifies on Y . We can stratify on X

as well

X=0 X=1
Y=0 a b m0
Y=1 c d m1

n0 n1

The estimated variance of β is

var[β̂] =
1

a
+

1

b
+

1

c
+

1

d

Ideally want all cells about the same size in this trivial case.



Example: Wilm’s Tumor

• Wilm’s Tumor is a rare childhood cancer of the kidney.

Prognosis is good in early stage or favourable histology

disease.

• Histology is difficult to determine. NWTSG central patholo-

gist is much better than anyone else.

• To reduce cost of followup, consider central histology

(histol) only for a subset of cases.

• Sample all relapses, all patients with unfavorable histology

(instit) by local pathologist, 10% of remainder

[Breslow & Chatterjee (1999) Applied Statistics 457–68]



Analyses: sampling weights

Phase 1

relapse
instit 0 1
good 3207 415
bad 250 156

Phase 2

relapse
instit 0 1
good 314 415
bad 250 156

Weight is 1/sampling fraction in relapse × local histology

strata: 1.0 for cases, controls with unfavorable local histology,

3207/314 = 10.2 for controls with favorable local histology.



Computation in R

Declaring a two-phase design

dccs2 <- twophase(id = list(~id, ~id), subset = ~in.ccs,

strata = list(NULL, ~interaction(instit, rel)),

data = nwt.exp)

• Data set has records for all phase-one people, subset variable

indicates membership in second phase

• Two id, two strata.

• Second-phase weights and fpc are worked out by R



Computation in R

We can compare to the conservative approximation: unstratified

single-phase sampling with replacement

dcons<-svydesign(id=~seqno, weights=weights(dccs2),

data=subset(nwtco, incc2))

Almost no advantage of two-phase analysis in this example; but

wait until later with calibration of weights.



Computation in R

> summary(svyglm(rel~factor(stage)*factor(histol),design=dccs2,
family=quasibinomial()))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.6946 0.1246 -21.623 < 2e-16 ***
factor(stage)2 0.7733 0.1982 3.901 0.000102 ***
factor(stage)3 0.7400 0.2048 3.614 0.000315 ***
factor(stage)4 1.1322 0.2572 4.401 1.18e-05 ***
factor(histol)2 1.1651 0.3196 3.646 0.000279 ***
factor(stage)2:factor(histol)2 0.3642 0.4462 0.816 0.414511
factor(stage)3:factor(histol)2 1.0230 0.3968 2.578 0.010056 *
factor(stage)4:factor(histol)2 1.7444 0.4973 3.508 0.000470 ***

> summary(svyglm(rel~factor(stage)*factor(histol),design=dcons,
family=quasibinomial()))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.6946 0.1355 -19.886 < 2e-16 ***
factor(stage)2 0.7733 0.1982 3.902 0.000101 ***
factor(stage)3 0.7400 0.2047 3.615 0.000314 ***
factor(stage)4 1.1322 0.2571 4.403 1.17e-05 ***
factor(histol)2 1.1651 0.3208 3.632 0.000294 ***
factor(stage)2:factor(histol)2 0.3642 0.4461 0.816 0.414408
factor(stage)3:factor(histol)2 1.0230 0.3974 2.574 0.010169 *
factor(stage)4:factor(histol)2 1.7444 0.4977 3.505 0.000474 ***



Computation in R

We are not restricted to logistic regression: eg, log link gives log

relative risks rather than log odds ratios. SInce relapse is not

rare for unfavorable histology these are noticeably different.

> summary(svyglm(rel~factor(stage)*factor(histol),design=dccs2,
family=quasibinomial(log)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.7600 0.1167 -23.644 < 2e-16 ***
factor(stage)2 0.7020 0.1790 3.922 9.30e-05 ***
factor(stage)3 0.6730 0.1849 3.640 0.000285 ***
factor(stage)4 1.0072 0.2207 4.564 5.58e-06 ***
factor(histol)2 1.0344 0.2690 3.845 0.000127 ***
factor(stage)2:factor(histol)2 0.1153 0.3405 0.339 0.734920
factor(stage)3:factor(histol)2 0.4695 0.3118 1.505 0.132495
factor(stage)4:factor(histol)2 0.4872 0.3316 1.469 0.142020



Computation in R

Other exploratory and descriptive analyses are also possible: how

does histology vary with age at diagnosis?

[Really needs more detailed classification to be useful analysis]

s<-svysmooth(I(histol==2)~I(age/12),design=dccs2,bandwidth=1)

plot(s,ylim=c(0,0.3),xlim=c(0,8),

xlab="age",ylab="Proportion unfavorable")



Computation in R
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Two-phase calibration

Two-phase samples with many covariates at phase 1 provide

good opportunities for calibration of phase 2 to phase 1: wide

range of auxiliary variables.

Calibration improves the efficiency of estimation for population

totals, choosing auxiliary variables for other targets of inference

requires writing them as sums.

Almost all interesting estimators are ’asymptotically linear’, in

large samples they can be written as the sum of their influence

functions.

Good auxiliary variables need to be correlated with the influence

function of the target statistic.



Computing

calibrate() also works on two-phase design objects

Since the phase-one data are already stored in the object, there
is no need to specify population totals when calibrating.

It is necessary to specify phase=2.

Earlier we had a two-phase case–control design

dccs2<-twophase(id=list(~seqno,~seqno),

strata=list(NULL,~interaction(rel,instit)),

data=nwtco, subset=~incc2)

Calibrating it to 16 strata of relapse×stage×institutional histol-
ogy:

gccs8<-calibrate(dccs2, phase=2,

formula=~interaction(rel,stage,instit))



Logistic regression

As all the phase-one data are available we can also esti-

mate sampling weights by logistic regression, as suggested by

Robins,Rotnitzky & Zhao (JASA, 1994).

Either use calibrate with calfun="rrz" or estWeights.

estWeights takes a data frame with missing values as input

and produces a corresponding two-phase design with weights

estimated by logistic regression.



Choice of auxiliaries

The other heuristic gain from the calibration viewpoint is in

choosing predictors for estimating π.

The regression formulation shows that the predictors should have

strong linear relationships with Ui(θ).

If the estimating function Ui(θ) is of a form such as

ziwi(yi − µi(θ))

then zi is approximately uncorrelated with Ui

So, don’t use a variable correlated with a phase-2 predictor as

a calibration variable, use a variable correlated with the phase-2

influence function.

estWeights() can take a phase-one model as an argument and use

the influence functions from that model as calibration variables.



Example

Single-phase sampling of California schools.

We want to fit a model with 2000 API as the outcome, with

2000 API measured only on a sample of schools.

We have population data on 1999 API and on the predictor

variables. Calibrating using the raw variables has almost no

effect.

Impute 2000 API by 1999 API and fit the model to complete

imputed data. The parameter estimates in the imputed model

are unrealiable, but the influence functions still are good

calibration variables.



Example: correlations
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Example: code

> m0 <- svyglm(api00~ell+mobility+emer, clus1)

> var_cal <- calibrate(clus1, formula=~api99+ell+mobility+emer,

pop=c(6194,3914069, 141685, 106054, 70366),

bounds=c(0.1,10))

> m1<-svyglm(api00~ell+mobility+emer, design=var_cal)

>

> popmodel <- glm(api99~ell+mobility+emer, data=apipop,

na.action=na.exclude)

> inffun <- dfbeta(popmodel)

> index <- match(apiclus1$snum, apipop$snum)

> clus1if <- update(clus1, ifint = inffun[index,1],

ifell=inffun[index,2], ifmobility=inffun[index,3],

ifemer=inffun[index,4])

> if_cal <- calibrate(clus1if,

formula=~ifint+ifell+ifmobility+ifemer,

pop=c(6194,0,0,0,0))



Example: code

> m2<-svyglm(api00~ell+mobility+emer, design=if_cal)

>

> coef(summary(m0))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 780.459500 30.0210123 25.997108 3.156974e-11

ell -3.297892 0.4689026 -7.033215 2.173478e-05

mobility -1.445370 0.7342887 -1.968395 7.473627e-02

emer -1.814215 0.4233504 -4.285374 1.287085e-03

> coef(summary(m1))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 785.408240 13.7640081 57.062466 5.912274e-15

ell -3.273108 0.6242978 -5.242864 2.756024e-04

mobility -1.464732 0.6651257 -2.202188 4.989506e-02

emer -1.676541 0.3742041 -4.480284 9.309647e-04



Example: code

> coef(summary(m2))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 790.631553 5.8409844 135.359298 4.480786e-19

ell -3.260976 0.1300765 -25.069679 4.678967e-11

mobility -1.405554 0.2247022 -6.255187 6.214930e-05

emer -2.240431 0.2150534 -10.418024 4.902863e-07



Two-phase calibration

Strategy

• Build a predictive model for the phase-two variables to impute

at phase one

• Fit a phase-one model for the parameter of interested, using

the imputed data

• Use the influence functions from the phase-one model to

calibrate

• Fit the model to the phase-two sample



Wilms’ Tumor

The imputation model is based on Kulich & Lin (2004).

impmodel <- glm(histol~instit+I(age>10)+I(stage==4)*study,

data=nwts, subset=in.subsample, family=binomial)

nwts$imphist <- predict(impmodel, newdata=nwts, type="response")

nwts$imphist[nwts$in.subsample] <- nwts$histol[nwts$in.subsample]

ifmodel <- coxph(Surv(trel,relaps)~imphist*age+I(stage>2)*tumdiam,

data=nwts)

inffun <- resid(ifmodel, "dfbeta")

colnames(inffun) <- paste("if",1:6,sep="")

nwts_if <- cbind(nwts, inffun)

if_design <- twophase(id = list(~1, ~1), subset = ~in.subsample,

strata = list(NULL, ~interaction(instit, relaps)),

data = nwts_if)



Wilms’ Tumor

if_cal <- calibrate(if_design, phase=2, calfun="raking"

~if1+if2+if3+if4+if5+if6+relaps*instit)

m1 <- svycoxph(Surv(trel, relaps)~histol*age+I(stage>2)*tumdiam,

design=nwts_design)

m2 <- svycoxph(Surv(trel, relaps)~histol*age+I(stage>2)*tumdiam,

design=if_cal)

m3 <- coxph(Surv(trel, relaps)~imphist*age+I(stage>2)*tumdiam,

data=nwts)

m4 <- coxph(Surv(trel, relaps)~histol*age+I(stage>2)*tumdiam,

data=nwts)



Wilms’ Tumor

Two-phase sample full data
sampling weights raked direct imputation

Coefficient estimate
histology 1.808 2.113 2.108 1.932
age 0.055 0.101 0.101 0.096
stage > 2 1.411 1.435 1.432 1.389
tumor diameter 0.043 0.061 0.061 0.058
histology:age -0.116 -0.159 -0.159 -0.144
stage> 2:diameter -0.074 -0.084 -0.083 -0.079
Standard error
histology 0.221 0.171 0.174 0.157
age 0.023 0.014 0.016 0.016
stage > 2 0.361 0.276 0.249 0.250
tumor diameter 0.021 0.016 0.014 0.014
histology:age 0.054 0.039 0.040 0.035
stage > 2:diameter 0.030 0.022 0.020 0.020



PPS sampling

Options for PPS sampling

• A proposal by Brewer that turns out to be exactly what
happens if you feed PPS data into the recursive variance
algorithm for multistage data. Works for multistage sampling
with PPS at any of the stages.

• Full unbiased variance estimator: you supply the matrix πij

• Hartley–Rao approximation: you supply
∑N
i=1 π

2
i /n, or R will

estimate it by
∑n
i=1 πi/n

• Overton’s approximation (used in spatial sampling)

All but the first have Horvitz–Thompson and Yates–Grundy
versions.



Computation

Brewer’s approximation just comes for free from the recursive

variance estimator.

The others methods compute the (approximate) covariance

matrix of sampling indicators ∆ and then compute either

v̂arHT =
n∑

i,j=1

∆̌ijx̌ix̌j

or

v̂arY G =
n∑

i,j=1

∆̌ij(x̌i − x̌j)2

Where possible, ∆̌ is stored as a sparse matrix (eg stratified

sampling).



Example: sample of election data

This shows the code, it also illustrates why PPS sampling is

useful. Although proportions of votes for Bush and Kerry are

-vely correlated, totals are strongly correlated because large

counties have more voters

data(election)

## high positive correlation between totals

plot(Bush~Kerry,data=election,log="xy")

## high negative correlation between proportions

plot(I(Bush/votes)~I(Kerry/votes), data=election)

We are using sample of just 40 counties, sampled proportional

to total number of votes.



Example: sample of election data
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Example: sample of election data

Declaring PPS sampling typically requires extra information

Yves Tillé’s sampling package will computing joint sampling

probabilities for many sampling methods: use the ppsmat()

function to wrap the pairwise sampling probabilities for the

sample.

The Hartley–Rao approximation requires the sum of squares of

the marginal sampling probabilities, over the population, not just

the sample. Wrap these with the HR() function

Since we are doing sampling without replacement, the marginal

sampling probabilities must also be supplied to the fpc argument.



Example: sample of election data

## Horvitz-Thompson type

dpps_ht<- svydesign(id=~1, fpc=~p, data=election_pps,

pps=ppsmat(election_jointprob))

dpps_hr<- svydesign(id=~1, fpc=~p, data=election_pps,

pps=HR(sum(election$p^2)/40))

## Yates-Grundy type

dpps_yg<- svydesign(id=~1, fpc=~p, data=election_pps,

pps=ppsmat(election_jointprob),variance="YG")

dpps_hryg<- svydesign(id=~1, fpc=~p, data=election_pps,

pps=HR(sum(election$p^2)/40),variance="YG")



Example: sample of election data

Brewer’s approximation and the Overton approximation don’t

require any extra information, just the marginal probabilities for

the sample, supplied as fpc

## Horvitz-Thompson type

dpps_br<- svydesign(id=~1, fpc=~p, data=election_pps, pps="brewer")

dpps_ov<- svydesign(id=~1, fpc=~p, data=election_pps, pps="overton")

dpps_hr1<- svydesign(id=~1,fpc=~p, data=election_pps, pps=HR())

And we can always use a with-replacement approximation by

omitting the fpc argument

dppswr <-svydesign(id=~1, probs=~p, data=election_pps)



Example: sample of election data

The true population totals are

Bush Kerry Nader

59645156 56149771 404178

> svytotal(~Bush+Kerry+Nader, dpps_ht)

total SE

Bush 64518472 2604404

Kerry 51202102 2523712

Nader 478530 102326

> svytotal(~Bush+Kerry+Nader, dpps_yg)

total SE

Bush 64518472 2406526

Kerry 51202102 2408091

Nader 478530 101664



Example: sample of election data

> svytotal(~Bush+Kerry+Nader, dpps_hr)

total SE

Bush 64518472 2624662

Kerry 51202102 2525222

Nader 478530 102793

> svytotal(~Bush+Kerry+Nader, dpps_hryg)

total SE

Bush 64518472 2436738

Kerry 51202102 2439845

Nader 478530 102016

> svytotal(~Bush+Kerry+Nader, dpps_br)

total SE

Bush 64518472 2447629

Kerry 51202102 2450787

Nader 478530 102420



Example: sample of election data

> svytotal(~Bush+Kerry+Nader, dpps_ov)

total SE

Bush 64518472 2939608

Kerry 51202102 1964632

Nader 478530 104373

> svytotal(~Bush+Kerry+Nader, dpps_hr1)

total SE

Bush 64518472 2472753

Kerry 51202102 2426842

Nader 478530 102595

> svytotal(~Bush+Kerry+Nader, dppswr)

total SE

Bush 64518472 2671455

Kerry 51202102 2679433

Nader 478530 105303



That’s all, folks

Any questions?
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