| surveysummary {survey} | R Documentation | 
Compute means, variances, ratios and totals for data from complex surveys.
## S3 method for class 'survey.design': svymean(x, design, na.rm=FALSE,deff=FALSE,...) ## S3 method for class 'twophase': svymean(x, design, na.rm=FALSE,deff=FALSE,...) ## S3 method for class 'svyrep.design': svymean(x, design, na.rm=FALSE, rho=NULL, return.replicates=FALSE, deff=FALSE,...) ## S3 method for class 'survey.design': svyvar(x, design, na.rm=FALSE,...) ## S3 method for class 'svyrep.design': svyvar(x, design, na.rm=FALSE, rho=NULL, return.replicates=FALSE,...,estimate.only=FALSE) ## S3 method for class 'survey.design': svytotal(x, design, na.rm=FALSE,deff=FALSE,...) ## S3 method for class 'twophase': svytotal(x, design, na.rm=FALSE,deff=FALSE,...) ## S3 method for class 'svyrep.design': svytotal(x, design, na.rm=FALSE, rho=NULL, return.replicates=FALSE, deff=FALSE,...) ## S3 method for class 'svystat': coef(object,...) ## S3 method for class 'svrepstat': coef(object,...) ## S3 method for class 'svystat': vcov(object,...) ## S3 method for class 'svrepstat': vcov(object,...) cv(object,...) deff(object, quietly=FALSE,...) make.formula(names)
x | 
A formula, vector or matrix | 
design | 
survey.design or svyrep.design object | 
na.rm | 
Should cases with missing values be dropped? | 
rho | 
parameter for Fay's variance estimator in a BRR design | 
return.replicates | 
Return the replicate means? | 
deff | 
Return the design effect (see below) | 
object | 
The result of one of the other survey summary functions | 
quietly | 
Don't warn when there is no design effect computed | 
estimate.only | 
Don't compute standard errors (useful when
svyvar is used to estimate the design effect) | 
... | 
additional arguments to cv methods,not currently
used | 
names | 
vector of character strings | 
These functions perform weighted estimation, with each observation being weighted by the inverse of its sampling probability. Except for the table functions, these also give precision estimates that incorporate the effects of stratification and clustering.
Factor variables are converted to sets of indicator variables for each
category in computing means and totals. Combining this with the
interaction function, allows crosstabulations. See
ftable.svystat for formatting the output.
With na.rm=TRUE, all cases with missing data are removed. With
na.rm=FALSE cases with missing data are not removed and so will
produce missing results.  When using replicate weights and
na.rm=FALSE it may be useful to set
options(na.action="na.pass"), otherwise all replicates with any
missing results will be discarded.
The svytotal and svreptotal functions estimate a
population total.  Use predict on svyratio and
svyglm, to get ratio or regression estimates of totals.
svyvar estimates the population variance. The object returned
includes the full matrix of estimated population variances and
covariances, but by default only the diagonal elements are printed. To
display the whole matrix use as.matrix(v) or print(v,
covariance=TRUE).
The design effect compares the variance of a mean or total to the
variance from a study of the same size using simple random sampling
without replacement. Note that the design effect will be incorrect if
the weights have been rescaled so that they are not reciprocals of
sampling probabilities.  To obtain an estimate of the design effect
comparing to simple random sampling with replacement, which does not
have this requirement, use deff="replace". This with-replacement
design effect is the square of Kish's "deft".
The cv function computes the coefficient of variation of a
statistic such as ratio, mean or total. The default method is for any
object with methods for SE and coef.
make.formula makes a formula from a vector of names.  This is
useful because formulas as the best way to specify variables to the
survey functions.
Objects of class "svystat" or "svrepstat",
which are vectors with a "var" attribute giving the variance
and a "statistic" attribute giving the name of the
statistic.
These objects have methods for vcov, SE, coef,
confint, svycontrast.
Thomas Lumley
svydesign, as.svrepdesign,
svrepdesign for constructing design objects.
svyquantile  for quantiles
ftable.svystat for more attractive tables
svyciprop for more accurate confidence intervals for
proportions near 0 or 1.
svyttest for comparing two means.
svycontrast for linear and nonlinear functions of estimates.
  data(api)
  ## one-stage cluster sample
  dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
  svymean(~api00, dclus1, deff=TRUE)
  svymean(~factor(stype),dclus1)
  svymean(~interaction(stype, comp.imp), dclus1)
  svyquantile(~api00, dclus1, c(.25,.5,.75))
  svytotal(~enroll, dclus1, deff=TRUE)
  svyratio(~api.stu, ~enroll, dclus1)
  v<-svyvar(~api00+api99, dclus1)
  v
  print(v, cov=TRUE)
  as.matrix(v)
  # replicate weights - jackknife (this is slower)
  dstrat<-svydesign(id=~1,strata=~stype, weights=~pw,
        data=apistrat, fpc=~fpc)
  jkstrat<-as.svrepdesign(dstrat)
  svymean(~api00, jkstrat)
  svymean(~factor(stype),jkstrat)
  svyvar(~api00+api99,jkstrat)
  svyquantile(~api00, jkstrat, c(.25,.5,.75))
  svytotal(~enroll, jkstrat)
  svyratio(~api.stu, ~enroll, jkstrat)
  # coefficients of variation
  cv(svytotal(~enroll,dstrat))
  cv(svyratio(~api.stu, ~enroll, jkstrat))
  # extracting information from the results
  coef(svytotal(~enroll,dstrat))
  vcov(svymean(~api00+api99,jkstrat))
  SE(svymean(~enroll, dstrat))
  confint(svymean(~api00+api00, dclus1))
  # Design effect
  svymean(~api00, dstrat, deff=TRUE)
  svymean(~api00, dstrat, deff="replace")
  svymean(~api00, jkstrat, deff=TRUE)
  svymean(~api00, jkstrat, deff="replace")
 (a<-svytotal(~enroll, dclus1, deff=TRUE))
  deff(a)