A survey analysis example

Thomas Lumley

May 15, 2006

This document provides a simple example analysis of a survey data set, a subsample from the California Academic Performance Index, an annual set of tests used to evaluate California schools. The API website, including the original data files are at http://api.cde.ca.gov. The subsample was generated as a teaching example by Academic Technology Services at UCLA and was obtained from http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm.

We have a cluster sample in which 15 school districts were sampled and then all schools in each district. This is in the data frame apiclus1, loaded with data(api). The two-stage sample is defined by the sampling unit (dnum) and the population size $(f p c)$. Sampling weights are computed from the population sizes, but could be provided separately.

```
> data(api)
> dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1,
+ fpc = ~ fpc)
```

The svydesign function returns an object containing the survey data and metadata.

```
> summary(dclus1)
1 - level Cluster Sampling design
With (15) clusters.
svydesign(id = ~dnum, weights = ~ pw, data = apiclus1, fpc = ~fpc)
Probabilities:
    Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:
    [1] "cds" "stype" "name" "sname" "snum" "dname"
    [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
[13] "api99" "target" "growth" "sch.wide" "comp.imp" "both"
[19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3"
[25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col"
[31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll"
[37] "api.stu" "fpc" "pw"
```

We can compute summary statistics to estimate the mean, median, and quartiles of the Academic Performance Index in the year 2000, the number of elementary, middle, and high schools in the state, the total number of students, and the proportion who took the test. Each function takes a formula object describing the variables and a survey design object containing the data.

```
> svymean(`api00, dclus1)
    mean SE
api00 644.17 23.542
> svyquantile(~api00, dclus1, quantile = c(0.25, 0.5, 0.75), ci = TRUE)
$quantiles
            0.25 0.5 0.75
api00 551.75 652 717.5
$CIs
, , api00
    0.25 0.5 0.75
(lower 493.2835 564.3250 696.0000
upper) 622.6495 710.8375 761.1355
> svytotal(~}\mathrm{ stype, dclus1)
    total SE
stypeE 4873.97 1333.32
stypeH 473.86 158.70
stypeM 846.17 167.55
> svytotal(~enroll, dclus1)
    total SE
enroll 3404940 932235
> svyratio(`api.stu, ~enroll, dclus1)
Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, dclus1)
Ratios=
    enroll
api.stu 0.8497087
SEs=
    enroll
api.stu 0.008386297
```

The ordinary R subsetting functions [and subset work correctly on these survey objects, carrying along the metadata needed for valid standard errors. Here we compute the proportion of high school students who took the test

```
> svyratio(~api.stu, ~enroll, design = subset(dclus1, stype ==
+ "H"))
Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, design = subset(dclus1,
    stype == "H"))
Ratios=
        enroll
api.stu 0.8300683
SEs=
    enroll
api.stu 0.01472607
```

The warnings referred to in the output occured because several school districts have only one high school sampled, making the second stage standard error estimation unreliable.

Specifying a large number of variables is made easier by the make.formula function

```
> vars <- names(apiclus1)[c(12:13, 16:23, 27:37)]
> svymean(make.formula(vars), dclus1, na.rm = TRUE)
            mean SE
api00 643.203822 25.4936
api99 605.490446 25.4987
sch.wideNo 0.127389 0.0247
sch.wideYes 0.872611 0.0247
comp.impNo 0.273885 0.0365
comp.impYes 0.726115 0.0365
bothNo 0.273885 0.0365
bothYes 0.726115 0.0365
awardsNo 0.292994 0.0397
awardsYes 0.707006 0.0397
meals \(50.636943 \quad 6.6588\)
ell 26.891720 2.1567
yr.rndNo 0.942675 0.0358
yr.rndYes 0.057325 0.0358
mobility 17.719745 1.4555
pct.resp 67.171975 9.6553
not.hsg 23.082803 3.1976
hsg 24.847134 1.1167
some.col 25.210191 1.4709
col.grad 20.611465 1.7305
grad.sch 6.229299 1.5361
avg.ed 2.621529 0.1054
full 87.127389 2.1624
emer 10.968153 1.7612
enroll 573.713376 46.5959
api.stu 487.31847141.4182
```

Summary statistics for subsets can also be computed with svyby. Here we compute the average proportion of "English language learners" and of students eligible for subsidized school meals for elementary, middle, and high schools

```
> svyby(~ell + meals, ~stype, design = dclus1, svymean)
\begin{tabular}{lrrrrr} 
& stype & statistics.ell & statistics.meals & se.ell & se.meals \\
E & E & 29.69444 & 53.09028 & 1.411617 & 7.070399 \\
H & H & 15.00000 & 37.57143 & 5.347065 & 5.912262 \\
M & M & 22.68000 & 43.08000 & 2.952862 & 6.017110
\end{tabular}
```

Regression models show that these socieconomic variables predict API score and whether the school achieved its API target

```
> regmodel <- svyglm(api00 ~ ell + meals, design = dclus1)
> logitmodel <- svyglm(I(sch.wide == "Yes") ~ ell + meals, design = dclus1,
+ family = quasibinomial())
> summary(regmodel)
Call:
svyglm(api00 ~ ell + meals, design = dclus1)
Survey design:
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = }\mp@subsup{}{~}{~}fpc
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 817.1823 18.6709 43.768 1.32e-14 ***
ell -0.5088 0.3259 -1.561 0.144
meals -3.1456 0.3018 -10.423 2.29e-07 ***
---
```



```
(Dispersion parameter for gaussian family taken to be 3161.207)
Number of Fisher Scoring iterations: 2
> summary(logitmodel)
Call:
svyglm(I(sch.wide == "Yes") ~ ell + meals, design = dclus1, family = quasibinomial())
Survey design:
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ` fpc)
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.899557 0.509900 3.725 0.00290 **
```

```
ell 0.039925 0.012442 3.209 0.00751 **
meals -0.019115 0.008825 -2.166 0.05116.
---
Signif. codes: 0 âĂŸ***âĂŹZ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹZ 0.1 âĂŸ âĂŹ 1
(Dispersion parameter for quasibinomial family taken to be 0.9627734)
Number of Fisher Scoring iterations: 5
We can calibrate the sampling using the statewide total for the previous year's API
> gclus1 <- calibrate(dclus1, formula = ~api99, population = c(6194,
+ 3914069))
```

which improves estimation of some quantities

```
> svymean(~api00, gclus1)
    mean SE
api00 666.72 3.2959
> svyquantile(~api00, gclus1, quantile =c(0.25, 0.5, 0.75), ci = TRUE)
$quantiles
    0.25 0.5 0.75
api00 592.0652 681.181 736.5414
$CIs
, , api00
    0.25 0.5 0.75
(lower 553.0472 663.3175 721.1432
upper) 617.0915 696.8528 755.2959
> svytotal(~stype, gclus1)
    total SE
stypeE 4881.77 302.15
stypeH 463.35 183.03
stypeM 848.88 194.76
> svytotal(~enroll, gclus1)
    total SE
enroll 3357372 243227
> svyratio(~api.stu, ~enroll, gclus1)
```

Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, gclus1) Ratios=
enroll
api.stu 0.8506941
SEs=
enroll
api.stu 0.008674888

