Some details on two-phase variances

Thomas Lumley

May 15, 2006

This document explains the computation of variances for totals in two-phase designs. Variances for other statistics are computed by the delta-method from the variance of the total of the estimating functions.

The variance formulas come from conditioning on the sample selected in the first phase

$$
\operatorname{var}[\hat{T}]=E[\operatorname{var}[\hat{T} \mid \text { phase } 1]]+\operatorname{var}[E[\hat{T} \mid \text { phase } 1]]
$$

The first term is estimated by the variance of \hat{T} considering the phase one sample as the fixed population, and so uses the same computations as any single-phase design. The second term is the variance of \hat{T} if complete data were available for the phase-one sample. This takes a little more work.

The variance computations for a stratified, clustered, multistage design involve recursively computing a within-stratum variance for the total over sampling units at the next stage. That is, we want to compute

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)
$$

where X_{i} are π-expanded observations, perhaps summed over sampling units. A natural estimator of s^{2} when only some observations are present in the phase-two sample is

$$
\hat{s}^{2}=\frac{1}{n-1} \sum_{i=1}^{n} \frac{R_{i}}{\pi_{i}}\left(X_{i}-\hat{\bar{X}}\right)
$$

where π_{i} is the probability that X_{i} is available and R_{i} is the indicator that X_{i} is available. We also need an estimator for \bar{X}, and a natural one is

$$
\hat{\bar{X}}=\frac{1}{n} \sum_{i=1}^{n} \frac{R_{i}}{\pi_{i}} X_{i}
$$

This is not an unbiased estimator of s^{2} unless $\hat{\bar{X}}=\bar{X}$, but the bias is of order $O\left(n_{2}^{-1}\right)$ where $n_{2}=\sum_{i} R_{i}$ is the number of phase-two observations.

If the phase-one design involves only a single stage of sampling then X_{i} is Y_{i} / p_{i}, where Y_{i} is the observed value and p_{i} is the phase-one sampling probability. For multistage phase-one designs (not yet implemented) X_{i} will be more complicated, but still feasible to automate.

This example shows the unbiased phase-one estimate (from Takahiro Tsuchiya) and the estimate I use, in a situation where the phase two sample is quite small.

First we read the data

"	id	N	n.a	h	n .ah	n.h	sub	y
1	1	300	20	1	12	5	TRUE	1
2	2	300	20	1	12	5	TRUE	2
3	3	300	20	1	12	5	TRUE	3
4	4	300	20	1	12	5	TRUE	4
5	5	300	20	1	12	5	TRUE	5
6	6	300	20	1	12	5	FALSE	NA
7	7	300	20	1	12	5	FALSE	NA
8	8	300	20	1	12	5	FALSE	NA
9	9	300	20	1	12	5	FALSE	NA
10	10	300	20	1	12	5	FALSE	NA
11	11	300	20	1	12	5	FALSE	NA
12	12	300	20	1	12	5	FALSE	NA
13	13	300	20	2	8	3	TRUE	6
14	14	300	20	2	8	3	TRUE	7
15	15	300	20	2	8	3	TRUE	8
16	16	300	20	2	8	3	FALSE	NA
17	17	300	20	2	8	3	FALSE	NA
18	18	300	20	2	8	3	FALSE	NA
19	19	300	20	2	8	3	FALSE	NA
20	20	300	20		8	3	FALSE	NA
		ader	=TRU					

Now, construct a two-phase design object and compute the total of y

```
> des.rei <- twophase(id = list(~id, ~id), strata = list(NULL,
+ ~h), fpc = list(~N, NULL), subset = ~sub, data = rei)
> tot <- svytotal(~y, des.rei)
```

The unbiased estimator is given by equation 9.4.14 of Särndal, Swensson, \& Wretman.

```
> rei$w.ah <- rei$n.ah/rei$n.a
> a.rei <- aggregate(rei, by = list(rei$h), mean, na.rm = TRUE)
> a.rei$S.ysh <- tapply(rei$y, rei$h, var, na.rm = TRUE)
> a.rei$y.u <- sum(a.rei$w.ah * a.rei$y)
> a.rei$f <- with(a.rei, n.a/N)
> a.rei$delta.h <- with(a.rei, (1/n.h) * (n.a - n.ah)/(n.a - 1))
> Vphase1 <- with(a.rei, sum(N * N * ((1 - f)/n.a) * (w.ah * (1 -
+ delta.h) * S.ysh + ((n.a)/(n.a - 1)) * w.ah * (y - y.u)^2)))
```

The phase-two contributions (not shown) are identical. The phase-one contributions are quite close

```
> Vphase1
```

[1] 24072.63

```
> attr(vcov(tot), "phases")$phase1
    [,1]
[1,] 23461.05
```

