Will the real subject-specific odds

ratio please stand up?

or: Why the logistic-Normal is not my
favorite model.



Suppose we are evaluating an anti-smoking in-
tervention and we have the outcome variable Y
indicating whether the person smoked during
the past week and X indicating whether they
received the intervention.

The logistic regression model is
logitFE [Y;] = a+ BX;.

The effect of treatment can be measured by
the odds ratio exp(3). Everything is fine.



But I forgot to tell you that each person is
evaluated three times. We now have two re-
gression models

logitE [Yi] a—+ B8Xy
I0gitE [Yile] = o™ + 8" Xy + ¢

The first is a marginal model, the second is a
conditional model. Here exp(58*) is the subject-
specific odds ratio. In general |3*| > |8|. Now
we might say that 8* measures the actual treat-
ment effect, and 5 has been attenuated.



But I forgot to tell you that this is a group
discussion intervention and the groups may be

different. We now have
l0gitE [Ygit] = a+ BXgy
0GItE |Yyilei,ng) = o + B Xyt + ¢ + g

Now exp(B**) is the real subject-specific odds

ratio, and we realise that exp(8*) was an at-
tenuated version of it — it was only the group-

specific odds ratio.



But I forgot to tell you that the group discus-
sion was facilitated by the primary care physi-
cian, so the study was actually randomised by
medical practice. We need a random effect for
doctor, so we have

0GiItE |Yagir| = o+ BXqg
I0gitE | Yagirl€i ng, Cdl &+ B X gt + €
+1ng + G4
Now the subject-specific odds ratio is really

exp(B***) and it's even bigger than we thought.
The marginal odds is still boringly stuck at

exp(B).



Note that we haven't even started to consider

e how to model the random effects

e what estimators to use

e how to fit the model

e what happens if the random effects are
misspecified



