
Will the real subject-specific odds

ratio please stand up?

or: Why the logistic-Normal is not my

favorite model.



Suppose we are evaluating an anti-smoking in-

tervention and we have the outcome variable Y

indicating whether the person smoked during

the past week and X indicating whether they

received the intervention.

The logistic regression model is

logitE [Yi] = α+ βXi.

The effect of treatment can be measured by

the odds ratio exp(β). Everything is fine.



But I forgot to tell you that each person is

evaluated three times. We now have two re-

gression models

logitE [Yit] = α+ βXit

logitE [Yit|εi] = α∗+ β∗Xit + εi

The first is a marginal model, the second is a

conditional model. Here exp(β∗) is the subject-

specific odds ratio. In general |β∗| > |β|. Now

we might say that β∗ measures the actual treat-

ment effect, and β has been attenuated.



But I forgot to tell you that this is a group

discussion intervention and the groups may be

different. We now have

logitE
[
Ygit

]
= α+ βXgit

logitE
[
Ygit|εi, ηg

]
= α∗∗+ β∗∗Xgit + εi + ηg

Now exp(β∗∗) is the real subject-specific odds

ratio, and we realise that exp(β∗) was an at-

tenuated version of it — it was only the group-

specific odds ratio.



But I forgot to tell you that the group discus-

sion was facilitated by the primary care physi-

cian, so the study was actually randomised by

medical practice. We need a random effect for

doctor, so we have

logitE
[
Ydgit

]
= α+ βXdgit

logitE
[
Ydgit|εi, ηg, ζd

]
= α∗∗∗+ β∗∗∗Xdgit + εi

+ηg + ζd

Now the subject-specific odds ratio is really

exp(β∗∗∗) and it’s even bigger than we thought.

The marginal odds is still boringly stuck at

exp(β).



Note that we haven’t even started to consider

• how to model the random effects

• what estimators to use

• how to fit the model

• what happens if the random effects are

misspecified


