
Mostly programming

Thomas Lumley

Biostatistics

2006-10-26

Example: computing the median

Suppose we wanted to write a function to compute the median.

A simple algorithm is to sort the data and take the middle

element.

ourmedian <- function(x){

n<-length(x)

sort(x)[(n+1)/2]

}

For even sample sizes we might prefer the average of the two

middle values

ourmedian <- function(x){

n<-length(x)

if (n %% 2==1) ## odd

sort(x)[(n+1)/2]

else { ## even

middletwo <- sort(x)[(n/2)+0:1]

mean(middletwo)

}

}

We need to handle missing values

ourmedian <- function(x, na.rm=FALSE){

if(any(is.na(x))) {

if(na.rm)

x<-x[!is.na(x)]

else

return(NA)

}

n<-length(x)

if (n %% 2==1) ## odd

sort(x)[(n+1)/2]

else { ## even

middletwo <- sort(x)[(n/2)+0:1]

mean(middletwo)

}

}

We might also want to

• Check that x is numeric, so that a median makes sense

• Check that n is not 0

The built-in function also takes advantage of an option to sort()

that stops sorting when specific indices (eg (n+1)/2) are correct.

This is faster for large vectors (by 1sec=50% for n = 106).

Median survival

Slightly more complex is a function that computes median (or

other quantile) of survival from the Kaplan–Meier estimator.

Here we try a top-down approach

mediansurv<-function(time, event, quantile=0.5){

km <- kaplanmeier(time, event)

findquantile(km, quantile)

}

Kaplan-Meier estimator

Recall that this is the product over times of the fraction of people

surviving. If all the times are different, this is easy

kaplanmeier<-function(time,event){

if(any(duplicated(time)))

stop("I can’t cope: some times are equal")

index<-order(time)

time<-time[index]

event<-event[index]

n<-length(event)

list(time=time, surv=cumprod(1-event/(n:1)))

}

The function almost works when times are tied: instead of

multiplying by, say, (
1−

4

50

)
when 4 die out of 50 it will multiply by(

1−
1

50

) (
1−

1

49

) (
1−

1

48

) (
1−

1

47

)
which is a reasonable estimator, but not the KM estimator.

We need to get the distinct times at which deaths occur, the

number of deaths at each of these times, and the number at risk

at each time: we need a table of event by time.

kaplanmeier<-function(time,event){

tab <- table(time,event)

n<-length(time)

ndead<-tab[,2]

ngone<-tab[,1]+tab[,2]

nalive<-n-cumsum(ngone)+ngone

list(time=sort(unique(time)),

surv=cumprod(1-ndead/nalive)

)

}

• It still doesn’t work if everyone is censored (ok) or if no-one is
censored (not ok), since the table will have only one column.
Cases like this are a real pain in programming. A useful trick
is to make a factor, so R knows there should be two levels

tab <- table(time, factor(event, levels=c(0,1)))

• We adopted the convention that censorings come after
deaths if they are recorded at the same time. You could
do it the other way.

• n-cumsum(ngone)+ngone could also be done with indices:

ngone <- c(0, tab[,1]+tab[,2])[-(n+1)]

nalive <- n-ngone

Finding the quantile

To find the median, we find where the probability first goes below

0.5.

findquantile<-function(km, quantile){

below <- which(km$surv < quantile)

firstbelow <- min(below)

km$time[min(below)]

}

What happens if the KM estimator never falls below 0.5? What

should happen?

Standard errors of quantiles

The homework asked for standard errors of the median by

simulation. Other options are asymptotic theory and numerical

integration.

Asymptotic theory says that the standard error is approximately

1/2
√

nf(m) where n is the sample size, m is the median, and f()

is the pdf.

For numerical integration we need the pdf of the median: the

pdf of the rth order statistic in a sample of size n is

fr,n(x) =
(n

r

)
F (x)r−1f(x)(1− F (x))n−r

Standard errors of quantiles

We can write this formula as a function

dorder <- function(n, r, pfun, dfun) {

con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))

function(x) {

con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)

}

}

In addition to the n and r arguments, which are numbers,

the function takes two functions as arguments, F () and f().

These might be built-in functions such as pnorm() and dnorm()

or functions that you write

Standard errors of quantiles

For example, the median of sample of size 51 from an Ex-

ponential(1) distribution compared to the asymptotic Normal

distribution.

dmed51exp<-dorder(51,26,pexp,dexp)

> dmed51exp

function(x) {

con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)

}

<environment: 0x193b844>

> curve(dmed51exp,from=0,to=2,ylab="Density",xlab="median")

> curve(dnorm(x,m=log(2),s=1/(2*sqrt(51)*dexp(log(2)))),

add=TRUE,col="purple")

Standard errors of quantiles

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

median

D
en

si
ty

Integration

We can integrate functions of this pdf to find the moments of

the median. The standard error is the square root of the variance

of the median.

> moment1<-integrate(function(x) x*dmed51exp(x),

lower=-Inf,upper=Inf)

> moment2<-integrate(function(x) x*x*dmed51exp(x),

lower=-Inf,upper=Inf)

> moment1

0.702855 with absolute error < 6.7e-06

> moment2

0.513799 with absolute error < 6.9e-05

> sqrt(moment2$value -moment1$value^2)

[1] 0.1406904

Note that the median is not unbiased: the true median is log2 ≈
0.6931472

Integration

Now we can compare this to the simulation and asymptotic

standard errors

> sd(replicate(10000,median(rexp(51))))

[1] 0.1406540

> 1/(2*sqrt(51)*dexp(log(2)))

[1] 0.140028

Maximization

The optimize() function maximizes or minimizes a function of

one variable, optim() handles many variables. [A related function

is uniroot(), which solves an equation in one variable.]

> optimize(dmed51exp,c(0,2),maximum=TRUE)

$maximum

[1] 0.6737122

$objective

[1] 2.891226

The mode of the density is not (quite) at the true median either

> log(2)

[1] 0.6931472

> dmed51exp(log(2))

[1] 2.863017

Matrix operations

You have seen matrix() for creating a matrix.

Arithmetic operations on matrices are elementwise: *, /, +, -, &, |

Matrix multiplication is %*%

Transposition is t(), but also note crossprod for XTY and

tcrossprod for XY T , which are more efficient than transposing

and multiplying

solve(A,b) solves the system of linear equations Ax = b. Without

b it returns A−1

eigen() computes eigenthingies, qr() and svd() do the QR and

singular value decomposition.

Matrix operations

The standard linear regression formula

β̂ = (XTX)−1XTY

can be written as

solve(t(X) %*% X) %*% t(X) %*% Y

solve(crossprod(X)) %*% crossprod(X,Y)

solve(X,Y)

The last version is not only faster, it is more accurate (which used

to matter more in the days before 16 decimal place hardware)

Wheel, reinventing of

The built-in functions for integration, maximization, matrix

operations, etc, are more convenient than writing your own.

They also work better. For example help(optimize) says

The method used is a combination of golden section search and
successive parabolic interpolation. Convergence is never much
slower than that for a Fibonacci search. If ’f’ has a continuous
second derivative which is positive at the minimum (which is not
at ’lower’ or ’upper’), then convergence is superlinear, and
usually of the order of about 1.324.

which is probably not what you would have implemented.

From the 10 Commandments for C Programmers: Thou shalt

study thy libraries and strive not to reinvent them without cause,

that thy code may be short and readable and thy days pleasant

and productive.

Debugging and optimization

Premature optimization is the root of all evil

Donald Knuth

The first task when programming is to get the program correct,

which is easier if it is written more simply and clearly.

Some clarity optimizations make the code faster, eg operating on

whole vectors rather than elements. Some have no real impact,

eg using *apply functions. Some make the code slower, like

adding names to vectors.

When the code works correctly, the next step is to find out which

parts, if any, are too slow, and then speed them up. This requires

measurement, rather than guessing.

Timing

• proc.time() returns the current time. Save it before a task

and subtract from the value after a task.

• system.time() to time the evaluation of expression

• Rprof(filename) turns on the profiler, and Rprof(NULL) turns

it off. The profiler writes a list of the current functions being

run to filename many times per second. summaryRprof(filename)

summarizes this to report how much time is spent in each

function.

Remember that a 1000-fold speedup in a function that uses 10%

of the time is less helpful than a 30% speedup in a function that

uses 50% of the time.

Profiler

An example from code I wrote earlier this month: Hamiltonian

MCMC for source apportionent. The code includes multipli-

cation of large matrices, and also constraints to make the

parameters non-zero, involving logmax(θ,0)

> summaryRprof("spokane.prof")

$by.self

self.time self.pct total.time total.pct

"pmax" 63.04 38.5 94.24 57.6

"/" 12.82 7.8 12.82 7.8

"-" 9.58 5.9 9.58 5.9

"cbind" 9.08 5.6 10.72 6.6

"%*%" 8.06 4.9 8.06 4.9

"&" 7.48 4.6 7.48 4.6

"log" 7.36 4.5 44.38 27.1

"*" 5.62 3.4 5.62 3.4

Profiler

"crossprod" 5.12 3.1 5.12 3.1

"<" 4.74 2.9 4.74 2.9

"is.na" 4.32 2.6 4.32 2.6

"leapfrog" 4.28 2.6 151.28 92.5

"tcrossprod" 4.16 2.5 4.16 2.5

"^" 3.36 2.1 3.36 2.1

...

pmax(x,y) computes the elementwise maximum of of x and y, but

I was using it just for y = 0.

Rewriting as x[x < 0] < −0 and a few other minor changes gave:

Profiler

$by.self

self.time self.pct total.time total.pct

"/" 116.50 15.7 116.50 15.7

"-" 93.80 12.6 93.80 12.6

"%*%" 78.14 10.5 78.14 10.5

"log" 75.60 10.2 75.60 10.2

"penal" 51.30 6.9 156.22 21.1

"*" 47.80 6.4 47.80 6.4

"tcrossprod" 43.96 5.9 43.96 5.9

"leapfrog" 40.00 5.4 654.92 88.3

"crossprod" 37.80 5.1 37.80 5.1

"^" 30.86 4.2 30.86 4.2

and roughly doubled the speed.

Memory

• gc() will report maximum allocation since the last call to

gc(reset=TRUE).

• gcinfo(TRUE) asks for a report on memory use every time the

garbage collector is run.

• In R 2.4.0 there are additional memory profiling tools.

Debugging

• traceback() shows where S was at the last error: what

function it was in, where this was called from, and so on

back to your top-level command.

• options(error=dump.frames) saves the entire state of your

program when an error occurs. debugger() then lets you

start the debugger to inspect any function that was being

run. options(error=recover) starts the debugger as soon as

an error occurs.

• browser() starts the debugger at this point in your code.

• options(warn=2) turns warnings into errors.

• debug(fname) starts the debugger when function fname() is

called.

The debugger in R gives you an interactive command prompt

inside your function.

Faster code

• Operations on whole vectors are fast.

• Matrix operations may be faster even than naive C code

• Functions that have few options and little error checking are

faster: eg sum(x)/length(x) may be faster than mean(x)

• Allocating memory all at once is faster than incremental al-

location: x<-numeric(10000); x[i]<-f(i) rather than x<-c(x,

f(i))

• Data frames are much slower than matrices (especially large

ones).

• Running out of memory makes code much slower, especially

under Windows.

If none of this works, coding a small part of the program in C

may make it hundreds of times faster.

	Example: computing the median
	
	
	
	Median survival
	Kaplan-Meier estimator
	
	
	
	Finding the quantile
	Standard errors of quantiles
	Integration
	Maximization
	Matrix operations
	Wheel, reinventing of
	Debugging and optimization
	Timing
	Profiler
	Memory
	Debugging
	Faster code

