
Playing nicely together

Thomas Lumley

R Core Development Team

and University of Washington

Auckland — 2009–11–28

Objects

Many functions in R return objects, which are collections of

information that can be operated on by other functions.

In more extreme object-oriented languages objects have no user-

serviceable parts. In R you can always get direct access to the

internals of an object. You shouldn’t use this access if there is

another way to get the information: the developer may change

the internal structure and break your code.

Use str and names to guess the internal structure.

Generics and methods

Many functions in R are generic. This means that the function

itself (eg plot, summary, mean) doesn’t do anything. The work is

done by methods that know how to plot, summarize or average

particular types of information. Earlier I said this was done by

magic. Here is the magic.

If you call summary on a data.frame, R works out that the correct

function to do the work is summary.data.frame and calls that

instead. If there is no specialized method to summarize the

information, R will call summary.default

You can find out all the types of data that R knows how to

summarize with two functions

> methods("summary")

[1] summary.Date summary.POSIXct summary.POSIXlt

[4] summary.aov summary.aovlist summary.connection

[7] summary.data.frame summary.default summary.ecdf*

[10] summary.factor summary.glm summary.infl

[13] summary.lm summary.loess* summary.manova

[16] summary.matrix summary.mlm summary.nls*

[19] summary.packageStatus* summary.ppr* summary.prcomp*

[22] summary.princomp* summary.stepfun summary.stl*

[25] summary.table summary.tukeysmooth*

Non-visible functions are asterisked

> getMethods("summary")

NULL

There are two functions because S has two object systems, for
historical reasons (called S3 and S4)

Methods

The class and method system makes it easy to add new types
of information (eg survey designs) and have them work just like
the built-in ones.

Some standard methods are

• print, summary: everything should have these
• plot or image: if you can work out an obvious way to plot

the thing, one of these functions should do it.
• coef, vcov: Anything that has parameters and variance

matrices for them should have these.
• anova, logLik, AIC: a model fitted by maximum likelihood

should have these.
• residuals: anything that has residuals should have this.

Use the methods, rather than direct access to components (eg
coef(model) not model$coefficients)

New classes

Creating a new class is easy

class(x) <- "duck"

R will now automatically look for the print.duck method for the

generic print.

R doesn’t know anything about the structure of the class: if

there are generics like look, walk, and quack you need to be sure

that x looks like a duck, walks like a duck, and quacks like a

duck.

New generics

New generics are almost as easy:

> print

function (x, ...)

UseMethod("print")

A generic is just a function with a call to UseMethod().

New generics

By default, the method is chosen based on the class of the first
argument, but you can specify a different argument

> library(survey)

> svymean

function (x, design, na.rm = FALSE, ...)

{

.svycheck(design)

UseMethod("svymean", design)

}

The method is chosen based on design, but the argument that
specifies which variables to mean is first, for consistency with
the rest of R.

[The .svycheck() call detects designs created with an obsolete
version of the package.]

Example: ROC curves

The Receiver Operating Characteristic curve describes the ability

of a ordinal variable T to predict a binary variable D.

For any threshold c we can compute

• Sensitivity of T ≥ c for D: P (T ≥ c|D = 1)

• Specificity of T ≥ c for D: P (T < c|D = 0)

We plot sensitivity vs 1−specificity for all values of c to give the

ROC curve.

Example: ROC curves

Simple code

drawROC<-function(T,D){

cutpoints <- c(-Inf, sort(unique(T)), Inf)

sens <- sapply(cutpoints, function(c) sum(T>=c & D==1)/sum(D==1))

spec <- sapply(cutpoints, function(c) sum(T<c & D==0)/sum(D==0))

plot(1-spec, sens, type="l")

}

For example

data(pbc, package="survival")

par(pty="s")

with(pbc, drawROC(bili, status>0))

Example: ROC curves

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 - spec

se
ns

Example: ROC curves

A slightly more efficient version using use the vectorized cumsum

rather than the implied loop of sapply.

drawROC<-function(T,D){

DD <- table(-T,D)

sens <- cumsum(DD[,2])/sum(DD[,2])

mspec <- cumsum(DD[,1])/sum(DD[,1])

plot(mspec, sens, type="l")

}

We want to make this return an ROC object that can be plotted

and operated on in other ways

ROC curve object

ROC<-function(T,D){

DD <- table(-T,D)

sens <- cumsum(DD[,2])/sum(DD[,2])

mspec <- cumsum(DD[,1])/sum(DD[,1])

rval <- list(tpr=sens, fpr=mspec,

cutpoints=rev(sort(unique(T))),

call=sys.call())

class(rval)<-"ROC"

rval

}

Instead of plotting the curve we return the data needed for the

plot, plus some things that might be useful later. sys.call() is

a copy of the call.

Methods

We need a print method to stop the whole contents of the object

being printed

print.ROC<-function(x,...){

cat("ROC curve: ")

print(x$call)

}

Methods

A plot method

plot.ROC <- function(x, xlab="1-Specificity",

ylab="Sensitivity", type="l",...){

plot(xfpr, xtpr, xlab=xlab, ylab=ylab, type=type, ...)

}

We specify some graphical parameters in order to set defaults

for them. Others are automatically included in ... and will

be passed down until they reach a function that knows how to

handle them.

Methods

We want to be able to add lines to an existing plot

lines.ROC <- function(x, ...){

lines(xfpr, xtpr, ...)

}

and also be able to identify cutpoints

identify.ROC<-function(x, labels=NULL, ...,digits=1)

{

if (is.null(labels))

labels<-round(x$cutpoints,digits)

identify(xfpr, xtpr, labels=labels,...)

}

Methods

> roc1 <- with(pbc, ROC(bili, status>0))

> roc1

ROC curve: ROC(bili, status > 0)

> roc2 <- with(pbc, ROC(protime, status>0))

> roc2

ROC curve: ROC(protime, status > 0)

> plot(roc1, col="forestgreen")

> lines(roc2, col="purple", lty=2)

> legend("bottomright",lty=1:2,col=c("forestgreen","purple"),

legend=c("bilirubin (high)", "albumin (low)"), bty="n")

Methods

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1-Specificity

S
en
si
tiv
ity

bilirubin (high)
albumin (low)

S4 classes

These provide formal definitions for classes and methods, so

all objects of the same class have the same structure and so

methods don’t have to be guessed by name.

• setClass() defines a class

• new() creates a new object of a specified class

• setMethod() defines a method

S4 classes

setClass("ROC",

representation(fpr="numeric",tpr="numeric",

cutpoints="numeric", call="call")

)

ROC<-function(T,D){

DD <- table(-T,D)

sens <- cumsum(DD[,2])/sum(DD[,2])

mspec <- cumsum(DD[,1])/sum(DD[,1])

rval <- new("ROC", tpr=sens, fpr=mspec,

cutpoints=rev(sort(unique(T))),

call=sys.call())

rval

}

Methods

The print generic is renamed show in S4

setMethod("show","ROC",

function(object){

cat("ROC curve: ")

print(object@call)

}

)

Use @ rather than $ to refer to slots in an S4 class: ’information

hiding’

Methods

If there isn’t a built-in S4 generic (eg plot), setMethod()

will create one automatically, or you can do it yourself with

setGeneric. The previous S3 generic will become the default

method.

setMethod("plot" , c("ROC","missing"),

function(x, y, xlab="1-Specificity",

ylab="Sensitivity", type="l",...){

plot(x@fpr, x@tpr, xlab=xlab, ylab=ylab, type=type, ...)

})

plot() has two arguments, x and y. The method is chosen based

on the classes of both arguments.

This method is called when the x an ROC object and y is not

given.

Methods

> setGeneric("lines")

[1] "lines"

> lines

standardGeneric for "lines" defined from package "graphics"

function (x, ...)

standardGeneric("lines")

<environment: 0x180ceaf4>

Methods may be defined for arguments: x

Use showMethods("lines") for currently available ones.

setMethod("lines", "ROC",

function(x, ...){

lines(x@fpr, x@tpr, ...)

})

Model objects

Typical statistics packages fit a model and output the results. In

S a model object is created that stores all the information about

the fitted model. Coefficients, diagnostics, and other model

summaries are produced by methods for this object.

Objects again

We might want to construct an ROC curve as a summary of a

logistic regression. We need the ROC function to be generic, so

it can work for regression models or vectors

ROC <- function(T,...) UseMethod("ROC")

The previous ROC function now becomes the default method

ROC.default <-function(T,D){
DD <- table(-T,D)
sens <- cumsum(DD[,2])/sum(DD[,2])
mspec <- cumsum(DD[,1])/sum(DD[,1])
rval <- list(tpr=sens, fpr=mspec,

cutpoints=rev(sort(unique(T))),
call=sys.call())

class(rval)<-"ROC"
rval

}

Objects again

and we need a new ROC.glm function that computes T and D

from a fitted logistic regression model.

ROC.glm<-function(T,...){
if (!(T$family$family %in%

c("binomial", "quasibinomial")))
stop("ROC curves for binomial glms only")

test<-fitted(T)
disease<-T$response

TT<-rev(sort(unique(test)))
DD<-table(-test,disease)

sens<-cumsum(DD[,2])/sum(DD[,2])
mspec<-cumsum(DD[,1])/sum(DD[,1])

rval<-list(tpr=sens, fpr=mspec,
cutpoints=TT,call=sys.call())

class(rval)<-"ROC"
rval

}

Formulas and data frames

Many R functions for statistical modelling or graphics specify the

variables to use with

• a model formula giving the names of variables (and other

aspects of model structure)

• a data frame to look up the variables in

You can do this too.

Review: formula syntax

In regression models

• ~ separates response from predictors

• + specifies predictor terms

• * requests the interaction of two terms (and the two main

effects)

For graphics (and for other uses such as the survey package) the

formula just specifies a list of variables and * is not used.

The formula has length 3 if it has both left and right sides, with

the LHS as the second and RHS as third element.

Using formulas (simple version)

f <- function(formula, data){

tms <- terms(formula)

mf <- model.frame(tms, data)

mm <- model.matrix(tms, mf)

colSums(mm)

}

> data(api, package="survey")

> f(api00~api99*stype, data=apipop)

(Intercept) api99 stypeH stypeM api99:stypeH

6194 3914069 755 1018 468895

api99:stypeM

645968

Steps

• terms() parses a formula to work out what variables will be

needed and how they will go into the model

• model.frame() gathers together all the necessary variables

• model.matrix() makes a design matrix, with interactions,

factor contrasts, and other fun stuff.

In a perfect world, all the variables in the formula are in the data

frame. In reality, some may be floating free in the workspace.

model.frame() looks first in the data frame, then in the place

where the formula was defined.

Missing data

By default, model.frame() drops observations with missing values

(and attaches an attribute to the model frame saying what it

dropped).

Sometimes you want to pass through missing values to make it

easier to match up observations in different objects:

model.frame(formula, data, na.action=na.pass)

ROC example

Let’s write a function that fits an ROC curve to a single predictor
or to a logistic regression with multiple predictors (this uses the
S3 version of the functions)

ROC.formula <- function(formula, data){

if (length(formula[[3]])==1){

tms <-terms(formula)

mf <- model.frame(tms, data)

rval <- ROC(mf[,2], mf[,1])

rval$call <- sys.call()

} else {

model <- glm(formula, data, family=binomial)

rval <- ROC(model)

rval$call<-sys.call()

}

rval

}

Making a formula

Creating a formula from a list of variables is one of the few good

uses for writing code by string manipulation

> make.formula <- function (names)

formula(paste("~", paste(names, collapse = "+")))

> make.formula(names(apipop))

~cds + stype + name + sname + snum + dname + dnum + cname + cnum +

flag + pcttest + api00 + api99 + target + growth + sch.wide +

comp.imp + both + awards + meals + ell + yr.rnd + mobility +

acs.k3 + acs.46 + acs.core + pct.resp + not.hsg + hsg + some.col +

col.grad + grad.sch + avg.ed + full + emer + enroll + api.stu

Look what I made!

Thomas Lumley

R Core Development Team

and University of Washington

Auckland — 2009–11–28

R Packages

The most important single innovation in R is the package

system, which provides a cross-platform system for distributing

and testing code and data.

The Comprehensive R Archive Network (http://cran.r-project.

org) distributes (thousands of) public packages, but packages

are also useful for internal distribution.

A package consists of a directory with a DESCRIPTION file and

subdirectories with code, data, documentation, etc. The Writing

R Extensions manual documents the package system, and

package.skeleton() simplifies package creation.

http://cran.r-project.org
http://cran.r-project.org

Packaging commands

• R CMD INSTALL packagename installs a package.

• R CMD check packagename runs the QA tools on the package.

• R CMD build packagename creates a package file.

These use Perl and a few other tools not built-in on Win-

dows. The Rtools bundle contains all of these http://www.

murdoch-sutherland.com/Rtools/

For Mac OS X the basic tools are automatically available.

http://www.murdoch-sutherland.com/Rtools/
http://www.murdoch-sutherland.com/Rtools/

The DESCRIPTION file

From the survey package

Package: survey
Title: analysis of complex survey samples
Description: Summary statistics, generalised linear models,
cumulative link models, Cox models, loglinear models, and
general maximum pseudolikelihood estimation for multistage stratified,
cluster-sampled, unequally weighted survey samples. Variances by
Taylor series linearisation or replicate weights. Post-stratification, calibration,
and raking. Two-phase subsampling designs. Graphics. Predictive margins
by direct standardization. PPS sampling without replacement.

Version: 3.19
Author: Thomas Lumley
Maintainer: Thomas Lumley <tlumley@u.washington.edu>
License: GPL-2 | GPL-3
Depends: R (>= 2.2.0)
Suggests: survival, MASS, KernSmooth, hexbin, mitools, lattice, RSQLite,
RODBC, quantreg, splines, Matrix, multicore
Enhances: odfWeave.survey
URL: http://faculty.washington.edu/tlumley/survey/

The DESCRIPTION file

Depends: lists R packages or the version of R needed to build

this one.

Suggests: lists packages needed eg to run examples.

Enhances: are packages that can use this one.

License: is important for CRAN packages, and if possible should

be one of a standard set.

Version: should be X.YYY-ZZZZ and should be higher than the

previous version (so update.packages() doesn’t get confused)

The INDEX file

This also goes in the package directory and contains information

about every sufficiently interesting function in the package.

If an INDEX file is not present it will be created from the titles of

all the help pages. The INDEX file is displayed by

library(help=packagename)

Interpreted code

R code goes in the R subdirectory, in files with extension .s, .S,

.r, .R or .q.

The filenames are sorted in ASCII order and then concatenated

(one of the few places that R doesn’t observe locale sorting

conventions).

R CMD check detects a number of common errors such as using T

instead of TRUE.

Documentation

Documentation in .Rd format (which looks rather like LATEX) is

the the man subdirectory.

R CMD Sd2Rd will convert S-PLUS documentation (either the old

troff format or the new SGML) and R CMD Rdconv will do the

reverse.

The QA tools check that every object is documented and that

the arguments a function is documented to have are the same

as the ones it actually has, and that all the examples run. They

check for some common coding errors such as T for TRUE. They

find unused or uninitialized variables in your code.

Data

Data go in the data subdirectory and are read with the data()

function.

• ASCII tables with .tab, .txt or .TXT, read using read.table(

,header=TRUE)

• R source code with .R or .r extensions, read using source

• R binary format with .Rdata or .rda extensions, read using

load.

The directory has an index file (00INDEX) to provide descriptions

of the data files.

Compiled code

C or Fortran code (or other code together with a Makefile) goes

in the src subdirectory.

It is compiled and linked to a DLL, which can be loaded with

the useDynLib directive in the NAMESPACE file

Obviously this requires suitable compilers. The nice people at

CRAN compile Windows and Macintosh versions of packages for

you, but only if it can be done without actual human intervention.

The Windows compilers used to build R are in the windows

Rtools collection.

The Mac compilers are on the OS X DVD but are not installed

by default.

Namespaces

A package namespace allows the package to have private

functions that are not visible to the user.

As usual, the invisibility is limited to preventing accidental access:

survey:::nlcon shows the private function nlcon in the survey

package.

The NAMESPACE file declares the functions that should be visible to

the user, with export() to make a function visible and S3method()

to make a method accessible to UseMethod() but not visible as a

function.

Namespaces

NAMESPACE from leaps package

useDynLib(leaps)

export(regsubsets,leaps)

S3method(regsubsets, biglm)

S3method(regsubsets,formula)

S3method(regsubsets,default)

S3method(summary,regsubsets)

S3method(print,summary.regsubsets)

S3method(print,regsubsets)

S3method(plot,regsubsets)

S3method(coef,regsubsets)

S3method(vcov,regsubsets)

Similar syntax to export S4 classes and methods.

inst/ and Vignettes

The contents of the inst subdirectory are copied on installation.

A CITATION file can be supplied in inst to give information on how

to cite the package. These are read by the citation() function.

Please cite R and packages that you use.

Vignettes, Sweave documents that describe how to carry out par-

ticular tasks, go in the inst/doc/ subdirectory. The Bioconductor

project in bioinformatics is requiring vignettes for its packages.

A NEWS or Changelog file in inst/ will be used by CRAN on the

package web page.

You can put anything else in inst/ as well.

Tests

Additional validation tests go in the tests subdirectory. Any .R

file will be run, with output going to a corresponding .Rout file.

Errors will cause R CMD check to fail.

If there is a .Rout.save file it will be compared to the .Rout file,

with differences listed to the screen.

Distributing packages

If you have a package that does something useful and is well-

tested and documented, you might want other people to use

it too. Contributed packages have been very important to the

success of R.

Packages can be submitted to CRAN by ftp to cran.r-project.org

• The CRAN maintainers will make sure that the package

passes CMD check (and will keep improving CMD check to find

more things for you to fix in future versions).

• Other users will complain if it doesn’t work on more esoteric

systems and no-one will tell you how helpful it has been.

• But it will be appreciated. Really.

ROC curves (yet again)

We can now put the ROC curve functions into a simple package.

• Use package.skeleton to start

• Edit DESCRIPTION

• Edit help files

• What should be in the NAMESPACE?

	Objects
	Generics and methods
	
	Methods
	New classes
	New generics
	Example: ROC curves
	ROC curve object
	Methods
	Methods
	Methods
	S4 classes
	Methods
	Model objects
	Objects again
	Formulas and data frames
	Review: formula syntax
	Using formulas (simple version)
	Steps
	Missing data
	ROC example
	Making a formula
	
	R Packages
	Packaging commands
	The DESCRIPTION file
	The INDEX file
	Interpreted code
	Documentation
	Data
	Compiled code
	Namespaces
	inst/ and Vignettes
	Tests
	Distributing packages
	ROC curves (yet again)

