
Learning to Draw!

Thomas Lumley

R Core Development Team

and University of Washington

Auckland — 2009–11–28

Principles

• A graph, like a paragraph, exists to convey a specific piece

of information.

– to the analyst (exploratory)

– to other people (presentation)

• There are facts about the design of graphs, it’s not all

opinion

• There’s also lots of useful expert opinion.

A graph needs to be designed, drafted, and revised, just like a

paragraph. R’s defaults are not bad, but usually benefit from

customization.

Basic graphics competencies

• SImple R graphics

• Underused basic tools: scatterplot smoothers, forest plots

• Physiological constraints: color and preattentive perception

• Escape from flatland: conditioning plots

• Transparency and binning for large data.

• Pointy-clicky!!

Plenty more not included, eg maps, categorical data, etc

Graphics

R can produce graphics in many formats, including:

• on screen

• PDF files for LATEX or emailing to people

• PNG or JPEG bitmap formats for web pages (or on non-

Windows platforms to produce graphics for MS Office). PNG

is also useful for graphs of large data sets.

• On Windows, metafiles for Word, Powerpoint, and similar

programs

Setup

Graphs should usually be designed on the screen and then may

be replotted on eg a PDF file (for Word/Powerpoint you can

just copy and paste)

For printed graphs, you will get better results if you design the

graph at the size it will end up, eg:

on Windows

windows(height=4,width=6)

on Unix

x11(height=4,width=6)

Word or LATEX can rescale the graph, but when the graph gets

smaller, so do the axis labels...

Setup

Created at full-page size (11×8.5 inches)

90

100

110

120

130

140

150

160

170

180

190

Height
(meters)

100 200 300 400 500 600 700 800

100

200

300

400

500

600

The Topography of Maunga Whau

Meters North

M
et

er
s

W
es

t

filled.contour(.) from R version 2.5.1 (2007−06−27)

Setup

Created at 6×5 inches

90

100

110

120

130

140

150

160

170

180

190

Height
(meters)

100 300 500 700

100

200

300

400

500

600

The Topography of Maunga Whau

Meters North

M
et

er
s

W
es

t

filled.contour(.) from R version 2.5.1 (2007−06−27)

Finishing

After you have the right commands to draw the graph you can

produce it in another format: eg

start a PDF file

pdf("picture.pdf",height=4,width=6)

your drawing commands here

...

close the PDF file

dev.off()

Drawing

Usually use plot() to create a graph and then lines(), points(),

legend(), text(), and other commands to annotate it.

plot() is a generic function: it does appropriate things for

different types of input

scatterplot

plot(salary$year, salary$salary)

boxplot

plot(salary$rank, salary$salary)

stacked barplot

plot(salary$field, salary$rank)

and others for other types of input.

Formula interface

The plot() command can be written

plot(salary~rank, data=salary)

introducing the formula system that is also used for regression

models. The variables in the formula are automatically looked

up in the data= argument.

Designing graphs

Two important aspects of designing a graph

• It should have something to say

• It should be legible

Having something to say is your problem; software can help with

legibility.

Designing graphs

Important points

• Axes need labels (with units, large enough to read)

• Color can be very helpful (but not if the graph is going to

be printed in black and white).

• Different line or point styles usually should be labelled.

• Points plotted on top of each other won’t be seen

After these are satisfied, it can’t hurt to have the graph look

nice.

Options

Set up a data set: daily ozone concentrations in New York,

summer 1973

data(airquality)

names(airquality)

airquality$date<-with(airquality, ISOdate(1973,Month,Day))

All these graphs were designed at 4in×6in and stored as PDF

files

plot(Ozone~date, data=airquality)

●
●

●
●

●●

●
●

●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●● ● ●

●

●
●

● ●

●

●
●

●
● ●

●

●

●
●

●

●● ●

0 50 100 150 200 250 300

0
50

10
0

15
0

New York, Summer 1979

Solar Radiation (langley)

O
zo

ne
 (

pp
b)

plot(Ozone~date, data=airquality,type="l")
0

50
10

0
15

0

date

O
zo

ne

May Jun Jul Aug Sep Oct

plot(Ozone~date, data=airquality,type="h")
0

50
10

0
15

0

date

O
zo

ne

May Jun Jul Aug Sep Oct

plot(Ozone~date, data=airquality,type="n")
0

50
10

0
15

0

date

O
zo

ne

May Jun Jul Aug Sep Oct

bad<-ifelse(airquality$Ozone>=90, "orange","forestgreen")

plot(Ozone~date, data=airquality,type="h",col=bad)

abline(h=90,lty=2,col="red")

0
50

10
0

15
0

date

O
zo

ne

May Jun Jul Aug Sep Oct

Notes

• type= controls how data are plotted. type="n" is not as useless

as it looks: it can set up a plot for latter additions.

• Colors can be specified by name (the colors() function gives

all the names), by red/green/blue values (#rrggbb with six

base-sixteen digits) or by position in the standard palette of

8 colors.

• abline draws a single straight line on a plot

• ifelse() selects between two vectors based on a logical

variable.

• lty specifies the line type: 1 is solid, 2 is dashed, 3 is dotted,

then it gets more complicated.

Adding to a plot

data(cars)

plot(speed~dist,data=cars)

with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))

plot(speed~dist,data=cars, log="xy")

with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))

with(cars, lines(supsmu(dist,speed), col="purple", lwd=2))

legend(2,25, legend=c("lowess","supersmoother"),bty="n", lwd=2,

col=c("tomato","purple"))

Adding to a plot

● ●

● ●
●

●
● ● ●

● ●
● ● ● ●

● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ●

●
●

● ●● ●
●

0 20 40 60 80 100 120

5
10

15
20

25

dist

sp
ee

d

Adding to a plot

● ●

● ●

●

●
● ● ●

● ●
● ● ● ●

● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ●●● ●
●● ● ●● ●●

2 5 10 20 50 100

5
10

15
25

dist

sp
ee

d

Adding to a plot

● ●

● ●

●

●
● ● ●

● ●
● ● ● ●

● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ●●● ●
●● ● ●● ●●

2 5 10 20 50 100

5
10

15
25

dist

sp
ee

d

lowess
supersmoother

Notes

• lines adds lines to an existing plot (points() adds points).

• lowess() and supsmu() are scatterplot smoothers. They draw

smooth curves that fit the relationship between y and x

locally.

• log="xy" asks for both axes to be logarithm (log="x" would

just be the x-axis)

• legend() adds a legend

Scatterplot smoothing

Most scatterplots benefit from a indication of trend or spread.

• robust trend smoothers: lowess, median (R quantreg)

• mean trend smoothers: non-iterated lowess, kernel regres-

sion, splines, supersmoother

• conditional distribution: multiple quantile smoothers (eg

10%, 25%, 50%, 75%, 90%: R quantreg)

Remember that robust smoothers don’t estimate the mean: eg

smoothing squared residuals to get variance.

Scatterplot smoothing

Example: quantile smoothing with quantreg. School test results

are lower for schools with lots of ’English language learners’—

does this apply across the distribution or only at the mean?

library(quantreg)
library(splines)
data(api, package="survey")
plot(api00~ell, data=apipop)
xx<-apipop$ell
oo<-order(xx)
a<-rq(api00~ns(ell,4),data=apipop,tau=0.25)
yy<-fitted(a)
lines(xx[oo],yy[oo],col="red",lwd=2)
a<-rq(api00~ns(ell,4),data=apipop,tau=0.5)
yy<-fitted(a)
lines(xx[oo],yy[oo],col="red",lwd=2)
a<-rq(api00~ns(ell,4),data=apipop,tau=0.75)
yy<-fitted(a)
lines(xx[oo],yy[oo],col="red",lwd=2)

Scatterplot smoothing

0 20 40 60 80

40
0

50
0

60
0

70
0

80
0

90
0

ell

ap
i0
0

Forest plots

The following are relative risks of bacterial colonisation from

randomized trials of venous catheters with antimicrobial coating.

RR p
Ciresi 0.951 0.890

George 0.265 0.241
Hannan 0.630 0.408

Heard 0.866 0.810
Maki 0.208 0.043

Ramsay 0.237 0.197
Trazzera 0.644 0.503

Collins 0.355 0.350
Bach(b) 0.000 —

Tennenberg 0.588 0.330
Pemberton 0.833 0.836

Logghe 1.147 0.692

Forest plots

library(rmeta)

library(xtable)

data(catheter)

a <- meta.MH(n.trt, n.ctrl, inf.trt, inf.ctrl, data=catheter,

names=Name, subset=c(1,2,3,4,6,8,10:15),

statistic="RR")

output<-data.frame(RR=exp(a$logRR),

p=2*pnorm(abs(a$logRR/a$selogRR), lower.tail=FALSE))

row.names(output)<-a$names

xtable(output,digits=3)

Example: meta-analysis

A statistician would prefer this version:

RR (lower 95% upper)
Ciresi 0.95 0.47 1.94

George 0.27 0.03 2.44
Hannan 0.63 0.21 1.88

Heard 0.87 0.27 2.78
Maki 0.21 0.05 0.95

Ramsay 0.24 0.03 2.11
Trazzera 0.64 0.18 2.33

Collins 0.35 0.04 3.12
Bach(b) 0.00 0.00 —

Tennenberg 0.59 0.20 1.71
Pemberton 0.83 0.15 4.69

Logghe 1.15 0.58 2.26

In R: xtable(summary(a)$stats)

Example: meta-analysis

Several articles on this topic described the existing literature as

inconsistent and as not showing strong support for the use of

coated catheters.

The p-value table is almost useless for examining consistency,

the confidence interval table is better but not ideal

A graph would help

Worst ever graph?

This is a graph design I saw at the American Heart Association

conference on the epidemiology and prevention of heart disease.

It was a display of confidence intervals as for a meta-analysis,

but using a bar plot.

It’s not easy to reproduce the bad color schemes and shading in

R, but the basic design is straightforward.

par(las=1, mar=c(5.1,8.1,2.1,2.1))

barplot(t(summary(a)$stats[,c(2,1,3)]),horiz=TRUE)

Why is this a bad graph?

Worst ever graph?

Ciresi

George

Hannan

Heard

Maki

Ramsay

Trazzera

Collins

Bach(b)

Tennenberg

Pemberton

Logghe

0 1 2 3 4 5

Better graph: forest plot

Show confidence interval and point estimate

Emphasize point estimate, by shading.

Increase visual weight of large trials relative to small trials, by

increasing size of point estimate glyph

Conclusion is clear: the trials consistently show a substantial

effect of treatment.

In R: plot(a)

or

metaplot(a$logRR,a$selogRR,nn=a$selogRR^-2,labels=a$names,

xlab="Relative Risk",summn=a$logMH,sumse=a$selogMH,

logeffect=TRUE,sumnn=a$selogMH^-2)

Meta-analysis

Relative Risk

S
tu

dy
 R

ef
er

en
ce

0.03 0.10 0.32 1.00 3.16

Ciresi
George
Hannan
Heard
Maki
Ramsay
Trazzera
Collins
Bach(b)
Tennenberg
Pemberton
Logghe

Summary

Preattentive perception

Some visual differences ’pop out’ with no conscious effort —

processed ’preattentively’

Preattentive perception allows groups of points to be seen as

groups, rather than identified one-by-one, so patterns are visible.

Color, size, basic shape, angle, shading are preattentive. Letters

and numbers are not.

Not possible to have many preattentively distinct groups even if

they are pairwise distinct, even by combining dimensions. More

than 4 groups is pushing it.

[demo of preattentive perception]

Color

Human color vision is three-dimensional: light–dark, red–green,

blue–yellow.

The red–green dimension is weak or absent in about 7% of men.

The blue–yellow dimension has lower spatial resolution, and

reproduces less accurately across media.

Some visual processing only works with light–dark differences.

Color choice

Avoid graphs that are unreadable or misleading to dichromats.

(R dichromat package)

’Smooth’ color shadings should be smooth in a metric relevant to

perception, not RGB or CMYK (R colorspace, colorbrewer.org)

Sequential (low→high) or diverging (− ← 0→+) shadings should

have luminance, chroma components, not just hue.

colorbrewer.org

Mt Eden: RGB palette

filled.contour(volcano, col=terrain.colors)

Mt Eden: LUV palette

filled.contour(volcano, col=terrain_hcl)

’Manhattan’ plots

stripe<-function(p,chromosome,main=""){
chromcode <- c(1:22,"X","Y","XY")

logp <- -log(p,10)

N<-length(logp)
ymax<-log(N,10)+4

chromstart<-which(c(1,diff(chromosome))==1)
chromend<-c(chromstart[-1],N)

x<-(1:N)+chromosome*(chromend[1]/6)
y<-pmin(ymax,logp)
plot(x,y,cex=0.3+2*y/ymax, col=chromosome, pch=ifelse(y==ymax,24,19),

bg=chromosome, xlab="Chromosome",ylab=quote(log[10](p)),
xaxt="n",ylim=c(0,ymax),main=main)

centers<- (x[chromstart]+x[chromend]-(chromend[1]/6))/2
centers[25]<-x[N]
axis(1,at=centers,label=chromcode)
}

’Manhattan’ plots

Which color?

Which blobs of color stand out?

Standard R palette

’Manhattan’ plots

Which color?

Which blobs of color stand out?

ColorBrewer Paired palette

Better color choices

Cindy Brewer (Penn State) developed a set of color palettes

for maps, and http://www.colorbrewer.org provides a tool for

choosing them. The color schemes are in the RColorBrewer

package.

The vcd package provides automated methods for constructing

smooth color ramps: sequential_hcl(), diverging_hcl(). These

give colors falling along straight lines in CIE Luv colorspace

(nearly the same as CIE Lab).

dichromat() suppresses red-green distinctions to show whether a

graph will be readable to people with red-green color blindness

or anomalous color vision (about 7% of men; two variants

’protanopia’, ’deuteranopia’)

http://www.colorbrewer.org

Better color choices

Image plots

image() plots colors to indicate values on a two-dimensional grid.

A red-green spectrum is often used to code the values (especially

in genomics). Use the dichromat package to compare red:green

and blue:yellow spectra.

par(mfrow=c(2,3))
x<-matrix(rnorm(10*10),10)
bluescale<-colorRampPalette(c("#FFFFCC","#C7E9B4","#7FCDBB","#40B6C4",

"#2C7FB8" ,"#253494"))
redgreen<-colorRampPalette(c("red","green3"))

image(1:10,1:10,x, col=bluescale(10),
main="blue-yellow scale")
image(1:10,1:10,x, col=dichromat(bluescale(10)), main="deutan")
image(1:10,1:10,x,col=dichromat(bluescale(10),"protan"), main="protan")

image(1:10,1:10,x, col=redgreen(10),
main="red-green scale")
image(1:10,1:10,x, col=dichromat(redgreen(10)), main="deutan")
image(1:10,1:10,x, col=dichromat(redgreen(10),"protan"), main="protan")

Image plots

2 4 6 8 10

2
4

6
8

10
blue−yellow scale

1:10

2 4 6 8 10
2

4
6

8
10

deutan

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

protan

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

red−green scale

2 4 6 8 10

2
4

6
8

10

deutan

1:
10

2 4 6 8 10

2
4

6
8

10

protan

1:
10

Image plots

The bluescale() color scale is taken from ColorBrewer.

The ’colorspace’ package also provides color scales using perceptually-

based color spaces

Functions: diverge_hcl and sequential_hcl

The default diverge_hcl is a red-white-blue color scale

Image plots

2 4 6 8 10

2
4

6
8

10

red-green scale

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

deutan

1:10
1:
10

2 4 6 8 10

2
4

6
8

10

protan

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

Conditioning plots

Cleveland’s Trellis graphics: a systematic model for conditioning

plots, in R lattice package.

• Slicing: visualizing a 3 or 4 dimensional data cloud in slices

• Regression adjustment: relationship between y and x holding

z constant

coplot() does scatterplots, the lattice package does everything.

coplot(Ozone~Solar.R|Wind*Temp, data=airquality)

Example: adjustment

●
●

●
●

●●

●
●

●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●● ● ●

●

●
●

● ●

●

●
●

●
● ●

●

●

●
●

●

●● ●

0 50 100 150 200 250 300

0
50

10
0

15
0

New York, Summer 1979

Solar Radiation (langley)

O
zo

ne
 (

pp
b)

Example: adjustment

●●
●

●

● ● ●
●

0
50

15
0

●●
●● ●●

●●

●
● ●● ● ●

●
●●

●

●
●

0 100 250

● ●●● ●● ●
●●

●
●●

●
●● ●● ● ●
● ●●

●
●

●
●

● ● ●●
● ●● ●

●

●

●
●

●
●

●

● ●●
● ●

● ● ●●● ● ●

0 100 250

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

● ●

●●

● ●

●

●
●

●

●

●
● ● ●●●

●

●●

●
●

●●

●●● ●
● ●●

●
●

● ● ●

●

●
●

● ●
●

●●

●
●

●
●●

●

●
● ● ● 0

50
15

0

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

0
50

15
0

●●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
● ●

●
● ●●

●
●

●

● ●
●

●

●

●
●

●●

●●
●

●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●●
●

●

●

0 100 250

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
● ●

●
●

● ●●

●
●

●

● ●

●

●
●

●

●

0 100 250

●

●

●●
●

●
●

●

●
●●

●

0
50

15
0

Solar.R

O
zo

ne

5 10 15 20

Given : Wind

60
70

80
90

G
iv

en
 :

Te
m

p

Aggregation and binning

Simple scatterplots don’t work for large data sets: overplotting

• Transparent color: points are partially transparent. Works

well on screen. Specify colors by ”#RRGGBBAA” hexadec-

imal, or use rgb() to construct them

• Density estimation

• Hexagonal binning (Dan Carr; hexbin package): aggregate

into hexagonal bins. Works well on paper.

Blood pressure by age and gender

Useful function

fade<-function(colors, alpha){

rgbcols <- col2rgb(colors)

rgb(rgbcols[1,], rgbcols[2,], rgbcols[3,], alpha, max=255)

}

eg fade("tomato",128) to get a 50% transparent orange-red

Overlapping and transparency

quartz(height=3,width=5)
par(mar=c(3,2,1,1))
x<-seq(-4,5,length=200)
d1<-dnorm(x)
d2<-dnorm(x,m=0.5)

plot(x,d1,type="n",ylim=c(0,0.5),bty="n",yaxt="n",ylab="")
polygon(c(5,-4,x),y=c(0,0,d2),col=fade("royalblue"),border=NA)
polygon(c(5,-4,x),y=c(0,0,d1),col=fade("orange",150),border=NA)
abline(v=1.96,lty=2)
text(4,0.3,adj=1,"15%",col="royalblue")
text(4,0.25,adj=1," 5%",col="orange")

Overlapping and transparency

-4 -2 0 2 4

15%
 5%

Hexagonal binning

We don’t really care about the exact location of every single

point.

• How many points in one ‘vicinity’ compared to others?

• Any ‘outliers’ far from all other data points?

In one dimension, histograms answer these questions by binning

the data

Hexagonal binning

Binning in two dimensions;

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

Hexagonal binning

Binning in two dimensions;

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

Hexagonal binning

Binning in two dimensions;

● ●

●

●

● ●

●

Hexagonal binning

Binning in two dimensions;

● ●

●

●

● ●

●

Example: California schools

library(hexbin)

data(api, package="survey")

plot(api00~api99,data=apipop) # plain plot

with(apipop, plot(hexbin(api99,api00), style="centroids"))

hexbinplot(api99~api00|equal.count(emer,4),

style="centroids",data=apipop,xbins=20,colorkey=FALSE)

Example: California schools

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●
●●

●
●●

●●

●

●●
●●
● ●●

●

●●
●●●

●

●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
● ●
●

●
●

●

●

●

●

●

●

●

●●
● ●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
● ●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●●

●
● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ●●

●

●

● ● ●

● ●

●●

●

●
●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●●
●

●

●
●

● ●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●
●●
●

●

●●
●

●●

●●●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●
●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●● ●●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●●
●
●
●

●
●

●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●●
●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●● ●

●

●

●●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●
●

●●

● ●
●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●●●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●
●●
●●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●

●
●●

●

●
●

●●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●
●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

● ●

●

●

●●●

●

●

●

●●●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

api99

ap
i0

0

Example: California schools

300 400 500 600 700 800 900

400

500

600

700

800

900

api99

ap
i0
0

1
7
12
18
23
29
34
40
46
51
57
62
68
73
79
84
90

Counts

Example: California schools

api00

ap
i9
9

400

600

800

400 600 800

equal.count(emer, 4) equal.count(emer, 4)

equal.count(emer, 4)

400 600 800

400

600

800

equal.count(emer, 4)

Blood pressure by age

Diastolic pressure

S
ys

to
lic

 p
re

ss
ur

e

100

150

200

20 40 60 80 100120

AGE AGE

20 40 60 80 100120

AGE

AGE

20 40 60 80 100120

AGE

100

150

200

AGE

High dimensions

1986 Data Expo (sponsored by ASA Graphics and Computing

sections)

Data set was artificial data on ”pollen grain measurements”: 5

dimensions, 3848 points

> str(pollen)

’data.frame’: 3848 obs. of 6 variables:

$ ridge : num -2.35 -1.15 -2.52 5.75 8.75 ...

$ nub : num 3.63 1.48 -6.86 -6.51 -3.9 ...

$ crack : num 5.03 3.24 -2.8 -5.15 -1.38 ...

$ weight : num 10.872 -0.594 8.463 4.348 -14.878 ...

$ density: num -1.39 2.12 -3.41 -10.33 -2.42 ...

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

High dimensions

> coplot(ridge~nub|crack*weight,data=pollen,pch=19,

col="#00000010",n=4)

> coplot(ridge~nub|crack*weight,data=pollen,pch=19,

col="#00000001",n=4)

> hexbinplot(ridge~nub|equal.count(crack,6)*equal.count(weight,4),

data=pollen,strip=FALSE)

> plot(density~ridge, data=pollen,

subset=abs(crack<2) & abs(weight<2) & abs(nub<2) &

abs(ridge<2) & abs(density)<2)

High dimensions
-2
0

0
20

-15 -5 5 15 -15 -5 5 15

-2
0

0
20

-2
0

0
20

-15 -5 5 15 -15 -5 5 15

-2
0

0
20

nub

rid
ge

-30 -20 -10 0 10 20 30

Given : crack

-3
0

-2
0

-1
0

0
10

20
30

G
iv

en
 :

w
ei

gh
t

High dimensions
-2
0

0
10

20

-15 -5 0 5 15 -15 -5 0 5 15

-2
0

0
10

20

-2
0

0
10

20

-15 -5 0 5 15 -15 -5 0 5 15

-2
0

0
10

20
nub

rid
ge

Given : crack

G
iv

en
 :

w
ei

gh
t

High dimensions

nub

rid
ge

-20
-10
0
10
20

-10 10 -10 10 -10 10

-20
-10
0
10
20

-20
-10
0
10
20

-10 10 -10 10 -10 10

-20
-10
0
10
20 Counts

1
3
5
7
9
11
13
15
16
18
20
22
24
26
28
30
32

Eureka

-6 -4 -2 0 2

-2
-1

0
1

2

ridge

de
ns
ity

SVG+tooltips

SVG (Scalable Vector Graphics) is a non-bitmap graphics format

for the web.

The RSvgDevice (all platforms) and the svg() device (Linux,

Mac) allow SVG output.

RSVGTipsDevice and SVGAnnotation (Linux, Mac) help create

interactive plots.

We can use this to create graphs with links and tooltips. For

example, a funnelplot showing associations between a large

number of SNPs and VTE.

Point at a dot to see the SNP it represents, and click to go to

information about the gene.

SVG+tooltips

for(i in 1:length(or)) {
setSVGShapeToolTip(title=gene[i],

desc1=snp[i],
desc2=if(abs(lor[i]/se[i])>qnorm(0.5/n,lower.tail=FALSE))

qvals[i] else NULL
)

setSVGShapeURL(paste("http://pga.gs.washington.edu/data",
tolower(gene[i]),
sep="/")

)
points(prec[i],lor[i], cex=1, pch=19, col=’grey’)

}

Google Earth

Google Earth is controlled by KML files specifying locations.

KML is another plain text format.

We can write a KML file

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.1">
<Placemark>
<name> 1 </name>

<Point> <coordinates>-118.0256,34.11619,400</coordinates>
</Point>

</Placemark>
</kml>

and then send it to Google Earth with the shell.exec(filename)

function, which opens a file using whatever is the appropriate

program.

Google Earth

The identify() function lets the user select a point on a

scatterplot.

In this example the points are locations where air pollution was

measured, and we can call Google Earth to look at the location.

kml<-function(conn,lat,lon,name){
ss<-gsub(" ","",paste("<coordinates>",lat,",",lon,",400</coordinates>"))
cat("<?xml version=\"1.0\" encoding=\"UTF-8\"?>
<kml xmlns=\"http://earth.google.com/kml/2.1\">
<Placemark>

<name>",name,"</name>
<Point>",
ss,"
</Point>

</Placemark>
</kml>\n", file=conn)
}

Google Earth

ogle<-function(lat,lon,name){
ff<-paste(tempfile(),"kml",sep=".")
cc<-file(ff,"w")
kml(cc,lat,lon,name)
close(cc)

system(paste("open",ff))
}

mesa<-read.table("noxmonitors.dat",header=TRUE)
mesa<-na.omit(mesa)

with(mesa,plot(Dist_nearestmajor,air_nox_corr))
repeat({

a<-with(mesa,
identify(Dist_nearestmajor,air_nox_corr,n=1,labels=rownames(mesa)))

with(mesa, ogle(LONG[a],LAT[a],rownames(mesa)[a]))
})

A few useful books

General

Edward Tufte. The Visual Display of Quantitative Information

William S. Cleveland. Elements of Graphing Data

(and his other books)

Colin Ware Information Visualization

Unwin, Theus, Hoffman Visualizing a million

Leland Wilkinson Grammar of Graphics

R implementation

Paul Murrell. R Graphics.

Deepayan Sarkar: Lattice (Springer useR series)

Hadley Wickham. ggplot (Springer useR series)

Final notes

In addition to the tools in the standard R distribution, there are

many useful things in packages.

CRAN Task views help you find them

	Principles
	Basic graphics competencies
	Graphics
	Setup
	Finishing
	Drawing
	Formula interface
	Designing graphs
	Designing graphs
	Options
	
	
	
	
	
	Notes
	Adding to a plot
	Notes
	Scatterplot smoothing
	Forest plots
	Example: meta-analysis
	Worst ever graph?
	Better graph: forest plot
	Meta-analysis
	Preattentive perception
	Color
	Color choice
	Mt Eden: RGB palette
	Mt Eden: LUV palette
	'Manhattan' plots
	Better color choices
	Image plots
	Conditioning plots
	Example: adjustment
	Aggregation and binning
	Blood pressure by age and gender
	Useful function
	Overlapping and transparency
	Hexagonal binning
	Example: California schools
	Blood pressure by age
	High dimensions
	SVG+tooltips
	Google Earth
	A few useful books
	Final notes

