Speed comparisons (apply() family)

Generate a 500×500 matrix of random numbers and try to find the sums of each column, timing each method

1. Two nested loops, one over columns, one over rows within a column
2. One loop, using `sum()` for each column
3. `apply()`
4. matrix multiplication by a vector of 500 1s.

Look at the source code for `apply()`. Why isn’t it faster than a `for()` loop?

Speed comparisons (general optimisation)

You want to estimate the distribution of linear regression estimates when the error distribution is Cauchy rather than Normal. A dumb method is

```r
beta<-NULL
for(i in 1:5000){
  x<-1:50
  y<-NULL
  for(j in 1:50){
    y<-c(y,rcauchy(1)+x[i])
  }
  model<-lm(y~x)
  coefs<-coef(model)
  beta<-c(beta,coefs[2])
}
```

Investigate the improvements from vectorising the random number generation, using `lsfit()` instead of `lm()`, allocating space outside the loop, using `solve(cbind(1,x),y)` instead of `lsfit()` and anything else that occurs to you.

Graph labelling (substitute)

Suppose you want to plot the Gamma density function (`dgamma`) for a vector of shape parameters, and label eg the graph for shape= 1 as $\Gamma(1)$.

1
par(mfrow=c(2,2))
for (i in 1:4)
 curve(dgamma(x,shape=i),ylab=expression(Gamma(i)))

labels each curve with $\Gamma(i)$. Use substitute() to get the right label.

Simulation for power calculations *(loops, objects)*

An easy way to perform power calculations is simulation. Suppose you are testing a drug that reduces blood pressure. You have 50 people in each of treatment and control groups, and expect the systolic blood pressure to have a mean of 150mmHg and standard deviation of 15mmHg in the control group, and to have a mean of 140mmHg in the treatment group.

1. Assuming the distributions to be approximately Normal, simulate one set of data and perform a t-test using the `t.test` function.

2. Using the `names` function, look at the components of the object returned by `t.test`. The p-value is `t.test(x,y)$p.value`

3. Write a loop to generate data and perform a t-test 1000 times, storing the values in a vector `a`. What is the power of the study (the proportion of times the p-value is below 0.05)? Compare the results with those given by `power.t.test`.

4. Suppose in the treated group the standard deviation were increased to 20mmHg. The `power.t.test` function can’t handle this, so rewrite your simulation to compute the power.

5. Suppose that instead of having a 10mmHg difference and wanting to find the power you want to find what difference gives 80% power. This involves trying multiple simulations to find one that gives the right answer. Decisions involve whether to simulate new random numbers each time or just to add or subtract a constant from each one, and whether to program your own search routine or use `uniroot`.

More apply functions *(apply, data structures, user interface)*

- Write a version of `lapply` that works on a tree structure represented as a list. Initially you can assume that the ‘leaf’ nodes are identified by `is.atomic`, but this should ideally be specified by the user. Add an option to return the result as a tree or flattened into a vector.
• Write functions `reduce` and `accumulate` to accumulate a binary operator over a vector, so that `reduce(x,"+")` would give `sum(x)` and `accumulate(x,"+")` would give `cumsum(x)`. Note that a binary operator is just a function of two arguments.

• `sapply()` allows you to vectorise a function over one argument. Write a `mapply` function that takes a variable number of lists or vectors as arguments and applies a function to the first element of each, the second element of each, and so on. How would you pass other fixed arguments to this function?

Receiver Operating Characteristic curves

Given a continuous test variable T and a binary status variable D the receiver operating characteristic (ROC) curve summarises how well T predicts D. They first arose in radio engineering, but now are most used in medical diagnostics research. The ROC curve plots the true positive rate $P(T > c | D = 1)$ against the false positive rate $P(T > c | D = 0)$ for every possible threshold c. A perfect test has true positive rate 1 and false positive rate 0; a perfectly useless test has equal true and false positive rates.

1. For any given cutpoint the true and false positive rates can be computed

   ```r
   ptrue<-mean(T[D==1]>c)
   pfalse<-mean(T[D==0]>c))
   ```

2. It is only necessary to compute this for observed values of c (and $-\infty$). Write a `for()` loop to do it.

3. Rewrite the `for()` loop to use `sapply()`. Is it faster? Easier to understand?

4. Write a function to draw the ROC curve from vectors D and T.

5. A way to speed up the calculation is to find a different algorithm. You can rewrite $P(T > c | D == 1)$ as $P(T > c & D == 1)/P(D == 1)$. The denominator doesn’t depend on c. The numerator can be computed by ordering the data appropriately and using the `cumsum()` command, which produces cumulative sums of a vector.
6. The area under the ROC curve is a useful summary of the discriminatory power of \(T \). How would you compute it?

7. What if you only wanted the area under the portion of the curve with \(P(D = 0|T > c) \) less than, say, 0.05, because the test would never be operated at a higher false positive rate. Update your function to compute this partial area under the curve.

8. Make your function return a ROC object that has sensible `plot` and `print` methods and a `summary` method that computes partial area under the curve.

9. Use `package.skeleton()` to start producing an R package with these functions.

Data to test your code can be found in the “survival” package, `data(pbc)`.
Use bilirubin levels \((T<-pbc$bili) \) as the test value, and define the status as two-year survival: \((D<-pbc$status==1 & pbc$time<730) \).

Processing text (connections, memory) The output from `Rprof()` is a file where each line lists the call stack at one instant in time, so the lines are of variable length

1. If you knew the maximum line length you could use `scan` to read in the data. In fact there is a bound on the line length because R has a maximum depth of expressions, by default 500. On the other hand, you can tell if the maximum line length you specified has been used, by seeing if the last column is always empty, so you could use a small bound and reread if necessary. Which is more efficient?

2. The “Self %” column is the proportion of lines in which the given function appears first. How would you calculate it?

3. The “total %” column is the proportion of lines in which the given function appears at all. How would you calculate it?

4. The output from `Rprof()` can be very very long. Using a file connection you can read one line at a time, or some fixed number (say 1000) lines at a time. How does the processing need to be modified to handle this?
5. How would you count the number of times a given function called another given function? This could be used to approximate a call graph, as there is open-source software available to lay out and draw graphs given their nodes and edges. How about a call tree?

6. Some function names, such as `FUN` and `<Anonymous>` refer to different functions depending on where they are called from. How would you allow for this?

Clustered data regression *(model frames/formula, language)* In linear regression with clustered data the usual estimate for $\hat{\beta}$ works but the standard errors are wrong. A valid estimate of $\text{var}[\hat{\beta}]$ is

$$(X^TX)^{-1} (U^TU) (X^TX)^{-1}$$

where $U_i = \sum_t x_{it}(y_{it} - \mu_{it})$.

1. Suppose we have a function `mylm(formula,data)` The idiom for creating model matrices is

```r
m<-match.call()
m[[1]]<-as.name('model.frame')
m<-eval(m,parent.frame()) ## the model frame
X<-model.matrix(terms(formula),m)
Y<-model.response(m)
```

Write a function to compute $\hat{\beta}$ and $(X^TX)^{-1}$.

2. Now we can add a `cluster=` argument to the function. When constructing the model frame the cluster argument will automatically be added. We can extract it with

```r
group<-model.extract(m,'cluster')
```

and use the `rowsum()` function to compute the collapsed sums U. It is then easy to produce the correct model-robust variance matrix
3. *(tricky)* Suppose we wanted to put the cluster specification in the model formula, as, say, \(y \sim x + \text{id}\{\text{group}\} \).

It would be necessary to break this into two formulas \(y \sim x \) and \(\sim \text{id}\{\text{group}\} \). Look at what `terms(y \sim x + \text{id}\{\text{group}\}, \text{specials} = '\text{id}' \) does. The “specials” attribute identifies which part of the “variables” attribute is \(\text{id}\{\text{group}\} \). So we can identify the real variables and the clustering variable. One approach to constructing the formulas is seen in the code for `aov` in handling the `Error()` term: use `paste` to produce character strings and then `as.formula` to convert them back to formulas. Try doing this.