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Preserving the evolutionary potential of floras in

biodiversity hotspots
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Terry A. J. Hedderson? & Vincent Savolainen®

One of the biggest challenges for conservation biology is to pro-
vide conservation planners with ways to prioritize effort. Much
attention has been focused on biodiversity hotspots'. However, the
conservation of evolutionary process is now also acknowledged as
a priority in the face of global change’. Phylogenetic diversity (PD)
is a biodiversity index that measures the length of evolutionary
pathways that connect a given set of taxa>*. PD therefore identifies
sets of taxa that maximize the accumulation of ‘feature diversity’.
Recent studies, however, concluded that taxon richness is a good
surrogate for PD*~°. Here we show taxon richness to be decoupled
from PD, using a biome-wide phylogenetic analysis of the flora of
an undisputed biodiversity hotspot—the Cape of South Africa. We
demonstrate that this decoupling has real-world importance for
conservation planning. Finally, using a database of medicinal and
economic plant use'’, we demonstrate that PD protection is the
best strategy for preserving feature diversity in the Cape. We
should be able to use PD to identify those key regions that max-
imize future options, both for the continuing evolution of life on
Earth and for the benefit of society.

The Cape of South Africa is an area of less than 90,000 km?.
Botanically, it is one of the most species-rich areas of the world.
There are more than 9,000 plant species, of which about 70% are
endemic''. For decades it has been noted that a longitudinal gradient
in species richness exists across the Cape'”. The western part, with a
predominantly winter rainfall regime, has about twice the density of
plant species of the eastern region, which receives rainfall year-
round"”. Higher species richness in the western part has been attrib-
uted to variation in speciation and extinction rates as a consequence
of differences in historical ecological conditions'*. In the west, species
richness also varies with topography, with the more uniform low-
lands having fewer species than the rugged mountain landscapes'.
Similarly, there are higher numbers of endemic genera in the western
part of the Cape'.

We collected and compiled distribution data for the entire Cape
and created an inventory of species and genera per quarter-degree
square (QDS; the finest scale available). After extensive fieldwork
(2003-2005), we reconstructed the phylogeny of the Cape flora, on
the basis of plastid ribulose-1,5-bisphosphate carboxylase/oxygenase
large subunit (rbcL). We used an exemplar from 735 genera, each
indigenous to the Cape. Because of computing limitations imposed
by the size of the data matrix, phylogenetic relationships were

reconstructed using the parsimony ratchet'®. Molecular branch
lengths were optimized using maximum likelihood. Using non-
parametric rate smoothing'’, the branch lengths were then trans-
formed to units of absolute time for PD calculation. This is the largest
phylogenetic tree yet built for an entire flora.

We compared per-QDS species and genus richness with per-QDS
PD (calculated as the length of the subtree that joins the genera in
each QDS to the root of the tree®). As expected®”, we found these
diversity indices to be distributed in a similar manner (Fig. 1b, ¢;
linear regressions: PD versus species richness R* = 0.77, PD versus
genus richness R* = 0.96). These results initially indicated a limited
role for PD in conservation planning in this region®®'®. However, this
similarity in overall distribution hides key differences in the distri-
bution of these metrics. We found PD to scale with taxon richness,
but the scaling to be complex: some regions have more or less PD
than would be expected from their taxon richness. Using two tests (a
loess regression of per-QDS PD on genus richness, Fig. 1d; and com-
paring the observed PD in each QDS against an empirical randomi-
zation of PD, Fig. le) we found a distinctive east—west division in the
distribution of PD that broadly corresponds to the climatic zones
defined previously'’, with PD for a given number of taxa being higher
in the eastern region than in the western.

These results demonstrate that the flora (within QDS) of the west-
ern part of the Cape is phylogenetically clustered: it is made up of
relatively closely related genera, resulting from multiple radiations
over at least the last 25 million years'™'. This results in a higher
proportion of both shared and short branches, relative to the east,
and therefore a lower PD score for a given number of lineages. In
contrast, the flora (within QDS) of the eastern region is phylogen-
etically ‘over-dispersed’ relative to the western region: it contains
genera that are, on average, less closely related to one another.
These patterns result from fundamental evolutionary and palaeo-
climatic processes in the west***. Relative over-dispersion in the east
is likewise explicable: the eastern flora abuts another biodiversity
hotspot (Maputaland—Pondoland—Albany), is highly ecotonal, and
contains occasional exemplar genera from unusual ecotypes''.

We found that these conflicting patterns of taxon diversity and PD
invalidate the sole use of taxon richness for conservation actions.
Conservation planning is not just about total numbers, but also
about marginal gains. To mimic the critical decisions that conser-
vation planners face in the Cape, we set up a series of conservation
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scenarios based upon complementarity. In each scenario, an addi-
tional locality that maximizes gain in a biodiversity index is to be
included in an existing partial set of conservation areas. We initially
chose additions to partial sets based upon taxon richness, and exam-
ined the marginal gain in PD experienced. We then contrasted these
gains by choosing additions to partial sets based directly on PD. The
results show that gains in taxon richness and gains in PD are
decoupled (Fig. 2 and Supplementary Information). Typically, selec-
tion for conventional taxon complementarity misses localities that
would provide large gains in PD.

Why does it matter that PD is not well captured by conventional
taxon-based policies? We argue that maximizing PD is the best bet-
hedging strategy. By maximizing feature diversity we maximize
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option value: the possibility of having the right feature at hand in
an uncertain future. We use a practical example to illustrate this
point. We identified all genera in the Cape with species of medicinal
or economic importance'®. We divided these genera into three types
of use (food, medicine and other). Using a randomization test, we
found that each type of use is phylogenetically clumped (all P < 0.01)
and that different categories of use are clustered in different parts of
the phylogeny (Supplementary Information). So how should we have
designed a conservation strategy to preserve useful plants if this dis-
tribution were not known? Simply choosing samples of the largest
possible number of genera permits the selection of a set of genera that
are themselves phylogenetically clumped: such a set might include
many genera of one type of use but this must come at a cost to the

Figure 1| Taxon richness and phylogenetic diversity in the Cape. a, This
biodiversity hotspot, which includes the renowned Cape Peninsula, Cape of
Good Hope and Table Mountain (in the distance), dominated by fynbos
vegetation, is situated at the southern tip of Africa. Picture credit: A. Proust/
iAfrika. b—e, Maps of 201 QDS covering the entire Cape region. b, Genus
richness (ten quantile intervals from yellow to deep red). ¢, PD calculated
using NPRS absolute age estimates in million years (colour code as for

b). d, Residuals from a loess regression of PD (calculated using NPRS
absolute age estimates) on genus richness. QDS with negative residuals are
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indicated in blue, and those with positive residuals are shown in red (shading
increments of half a standard deviation). e, The spatial distribution of
unusual PD values, as assessed by comparing the observed PD in each QDS
with 10,000 PD values calculated by random selection of the same number of
genera from the Cape flora. Cells with significantly lower PD (P < 0.05, two-
tailed) than expected are shaded in blue. A similar pattern was found when
the tree was simplified to reflect the phylogeny-based taxonomy of the
Angiosperm Phylogeny Group® (Supplementary Information).
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other two types, because they are found in different parts of the
phylogeny. Choosing a selection of over-dispersed taxa based on
PD would have maximized the probability of having representatives
of each of the three classes of use. In fact, we found that a set of cells
chosen to maximize PD complementarity (blue line, Fig. 2) samples
all useful genera in 13 QDS, while a set chosen to maximize taxon
complimentarity (black line, Fig. 2) requires 15 QDS to do so,
although the majority of useful genera in both cases are sampled in
the first few QDS. In an uncertain future, where we are not yet sure of
the sort of plant features we will need, we argue that incorporating
gains in PD into conservation planning is the best strategy.

It is not just our own options, though, that we need to keep open.
We do not know the characteristics that species in the Cape will need
to adapt and diversify in a future of climatic change. We therefore
argue that maximizing PD will in turn maximize the options for
future diversification. The many radiations in the western part of
the Cape may well be a reason® to see the region as one of high
evolutionary potential. However, although it is possible, we see no
reason why future speciation regimes must be the same as those that
gave rise to the historical diversification in the western part of the
Cape. Throughout the history of angiosperms, diversification has
been a complex process in which the propensity to diversify was
highly labile and dependent upon many different traits at different
times*. Our recommendation would not be to reject recently diver-
sifying sites in the west as conservation targets, but to ensure that PD
is maximized by inclusion of suitable areas in the east into existing
conservation schemes. Balancing these two diversity indices is now at
least an algorithmic problem for which we have suitable tools”. We
also note that scale is important. For example, our phylogenetic tree
does not include lineages that are not found in the Cape, but we
have chosen the most biologically sound limits: a phytogeographic
delimitation®® that falls within a single country and can therefore be
managed under a single coordinated conservation response®. Any
conservation plan that operates at less than a global scale will always
be at risk of finding solutions that are optimal only within the region
being considered.
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Figure 2 | Complementarity analysis of PD and genus richness. A series of
conservation scenarios based on complementarity were set up with a simple
greedy algorithm: for each partial set defined along the x axis, we identified
the additional QDS that provided the highest possible genus-based
complementarity (black). We then calculated the PD complementarity that
would be provided by this same QDS (red), as well as the alternative
additional QDS that would provide the highest possible PD
complementarity (green). Whereas comparisons of diversity measures have
usually focused on richness, it is now apparent that decision-making
depends on marginal gains (complementarity values) and these must be the
basis for comparisons. Here we show that gains in genus richness are poor
predictors of gains in PD (contrast red and green lines). We also show the
independent series of QDS that provide the highest PD-based
complementarity (blue).
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We have shown that a simple correspondence between taxon rich-
ness and PD can hide a fundamental decoupling of biodiversity indi-
ces, with drastically different conservation outcomes if only one of
the indices is used. The Cape is one of the most well-studied hotspots,
so our findings clearly raise the possibility that similar decoupling
may be found in others. Further, we know from simulations’ that a
decoupling of PD and taxon richness is most likely when the under-
lying phylogeny is unbalanced and there is strong phylogeographic
structure; both these are epiphenomena of endemic radiations. We
conclude by suggesting that because biodiversity hotspots are defined
in part by their richness in endemics', they are precisely the areas in
which a decoupling of PD and taxon richness is most likely—as is
observed here.

METHODS

DNA sequencing and phylogeny reconstruction. We sampled one exemplar
species for 735 of the 943 genera of angiosperms currently recognized in the Cape
(~78%) and obtained sequence data for the plastid rbcL exon (ribulose-1,5-
bisphosphate carboxylase/oxygenase large subunit). Phylogenetic relationships
were reconstructed using the parsimony ratchet'® method with 15% of the char-
acters perturbed and 200 iterations; ten independent parsimony ratchet searches
were performed and the shortest trees resulting from these independent searches
were used to create a consensus tree. Clade support was assessed with 500 boot-
strap replicates. One of the most parsimonious trees from the parsimony ratchet
analysis was chosen as a best hypothesis of relationships for the Cape plant
genera. PD calculations were performed using branch lengths (maximum par-
simony and maximum likelihood) and age estimates (non-parametric rate
smoothing'’; relative time divergences were transformed into absolute ages using
twelve well-characterized fossils; see Supplementary Information).
Distribution of phylogenetic diversity. The distribution of genera within the
Cape was compiled as a binary matrix of absence/presence per quarter degree
square (QDS; approximately 25km X 27km) using data from the Pretoria
National Herbarium database (PRECIS). The spatial pattern of the relationship
between PD and taxon richness was revealed by plotting the residuals for a loess
regression of per-QDS PD on taxon richness. To locate QDS with significantly
higher or lower PD than expected from their taxon richness, the PD in each QDS
was compared with 10,000 PD values for sets of genera of the same size, sampled
without replacement (Supplementary Information).

Medicinal and economic species. A randomization procedure was used to assess
whether the distribution of medicinal and economic species is constrained by the
phylogeny or randomly distributed across lineages. To be considered of medi-
cinal and/or economic use, a given genus must have at least one species found in
the Cape that is recorded in the database of the Survey of Economic Plants for
Arid and Semi-Arid Lands (SEPASAL'; Supplementary Information).
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