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Changes in the Carbon Batance 
of Tropicat Forests: Evidence 

from Long-Term Plots 
Oliver L. Phillips,* Yadvinder Malhi,* Niro Higuchi, 

William F. Laurance, Percy V. Nuniez, Rodolfo M. Vasquez, 
Susan G. Laurance, Leandro V. Ferreira, Margaret Stern, 

Sandra Brown, John Grace 

The role of the world's forests as a "sink" for atmospheric carbon dioxide is the 
subject of active debate. Long-term monitoring of plots in mature humid 
tropical forests concentrated in South America revealed that biomass gain by 
tree growth exceeded losses from tree death in 38 of 50 Neotropical sites. These 
forest plots have accumulated 0.71 ton, plus or minus 0.34 ton, of carbon per 
hectare per year in recent decades. The data suggest that Neotropical forests 
may be a significant carbon sink, reducing the rate of increase in atmospheric 
carbon dioxide. 

Tropical forests contain as much as 40% of 
the C stored as terrestrial biomass (1) and 
account for 30 to 50% of terrestrial produc- 
tivity (2). Therefore, a small perturbation in 
this biome could result in a significant change 
in the global C cycle (3, 4). Recent microme- 
teorological research suggests that there is a 
net C sink in mature Amazonian forests (5, 
6), but the ability to draw firm conclusions is 
hampered by the limited spatial and temporal 
extent of these measurements. Another ap- 
proach, applying atmospheric transport mod- 
els to measured global distributions of CO2, 
02' and their isotopes (7), has yielded con- 
flicting results. We report a third approach to 
explore the role of mature tropical forests in 
the global C cycle, namely, the use of permna- 
nent sample plots (PSPs). PSPs, established 
by foresters and ecologists to monitor tree 
growth and mortality, have the potential to 
yield C accumulation estimates that are at 
once both geographically extensive and of 
high spatial and temporal resolution. 

We compiled data on basal area (cross- 
sectional area of trees per unit ground area) 
from mature tropical forest plots (8) that meet 
appropriate a priori criteria (9). Basal area of 
trees is a well-substantiated surrogate mea- 
sure of total biomass in tropical forests (10), 
so changes due to tree growth and mortality 
provide an effective measure of changes in 
biomass. We tested for changes in mature 
tropical forest biomass in each of four nested 
regions: the humid tropics (153 plots), the 
humid Neotropics (120 plots), the humid 
lowland Neotropics (108 plots), and Amazo- 
nia (97 plots) (11). These plots represent 
more than 600,000 individual tree measure- 
ments tropics-wide. 

We conducted two analyses with the in- 
formation available. For each region, we first 
calculated the mean rate of change in tree 
basal area across sites, based on the differ- 
ence between the initial and final census at 
each geographically distinct site (12). Sites 

may contain one or more floristically and 
edaphically similar plots (13). In the second 
analysis, we estimated basal area change as a 
function of calendar year and derived an es- 
timate of regional net accumulated biomass 
through time. Data for this approach were 
derived for each site by first computing dif- 
ferences between each successive census, 
then by linear interpolation between succes- 
sive censuses for years when measurements 
were not taken, and finally for each year by 
averaging change across all contributing 
plots. Measurement errors were corrected by 
comparing multiple measurements of the 
same tree over time (14). Basal area values 
were converted to aboveground biomass es- 
timates by using an allometric model devel- 
oped for lowland forest in central Amazonia 
and by using correction factors to account for 
the biomass of lianas and small trees (15). 

Biomass has increased in mature forest 
sites in the humid Neotropics (1.11 ? 0.54 t 
ha-' year'; mean + 95% confidence inter- 
vals), the humid lowland Neotropics (1.08 + 
0.59 t ha-' year'), and in Amazonia (0.97 + 
0.58 t ha-' year') (16). The entire pantropi- 
cal dataset also shows an increase in biomass 
(0.77 ? 0.44 t ha-' year'1), but the signal is 
dominated by the Neotropical pattern, and 
there has not been a significant change in 
Paleotropical sites (tropical Africa, Asia, 
Australia) (-0. 18 + 0.59 t ha-1 year') (17). 
In the Neotropics (tropical Central and South 
America), the mean value of biomass change 
has been positive for most years since wide- 
spread PSP monitoring began (18). In Ama- 
zonia, where most inventories are located, 
plots have on average gained biomass in most 
years since at least the late 1970s (Fig. 1). By 
1990, mature forest sites in all three nested 
Neotropical regions had on average accumu- 
lated substantial biomass (Fig. 2). 

These results show that (i) there is con- 
siderable spatial and temporal variability in 
rates of biomass change, yet (ii) on average, 
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plots have gained biomass, and (iii) the in- 
crease has been especially marked in lowland 
Neotropical sites. There has been no statisti- 
cally detectable change in biomass in African 
and Asian plots, but our coverage of these 
areas (18 sites) is sparser than in the Neotro- 
pics (50 sites), so we concentrate our discus- 
sion on the Neotropics. If the difference be- 
tween Neotropical and Paleotropical forests 
is genuine, it may reflect differing climatic 
factors or perhaps greater human disturbance 
in the more densely populated Paleotropics 
(19). 

Before extrapolating these results to the 
biomass of Neotropical forests as a whole, it 
is important to consider whether the PSPs 
were representative of the broader region. 
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Fig. 2. Cumulative aboveground net biomass change (tons per hectare per year) in humid forests 
in: (A) the Tropics since 1958; (B) the Paleotropics (tropical Africa, Asia, Australia) since 1958; (C) 
the Neotropics (tropical Central and South America) since 1967; (D) the lowland Neotropics since 
1971; (E) Amazonia since 1975. Annual mean (solid line) and 95% confidence interval (dotted line) 
values are based on the cumulative changes in individual sites since the first year and are scaled 
by a/b, where a =the cumulative time elapsed since the first year and b =the mean monitoring 
period per site up to each year end. 

Neotropical forests are heterogeneous (20), 
and our dataset spans much of the natural 
variation in Amazonian forests (21). The 
number of extra-Amazonian lowland and 
montane samples also corresponds to the ap- 
proximate coverage of each region (22). Re- 
cent debate (23) has centered on two potential 
problems in monitoring: (i) research activity 
having a negative impact on tree survivorship 
and growth and (ii) plots becoming increas- 
ingly subject to edge effects as surrounding 
forest is fragmented (24). These effects 
would increase mortality relative to growth, 
thus causing a decline in measured bio- 
mass the opposite of our result. A further 
possibility is that there could be a bias in the 
PSPs compared to the surrounding forest, by 

systematic avoidance or underreporting of 
forests that underwent natural catastrophic 
disturbances or smaller scale disturbance due 
to localized tree death. Although it is difficult 
to quantify such a bias, there is little evidence 
for it in our dataset (25), and the increase in 
biomass is larger than can be accounted for 
simply by the dynamics of a few large trees 
(26). 

Our results are therefore indicative of a 
widespread increase in the biomass of surviv- 
ing Neotropical forests over recent decades. 
There are a number of mechanisms that may 
explain this change: (i) a response to conti- 
nental-scale cyclical climate change; (ii) re- 
covery from widespread disturbance, either 
natural or anthropogenic; (iii) enhanced for- 
est productivity due to a secular change in 
climate or increased nutrient availability. 

Because Earth's climate fluctuates, for- 
est stocks of C might be responding to past 
climatic events. The El Nifio-Southern Os- 
cillation (ENSO) may be one long-term 
driver of cyclical changes in forest dynam- 
ics (27). In El Nifno years, most of Amazo- 
nia receives below-normal rainfall (28), but 
our data show that Amazon forests gained 
biomass before, during, and after the in- 
tense 1982-83 ENSO (Fig. 1). It is possible 
that regional forest biomass is recovering 
from earlier greater disturbances, either 
from drought or from the impacts of indig- 
enous peoples who have experienced steep 
population declines since the 16th century 
(29). The biomass increase could also be a 
response to recent anthropogenic global 
change. There is some evidence for an in- 
crease in temperate and tropical forest pro- 
ductivity (30), and even mature ecosystems 
may gain biomass if plant productivity is 
stimulated (4). Candidate factors for nutri- 
ent fertilization include increasing atmo- 
spheric CO2 (31) and increased N and P 
deposition from Saharan dust (32) and bio- 
mass burning (33). 

To estimate regional C sequestration 
rates, we first converted aboveground bio- 
mass into C stocks, using allometric data 
obtained in central Amazonia (34). The in- 
crease in biomass on Amazonian plots is 
equivalent to a net uptake of 0.62 ? 0.37 t C 
ha-' year1. Multiplying this by the estimated 
area of humid forest in lowland Amazonia 
(22) produces a mature forest biomass C sink 
of 0.44 ? 0.26 Gt C year'. Similarly, the 
estimated annual C sink in lowland Neotro- 
pical humid forest is 0.52 ? 0.28 Gt C; it is 
0.62 ? 0.30 Gt C for all mature humid neo- 
tropical forests. Our method suggests a lower 
C uptake rate than estimates from eddy co- 
variance studies in Rond6nia (1.0 t ha-' year') 
(2) and near Manaus (5.9 t ha-' year-') (6). The 
discrepancy may reflect the limited spatial and 
temporal extent of eddy covariance measure- 
ments, or else be indicative of significant in- 
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creases in the necromass and soil pools (35), 
which are not accounted for in our analysis. 

Our results suggest that mature Neotropi- 
cal forest biomass may account for '40% of 
the so-called "missing" terrestrial C sink 
(36). Hence, intact forests may be helping to 
buffer the rate of increase in atmospheric 
CO2, thereby reducing the impacts of global 
climate change. However, the C sink in ma- 
ture forests appears vulnerable to several fac- 
tors. There is likely to be an upper limit to the 
biomass a forest stand can hold. Moreover, 
deforestation, logging (37), increased frag- 
mentation and edge-effect mortality (23, 24), 
regional drying and warmning (38), and pos- 
sible intensification of El Ninio phenomena 
(39) may limit and even reverse the sink 
provided by mature forest. A dedicated large 
network of permnanent biomass plots could 
provide vital insight into the future role of 
tropical forests in the global C cycle. 
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A Large Terrestrial Carbon Sink 
in North America Implied by 

Atmospheric and Oceanic Carbon 
Dioxide Data and Models 

S. Fan, M. Gloor, J. Mahiman, S. Pacala, J. Sarmiento, 
T. Takahashi, P. Tans 

Atmospheric carbon dioxide increased at a rate of 2.8 petagrams of carbon per 
year (Pg C year-1) during 1988 to 1992 (1 Pg = 1015 grams). Given estimates 
of fossil carbon dioxide emissions, and net oceanic uptake, this implies a global 
terrestrial uptake of 1.0 to 2.2 Pg C year-1. The spatial distribution of the 
terrestrial carbon dioxide uptake is estimated by means of the observed spatial 
patterns of the greatly increased atmospheric carbon dioxide data set available 
from 1988 onward, together with two atmospheric transport models, two 
estimates of the sea-air flux, and an estimate of the spatial distribution of fossil 
carbon dioxide emissions. North America is the best constrained continent, with 
a mean uptake of 1.7 + 0.5 Pg C year', mostly south of 51 degrees north. 
Eurasia-North Africa is relatively weakly constrained, with a mean uptake of 
0.1 ? 0.6 Pg C year- . The rest of the world's land surface is poorly constrained, 
with a mean source of 0.2 ? 0.9 Pg C year'. 

A number of carbon cycle studies conducted 
in the last decade have indicated that the 
oceans and terrestrial ecosystems in the 
Northern Hemisphere absorb atmosplheric 
CO9 at a rate of about 3 Pg C year' (1-3). 
Atmospheric CO, concentrations in the 
Northem Hemisphere are about 3 parts per 
million (ppm, mole fraction in dry air) greater 
than those in the Southem Hemisphere. Fos- 
sil CO, is released predominantly at northern 
latitudes (Table 1), which should result in a 
north-to-south decrease of 4 to 5 ppm in the 
concentration of atmospheric CO, (4). A 
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Northern Hemisphere sink is implied because 
the observed gradient is smaller than this. The 
original studies disagreed on whether the sink 
was predominantly oceanic (1) or terrestrial 
(2). Recent studies with atmospheric '3C/12C 
ratios (5) and oxygen concentrations (6) con- 
cluded that the sink is caused primarily by 
terrestrial biosphere uptake. Other studies 
demonstrated increased activity of sufficient 
magnittude by the terrestrial biosphere in 
northern latitudes: a longer growing season 
observed in satellite measurements of surface 
color (7) and an increase over time of the 
amplitude of the annual cycle of atmospheric 
CO, concentrations caused by teirestrial veg- 
etation (8). 

The partitioning of the Northern Hemi- 
sphere terrestrial CO, sources and sinks be- 
tween Eurasia and North America may be 
estimated by using the west-to-east gradient 
of atmospheric CO9 across the continents. 
The west-east signal is much smaller and 
more difficult to detect than the north-south 
signal for two reasons. First, the CO, distri- 
bution is smoothed more by the relatively 
rapid zonal atmospheric transport than by the 
slower meridional transport (weeks instead of 
1 year for interhemispheric exchange). Sec- 
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