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Abstract

Single photon emission computed tomography (SPECT) is a diagnostic functional imag-

ing modality wherein the distribution of a radioactive tracer inside the body is estimated

based on data acquired from around the patient by a slowly rotating camera. Conventional

SPECT image reconstruction assumes that this distribution remains constant during acqui-

sition. In this thesis we investigate imaging of a time-varying distribution of radiotracer,

which results in a highly underdetermined reconstruction problem. Recovery of an accurate

dynamic image from this data requires the use of additional constraints, including temporal

regularization. This work builds on the dSPECT approach of Farncombe et al., which uses

simple inequality constraints to restrict the temporal behaviour of the reconstructed image.

We first investigate the use of a stronger temporal constraint than the one used in

dSPECT, to improve the quality of reconstructed images. Since dynamic tracer behaviour

in the human body arises as a result of continuous physiological processes, changes in tracer

concentration should follow a smooth time activity curve (TAC). We propose a modifica-

tion to dSPECT, denoted d2EM, which promotes smoothness by constraining the concavity

of the TAC in every voxel of the reconstructed image. Digitalphantom simulations com-

paring the performance of d2EM versus the original dSPECT algorithm show that d2EM

provides more accurate images, with smoother, more consistent TACs within dynamic re-

gions of interest. The d2EM method is especially successful in simulations featuring high

levels of noise and relatively gradual tracer kinetics.

We then examine artifacts in dynamic images reconstructed from single slow-rotation

data, which occur due to the fact that only a small number of views of the object are

acquired by the camera at any one time. Particular emphasis is placed on image artifacts

caused by the effects of attenuation on the projection data,which can be severe. Using real-

istic 3D phantom simulations, as well as real-life dynamic renal SPECT data, we investigate
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ABSTRACT iv

methods to correct for these artifacts. The correction methods are shown to substantially

improve the accuracy of reconstructed TACs in the presence ofattenuation.



Acknowledgments

As I look back on my six years of study as a graduate student at SFU, I realize just how

many people have played a role in my growth as a student, researcher and a person. My

supervisors Dr. Anna Celler and Dr. Manfred Trummer have bothbeen great sources of

support and mentorship to me throughout both my M.Sc. and Ph.D. studies. They have

given me a tremendous amount of freedom to pursue my own research interests while

also keeping me on track, and helping me to navigate the occasionally perplexing and

intimidating path toward scholarship. I owe both of them a great debt and hope that I can

do them proud in my future research endeavours. I would also like to thank Dr. Steve

Ruuth, Dr. Paul Tupper and Dr. Grant Gullberg for taking part in my Ph.D. defence and

providing me with useful feedback and advice.

I owe thanks to several people with respect to the research presented in this thesis. The

original dEM reconstruction code was provided to me by Dr. Troy Farncombe, which gave

me a great head start in investigating dynamic imaging. Ahmed Saad provided me with the

probabilistic segmentation program used in Chapter 5, and spent a non-trivial amount of

time helping me with its use, for which I am very appreciative. The personnel at St. Paul’s

Hospital in Vancouver were very helpful with the acquisition of the dynamic renal data

used in Chapter 5, with particular thanks being owed to Dr. Rajpaul Attariwala, Nazma

Tarmohamed and Dr. George Sexsmith. I am also indebted to theNatural Sciences and

Engineering Research Council of Canada, who have supported me through both my M.Sc.

and Ph.D. work.

Part of what has made my time as a grad student enjoyable is working in the company

of many bright and motivated people. At the Medical Imaging Research Group at Vancou-

ver General Hospital I have been privileged to spend time andshare many tasty lunches

with Dr. Celler, Dr. Sergey Shcherbinin, Dr. Andriy Andreyev, Tyler Hughes and Josh

v



ACKNOWLEDGMENTS vi

Grimes. I’ve also enjoyed sharing the ups and downs of being agrad student with fellow

math department members at SFU like Todd Keeler, Bryan Quaife, Chiaka Drakes, Radina

Droumeva and Sudeshna Ghosh.

Finally, I have to thank my parents Dick and Margie for their unconditional support and

love throughout my studies, as well as my brother Ian and sister Tessa. I am truly blessed

to have such a great family!

Thomas Humphries

July 31, 2011



Contents

Approval ii

Abstract iii

Acknowledgments v

Contents vii

List of Tables ix

List of Figures xi

Preface xiii

1 Nuclear medicine and dynamic SPECT 1

1.1 Fundamentals of SPECT imaging . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The SPECT imaging process . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 SPECT system modeling . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 SPECT image reconstruction . . . . . . . . . . . . . . . . . . . . . 9

1.2 Dynamic SPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Fast-rotation approaches . . . . . . . . . . . . . . . . . . . . . . .17

1.2.2 Slow-rotation approaches . . . . . . . . . . . . . . . . . . . . . . .20

2 Concavity-constrained dSPECT reconstruction 27

2.1 Implementation of dEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Design of d2EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



CONTENTS viii

2.3 Implementation of d2EM . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Tensor construction . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Transition rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Experimental validation of d2EM 41

3.1 Phantom construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

3.2 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Experiment 1: fixed and non-fixed difference tensors . . . .. . . . . . . . 48

3.4 Experiment 2: comparison of transition schemes . . . . . . .. . . . . . . . 52

3.5 Experiment 3: effect of noise . . . . . . . . . . . . . . . . . . . . . . .. . 55

3.6 Experiment 4: d2EM versus OSEM . . . . . . . . . . . . . . . . . . . . . 63

4 Artifacts in slow-rotation dynamic SPECT 69

4.1 Artifacts due to fast kinetics . . . . . . . . . . . . . . . . . . . . . .. . . 70

4.2 Artifacts due to attenuation . . . . . . . . . . . . . . . . . . . . . . .. . . 71

4.3 Template-based correction . . . . . . . . . . . . . . . . . . . . . . . .. . 78

5 3D simulations and experiments 85

5.1 3D renal phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Phantom construction . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Experiment 1: Effect of acquisition . . . . . . . . . . . . . . .. . 90

5.1.3 Experiment 2: Application of template corrections . .. . . . . . . 96

5.2 Renal volunteer experiment . . . . . . . . . . . . . . . . . . . . . . . . .. 104

5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Effect on mean TAC . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.3 Effect on consistency of TACs . . . . . . . . . . . . . . . . . . . . 106

6 Conclusions and future work 112

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix A Full experimental results 116

Bibliography 127



List of Tables

3.1 Functions and parameters used to generate 2D phantom TACs. . . . . . . 44

3.2 Summary of 2D phantom results, dEM vs. d2EM . . . . . . . . . . . . . . 62

3.3 Summary of 2D phantom results, d2EM vs. OSEM . . . . . . . . . . . . . 68

5.1 Kinetic parameters used to generate 3D renal phantom TACs. . . . . . . . 89

5.2 Dynamic behaviour in the six renal phantom simulations .. . . . . . . . . 89

5.3 Relative error in mean TAC for different acquisitions, renal phantom sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Summary statistics for different acquisitions, renal phantom simulations . . 94

5.5 Average error values before and after application of corrections, renal phan-

tom simulations A–D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Effect of corrections on mean TACs, volunteer data . . . . . .. . . . . . . 107

5.7 Average error measures before and after application of corrections, volun-

teer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1 Error values after 80 iterations, 2D annulus phantom experiments . . . . . . 117

A.2 Error values after 80 iterations, 2D ball phantom experiments . . . . . . . . 118

A.3 Error values after 80 iterations of d2EM versus 6 iterations of frame-by-

frame OSEM with 8 subsets, 2D phantom experiments . . . . . . . . .. . 119

A.4 Relative mean TAC error before and after application of corrections, renal

phantoms A–D, true segmentation . . . . . . . . . . . . . . . . . . . . . . 120

A.5 Relative mean TAC error before and after application of corrections, renal

phantoms A–D, probabilistic segmentation . . . . . . . . . . . . . .. . . . 120

ix



LIST OF TABLES x

A.6 Relative weighted standard deviation values before and after application of

corrections, renal phantoms A–D, true segmentation . . . . . .. . . . . . . 121

A.7 Relative weighted standard deviation values before and after application of

corrections, renal phantoms A–D, probabilistic segmentation . . . . . . . . 121

A.8 Average relative shape error values before and after application of correc-

tions, renal phantoms A–D, true segmentation . . . . . . . . . . . .. . . . 122

A.9 Average relative shape error values before and after application of correc-

tions, renal phantoms A–D, probabilistic segmentation . . .. . . . . . . . 122

A.10 Relative mean TAC error before and after application of corrections, renal

phantoms E–F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.11 Relative weighted standard deviation values before andafter application of

corrections, renal phantoms E–F . . . . . . . . . . . . . . . . . . . . . . .124

A.12 Average relative shape error values before and after application of correc-

tions, renal phantoms E–F . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.13 Relative weighted standard deviation values before andafter application of

corrections, volunteer data . . . . . . . . . . . . . . . . . . . . . . . . . .126

A.14 Relative shape error values before and after application of corrections, vol-

unteer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Figures

1.1 Schematic of SPECT camera system . . . . . . . . . . . . . . . . . . . . .4

1.2 Effect of depth-dependent collimator resolution on projection data . . . . . 4

1.3 Acquisition of projection data . . . . . . . . . . . . . . . . . . . . .. . . 5

1.4 Effects of attenuation and scatter on projection data . .. . . . . . . . . . . 7

1.5 Parameterization of Radon transform in 2D . . . . . . . . . . . . .. . . . 8

1.6 Discretization of Radon transform into linear system . . .. . . . . . . . . 9

1.7 Static and dynamic system representations . . . . . . . . . . .. . . . . . . 22

1.8 Illustration of original dSPECT method for finding time-to-peak . . . . . . 26

2.1 General shapes of curves whose concavity changes at mostonce . . . . . . 32

2.2 Shifting of peak location during dEM iterations . . . . . . .. . . . . . . . 36

2.3 Shifting of inflection point during d2EM iterations . . . . . . . . . . . . . . 38

2.4 Full transition diagram (five-state model) between d2EM shape constraints . 39

2.5 Alternate transition diagram (two-state model) between d2EM shape con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Geometry of 2D annulus and ball phantoms . . . . . . . . . . . . . .. . . 42

3.2 Kinetic behaviours for 2D phantoms . . . . . . . . . . . . . . . . . .. . . 43

3.3 Sample projection data for 2D annulus and ball phantoms .. . . . . . . . . 45

3.4 Explanation of shape errorS . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Residual valuesr(n) – fixed vs. non-fixed tensor . . . . . . . . . . . . . . . 49

3.6 Total relative error valuesE(n) – fixed vs non-fixed tensor . . . . . . . . . . 50

3.7 Non-monotonic convergence for non-fixed difference tensor . . . . . . . . 51

3.8 Residuals and total relative errors for two transition schemes . . . . . . . . 53

xi



LIST OF FIGURES xii

3.9 Failure of five-state transition model to adjust to correct behaviour . . . . . 54

3.10 Effect of noise on convergence of total relative errorE(n) . . . . . . . . . . 56

3.11 Time frames of images reconstructed using dEM and d2EM . . . . . . . . . 58

3.12 Voxel-level TACs from images reconstructed using dEM and d2EM . . . . 59

3.13 Mean TACs from images reconstructed using dEM and d2EM . . . . . . . 60

3.14 Time frames of images reconstructed using d2EM and OSEM . . . . . . . . 65

3.15 Voxel-level TACs from images reconstructed using d2EM and OSEM . . . 66

3.16 Mean TACs from images reconstructed using d2EM and OSEM . . . . . . 67

4.1 Artifacts caused by insufficient angular sampling in static SPECT recon-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Artifacts caused by fast kinetics in dynamic SPECT reconstruction . . . . . 72

4.3 Effects of attenuation in static SPECT reconstruction . .. . . . . . . . . . 74

4.4 Effects of attenuation in dynamic SPECT reconstruction –dEM . . . . . . 76

4.5 Effects of attenuation in dynamic SPECT reconstruction –d2EM . . . . . . 77

4.6 Flow diagram of CF method . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Flow diagram of IE method . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Application of correction methods to 2D phantom simulation . . . . . . . . 83

5.1 Diagram showing renal anatomy . . . . . . . . . . . . . . . . . . . . . .. 86

5.2 Compartmental model used to generate TACs for the dynamic digital phantom 88

5.3 Discrepancies in TACs due to acquisition . . . . . . . . . . . . . .. . . . 93

5.4 Effects of attenuation versus spill-out on reconstructed TACs . . . . . . . . 95

5.5 Sample segmentations used for CF and IE corrections, renal phantom sim-

ulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Mean TACs after application of corrections, renal phantom simulations . . . 100

5.7 Voxel-level TACs after application of corrections, renal phantom simulations102

5.8 Illustration of segmentation process for volunteer experiment . . . . . . . . 105

5.9 Mean TACs before and after application of corrections, volunteer data . . . 108

5.10 Volume rendering of regions of interest used to assess consistency of TACs 109

5.11 Voxel-level TACs after application of corrections, volunteer data . . . . . . 110



Preface

Organization of thesis

This work is divided into six chapters and one appendix, which we now briefly describe.

1. Nuclear medicine and dynamic SPECT

The fundamental concepts of nuclear medicine, and SPECT imaging in particular, are dis-

cussed. The mathematical models and image reconstruction methods used in SPECT imag-

ing are presented, as well as a review of existing research ondynamic SPECT imaging. We

introduce the dSPECT approach, upon which the research presented in this thesis is built.

2. Concavity-constrained dSPECT reconstruction

The implementation of dSPECT as an expectation maximization-based algorithm (dEM) is

discussed in detail. We then present the design and implementation of a new algorithm, de-

noted d2EM, which extends the dEM approach by imposing a stronger temporal constraint.

This constraint restricts the concavity of the time activity curve (TAC) in every voxel of the

image.

3. Experimental validation of d2EM

The performance of d2EM is assessed against dEM in a series of simulations using 2D

digital phantoms. We assess the effects of object geometry,kinetic behaviour and noise

level on the performance of both algorithms, using several quantitative measures of error.

xiii
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Dynamic images produced using OSEM to reconstruct each frame of the image indepen-

dently (based on more complete projection data than used in the simulations with dEM and

d2EM) are also used as a basis of comparison.

4. Artifacts in slow-rotation dynamic SPECT

Artifacts which occur in dynamic images reconstructed fromdata acquired with a single

slow camera rotation are identified and discussed. Particular emphasis is placed on artifacts

resulting from the effects of attenuation on projection data, which can be severe. We show

that these artifacts occur despite the inclusion of attenuation modeling in the system matrix

used for image reconstruction. Two post-reconstruction approaches to correct for these

artifacts are then proposed.

5. 3D simulations and experiments

Digital phantom simulations of a dynamic renal SPECT study are performed to assess the

severity of artifacts caused by attenuation and other effects. We then investigate the effec-

tiveness of the methods proposed in Chapter 4 in correcting for these artifacts. Experiments

using two sets of real-life renal data acquired from healthyvolunteers are also performed

to further validate the approach.

6. Conclusions and future work

The findings of this work are summarized, and some avenues forfurther investigation are

suggested.

Appendix A: Full experimental results

Since a large number of digital phantom simulations were performed, the full results of

these experiments are included in an appendix at the end of the thesis. These results are

summarized or referenced in the body of the thesis.
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Notation

Mathematical symbols that are used extensively throughoutthe thesis are listed here for

reference.

i the index referring to a voxel in the discretized image.

j the index referring to a bin in the projection data.

k the index referring to a time frame of the dynamic image.

I the total number of voxels in the image.

J the total number of projection bins at every camera stop.

K the number of stops made by the camera. This is also the

number of time frames reconstructed in the dynamic image.

x the image vector of lengthI being reconstructed in the static case.

x′ the image vector of lengthIK being reconstructed in the dynamic case.

x̃ the vector of lengthIK over which the dEM algorithm optimizes.
˜̃x the vector of lengthIK over which the d2EM algorithm optimizes.

A theIK × IK difference tensor used in dEM.

B theIK × IK difference tensor used in d2EM.

C theJK × I system matrix used in static SPECT reconstruction.

C ′ theJK × IK system matrix used in slow-rotation dynamic SPECT

reconstruction.

p the projection data vector of lengthJK, which includes noise.

r(n) the residual, defined in (3.1).

E(n) the total relative error of an image, defined in (3.2).

ε the relative error of the mean TAC within a region of interest(ROI),

defined in (3.3).

σ̄ the weighted relative standard deviation between voxel TACswithin

an ROI, defined in (3.4).

S the average relative shape error between voxel TACs within an

ROI, defined in (3.5).



Chapter 1

Nuclear medicine and dynamic SPECT

Diagnostic medical imaging can be broadly divided into two categories: anatomical and

functional.Anatomicalimaging, which includes modalities such as computed tomography

(CT), magnetic resonance imaging (MRI) and ultrasound, provides information about the

spatial distribution of different tissues within the body.Conversely,functional imaging

aims to assess thein vivo physiology of tissues and organs, by measuring the distribution

of some imaging agent within the patient body. While it is possible to perform functional

imaging using CT or MRI [40, 46], the most common functional imaging methods are

nuclear medicine (NM) procedures.

In nuclear medicine imaging, a pharmaceutical agent labeled with a radioactive tracer is

introduced to the patient. This radiopharmaceutical is engineered so that it localizes within

an organ or tissue type of interest after a short period of time, after which its distribution can

be measured using an imaging system. The absolute or relative levels of tracer absorbed

within the targeted region give an indication of physiology.

NM includes modalities such as planar scintigraphy, positron emission tomography

(PET) and single photon emission computed tomography (SPECT). The focus of this work

is SPECT, and particularly the application of SPECT to assessing physiological processes

that are characterized by relatively rapid dynamic tracer behaviour. In this chapter we pro-

vide basic information needed to understand the work in later chapters, including a descrip-

tion of the SPECT imaging process, how SPECT acquisition is modeled, and mathematical

methods used to generate SPECT images. We also review existing literature specifically

addressing the problem of dynamic SPECT imaging.

1



CHAPTER 1. NUCLEAR MEDICINE AND DYNAMIC SPECT 2

1.1 Fundamentals of SPECT imaging

1.1.1 The SPECT imaging process

The first step in SPECT imaging is the administration of a radiopharmaceutical tracer to

the patient. The tracer includes both a biological component, which provides the means by

which it will accumulate in the organ or tissue of interest, and a radionuclide component,

which provides the means by which it will be detected.99mTc-sestamibi, for instance,

is a common radiopharmaceutical used for measuring blood perfusion in the myocardium

(heart muscle). It consists of the chemical compound methoxyisobutylisonitrile (MIBI)

labeled with technetium-99m, a radioactive isotope which emits gamma rays (photons)

and has a half-life of roughly six hours. The choice of radiopharmaceutical for a nuclear

medicine procedure depends on what aspect of physiology onewants to image, as well

as other considerations such as the half-life of the radionuclide and how easily it can be

produced.

The base SI unit of radioactivity is a becquerel (Bq), with oneBq corresponding to one

nuclear decay per second1. A typical SPECT procedure involves administering between

50-700 MBq of the tracer to the patient. Since nuclear decay isa Poisson process, the

direction of every photon emission is random, as well as the time interval between emis-

sions. The amount of tracer administered to the patient musttherefore be large enough so

that a statistically significant number ofcountscan be recorded during the imaging time,

while remaining as low as reasonably achievable2 so that the patient is not subjected to an

unnecessarily large dose of radiation. Typically, the doseof radiation administered during

a SPECT procedure is several times smaller than that administered during a diagnostic CT

scan.

The distribution of the tracer within the body is measured using a gamma camera. A

typical gamma camera consists of a bed on which the patient lies, and a rotating gantry con-

sisting of between one and three camera heads. Each head consists of a collimator, detector,

photomultiplier tube (PMT) array and electronic components, as illustrated in Figure 1.1.

The detector is typically a scintillator crystal such as sodium iodide, which produces a

flash of light when a photon interacts with it. The light is converted by the PMT array into

1The non-SI unit known as the curie (Ci) is sometimes used as well. One Ci =3.7 × 10
10 Bq.

2This principle is known as “ALARA” in the field of radiation protection.
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an amplified electrical signal. This signal is then recordedby the electronic components,

which determine the position on the detector surface at which the event occurred.

Detected events are usuallybinnedby their position into a discretized grid of pixels

overlaid on the detector surface. The camera electronics also measure the energy of the

incident photon. All photons originating from the radiotracer are emitted with a signature

energy, and only photons whose energies are close to the signature energy of the radiotracer

are recorded as events by the camera software. Some radioisotopes emit photons with one

of several signature energies.

A collimator is required because the detector crystal on itsown is not capable of de-

termining the direction from which an incident photon originated. Without any directional

information, it is impossible to reconstruct the spatial distribution of the tracer. The colli-

mator is a physical filter, usually made of lead, that sits on top of the detector and limits

theacceptance angleof incident photons. The most common type is a parallel hole colli-

mator, which consists of a honeycomb-like array of narrow hexagonal channels, separated

by thin septa. Since a photon must pass through one of these channels to reach the detector

surface, the collimator ensures in principle that each detected photon must have originated

from somewhere in the narrow field of view defined by the acceptance angle3. As a result

of collimation, only a small number of emitted photons (on the order of 1 in 10,000) are

detected by the camera system. Thus, the sensitivity of SPECT(ratio of photons detected

to photons emitted by the tracer) is quite low compared to PET, which does not require

mechanical collimation of this nature.

While the collimator would ideally ensure that any detected photons originate along

the line normal to the point of detection, in practice every collimator channel has a conical

field of view determined by the acceptance angle of the collimator. The acceptance angle is

determined by the ratio of channel length to channel width. Consequently, objects that are

farther away from the detector surface appear blurred compared to objects that are close

to it, as illustrated in Figure 1.2. This effect is referred to ascollimator blurring or depth-

dependent resolution. A collimator with a small acceptance angle reduces the effect of

blurring, but also reduces the sensitivity of the system.

3It is also possible for a photon originating from outside this field of view to pass through one or more

collimator septa and still be detected. This phenomenon, known asseptal penetration, is negligible in most

SPECT studies.
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Figure 1.1: Typical SPECT camera system construction, consisting of collimator, scin-

tillator crystal (detector), photomultiplier tube array and electronic components. Figure

reproduced from [76] with permission of the author.

Figure 1.2: Illustration of the effect of depth-dependent collimator resolution on projection

data. On the left, the idealized field of view (FOV) provided by the collimator (dark grey)

is shown versus the actual FOV determined by the angle of acceptance (light grey). On the

right, the effect of collimator blurring is shown in the profiles drawn under the detector. Two

identical sources are present, but the one farther from the detector appears blurred in the

projection data due to depth-dependent collimator resolution. Both figures are exaggerated

for the sake of clarity.
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Figure 1.3: Illustration of the acquisition of projection data around an object. Figure A: a

2D object containing activity (dark grey indicating greater concentration) is imaged from

several angles, giving a series of 1D projections. Figure B: asinogram consisting of 64

views acquired from 360◦ around the object in Figure A.

Over the course of acquisition, the camera gantry rotates around the patient in a “stop

and shoot” motion: it remains stationary for some period of time (typically 10-20 seconds)

while detecting emitted photons, then rotates by a small angle and stops again. In doing so,

the camera acquires a number of discrete views from around the patient, each of which can

be considered as a two-dimensional projection of the 3D distribution of tracer (activity) in

the patient. The projection data corresponding to a 2D sliceof the object being imaged can

be viewed as asinogram(Figure 1.3), which shows how the projections vary as a function

of the acquisition angle. At a minimum, projections acquired from a 180◦ arc around the

patient are needed to accurately reconstruct the distribution of activity, although a full 360◦

rotation is used in many applications. Using two or three camera heads improves camera

sensitivity and reduces the amount of time needed to acquiresufficient projection data.

As the photons emitted from the tracer pass through matter, they may interact with it

in one of several ways.Photoelectric absorptionoccurs when the photon interacts with an

atomically bound electron and is completely absorbed as a result. Scatteringoccurs when

the photon is deflected by some angle, changing its direction. The most prevalent type of

scattering in SPECT studies isincoherent(Compton) scattering, where the photon deflects
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off of an electron within the material, losing energy in the process4. Although the scattered

photon loses energy, it may still be recorded as an event if itpasses through the collimator,

due to the limited energy resolution of the detector.

The probability that a photon is absorbed or scattered depends on the quantity and den-

sity of the material through which it passes.Attenuation, which refers to photons that are

not detected as a result of photoelectric absorption or scattering, produces the appearance

of lower activity, especially in regions that are located deep within the body or surrounded

by dense tissue, such as bone. As a result, it degrades image accuracy if it is not taken

into account during image reconstruction. Photons which are detected by the camera af-

ter scattering also degrade image quality since they provide incorrect information about

the spatial distribution of the tracer (See Figure 1.4). To account for these effects, current

SPECT procedures usually involve the acquisition of anattenuation mapwhich quantifies

the probability (given by anattenuation coefficient) that photons will be attenuated when

passing through the tissue at any location in the body. The attenuation coefficient, denoted

µ, depends on the nature of the tissue as well as the energy of the incident photon. The

attenuation map is typically obtained from either a CT or transmission scan, which occurs

in tandem with the acquisition of SPECT projection data.

1.1.2 SPECT system modeling

The simplest system model for the SPECT acquisition process is that the number of counts

recorded at any location on the detector is proportional theintegral of the activity distribu-

tion along the line normal to that point. In 2D, this model canbe described by the Radon

transform [54]. Suppose the activity distribution is givenby a continuous functionf(y),

wherey = (y1, y2) gives the co-ordinates in space. Then, the Radon transformR[f ] is

parameterized by an angleφ and distancer:

R[f ](r, φ) =

∫

∞

−∞

f(rξ(φ) + τξ⊥(φ)) dτ (1.1)

≡ f̆(r, φ),

4A different effect known ascoherent(Rayleigh) scattering causes photons to be deflected without losing

energy, but occurs primarily when photons have lower energies than those emitted by most SPECT tracers.
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Figure 1.4: Effects of attenuation and scatter on projection data. A source (dark grey) is

surrounded by attenuating material (light grey). Photon A is absorbed; photon B is scattered

and not detected; photon C is scattered and detected, givingfalse positional information

(dashed line); photon D is detected normally.

whereξ = (cos φ, sin φ)T andξ⊥ = (− sin φ, cos φ)T . This parameterization is illustrated

in Figure 1.5. Holdingφ fixed gives the 1D projection off(y) along lines parallel toξ⊥.

Equation (1.1) describes a continuous functionf̆(r, φ) representing the projection of

the continuous activity distributionf(y) along any line through the object. In the context

of SPECT, however,̆f is only known for a discrete set ofr values (corresponding to bins

on the detector), andφ values (corresponding to the finite number of views taken by the

camera). Furthermore, the unknown activity distributionf(y) must be discretized (as a

pixelized image, for instance) in order to be computed and stored. This discrete Radon

transform can be represented as a linear system of equations:

Rx = p, (1.2)

wherex is the vector representing the discretized distribution ofactivity (the image),p is

the vector of discretized projection data (i.e., the countsin each detector bin at every angle),

andR is the system matrix. LetI be the total number of image pixels, andJK be the total

size of the projection data (the number of bins on the detector, J , times the number of views

acquired,K). Then,R is aJK × I matrix, with Rji representing the contribution of the

ith image pixel to thej th projection bin. A simple model is forRji to be given by the area

of the intersection between theith pixel and the ray normal to thej th bin, divided by the
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Figure 1.5: Parameterization of the Radon transform in 2D.f̆(r, φ) is obtained by integrat-

ing f(y) along the solid line perpendicular torξ.

total area of intersection between the ray and the object (Figure 1.6). The matrixR is quite

sparse, as each pixel contributes to only a small fraction ofthe total number of detector

bins. Since SPECT data is noisy as a result of the stochastic nature of photon decay, the

data vectorp should be viewed as a random variable, with each of thepj having a Poisson

distribution.

The Radon transform alone is not adequate to accurately modelthe SPECT acquisition

process, since it does not include important physical effects such as collimator blurring,

attenuation and scatter. To model the acquisition process accurately, these effects should

be included in the system matrix as well. In practice, attenuation and collimator blurring

are usually directly included as part of the system matrix, but scatter is not. The inclusion

of scatter modeling in the system matrix reduces its sparsity considerably, which signif-

icantly increases the computation time of any reconstruction algorithm. Thus, if scatter

compensation is attempted, it is typically done using otherapproaches [39, 76].

Denoting a general system matrix byC (to distinguish it from the system matrixR that

results only from discretizing the Radon transform), the system then becomes:

Cx = p. (1.3)

This model is applicable to both 2D and 3D imaging; in the 3D case,x represents a vol-

umetric image consisting of discretevoxels, reshaped into a vector, andp corresponds to
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Figure 1.6: Discretization of the Radon transform into the linear system (1.2). The lightly

shaded area, which corresponds the system matrix elementRji, is the intersection of the

normal ray corresponding to thej th bin with theith image pixel. The areas corresponding

to Rj−1,i andRj+1,i are shaded in dark.

pixels on a 2D detector surface that has acquired multiple views around the object. Three

dimensional SPECT images are typically viewed as a series of 2D slices through the 3D

volume.

1.1.3 SPECT image reconstruction

Approaches to reconstruction of an image based on tomographic data can be broadly di-

vided into two categories; analytic methods and iterative methods. Analytic methods are

based on the Radon transform model (1.1) of the system; the most popular of these by far is

the method of filtered backprojection. Iterative approaches are based on the linear system

model (1.3), and include the algebraic reconstruction technique, maximum-likelihood ex-
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pectation maximization, ordered subsets expectation maximization, maximuma posteriori

expectation maximization, and least-squares methods.

Analytic reconstruction algorithms

Generally speaking, analytic algorithms are not appropriate for dynamic SPECT imaging,

as they require that the activity distribution be unchanging during acquisition. As such, we

only discuss them briefly here; a more thorough treatment is presented in [38]. Analytic

methods are based on the Central Section Theorem, which relates the Radon transform of

an image to the Fourier transform. This theorem provides an explicit formula for the inver-

sion of the Radon transform, which can be applied to recover animage from projections.

This formula is based on the continuous Radon transform, however, and since the Radon

transform of the image is only known for discrete values in practice, applying the inversion

formula directly is difficult. Instead, the method of filtered backprojection (FBP) is most

commonly used.

FBP is based on the backprojection operatorB, which maps the Radon transform of the

image,f̆ (i.e., the projection data), back into image space:

B[f̆ ](y1, y2) =

∫ π

0

f̆(y1 cos φ + y2 sin φ, φ) dφ. (1.4)

Intuitively, this operation can be viewed as “smearing” thecounts from every projection bin

back along the ray associated with it, then normalizing. Whenimage space and projection

space are discretized, the backprojection at(y1, y2) is therefore a weighted average of the

counts in every projection bin to which the image pixel containing the point contributed.

The FBP reconstruction algorithm is given by:

f(y) = B
[

F−1
1

[

|k| F1f̆
]]

, (1.5)

whereF1 is the 1D Fourier transform, andk is the frequency variable in Fourier space. The

term|k|, known as the ramp filter, must be included to properly invertthe Radon transform;

its omission results in a severely blurred image. Since the ramp filter amplifies all high-

frequency components of the data (i.e. noise), however, other filters are sometimes used as

well in order to reduce image noise [8].
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Historically FBP has been popular because it is computationally fast while providing

reasonable image quality. As computational speed has increased, however, iterative algo-

rithms have become the method of choice for image reconstruction, as they allow much

greater flexibility for modeling different physical effects that cannot be incorporated into

the Radon transform model.

Iterative reconstruction algorithms

Iterative approaches to image reconstruction are based on the linear system model (1.3).

This system is usually very large; for a 3D image, for instance, a typical situation could in-

volve a 64×64×64-voxel image with 60 views (of size 64×64) acquired around the object,

resulting in a system matrix consisting of roughly 246,000×262,000 elements. Existence

and uniqueness of a solution do not hold in general, as the measured datap are noisy, and

the problem may be overdetermined (more equations than unknowns) or underdetermined

(fewer equations than unknowns) depending on how the image and projection spaces are

discretized. Thus, direct methods of solving the system arenot feasible, and iterative ap-

proaches must be used.

An algebraic reconstruction technique (ART) is one that attempts to solve the sys-

tem (1.3) by sequentially satisfying the constraints provided by the equationscjx = pj,

wherecj is thej th row of C, j ∈ [1, JK]. Often, ART refers specifically to the method

of Kaczmarz [32], first proposed in 1937. This technique was most notably investigated

for use in image reconstruction as it applies to electron microscopy and X-ray photog-

raphy [24]. At thenth iteration, theith component of the estimate is updated with the

following formula:

x
(n+1)
i = x

(n)
i +

Cji
∑

i′ C
2
ji′

(

pj −
∑

i′

Cji′x
(n)
i′

)

, (1.6)

wheren + 1 mod JK = j. At every iteration,x(n) is orthogonally projected onto the

hyperplane defined by the equationcjx = pj, wherej increases with every iteration, even-

tually returning toj = 1. If a unique solution exists, then ART converges to it afterJK

iterations; essentially finding the intersection of theJK hyperplanes defined by the sys-

tem. Otherwise, it converges to one of many solutions (in theunderdetermined case) or to
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a limit cycle (overdetermined case). In practice, ART is seldom used in SPECT image re-

construction since it converges slowly, requires access torows of the system matrix (which

is usually not stored due to its size) and does not account forthe fact that the data are noisy.

Given that the data are noisy, the goal of image reconstruction is most appropriately

viewed as finding the imagex with the highest likelihood of producing the noisy datap,

given the system model and an appropriate model for the distribution of the noise. Methods

that take this approach are known asstatisticalreconstruction methods. Define

p̂ = Cx, (1.7)

i.e., p̂ represents the “true” data one would measure given an activity distributionx, in the

absence of noise. Since nuclear decay is a Poisson process, the noise in the measurement

data is most accurately modeled as Poisson noise. Then, thelikelihood, L, of measuring

the noisy datap is given by the conditional probability:

L = Pr(p|p̂) =
∏

j

e−p̂j p̂
pj

j

pj!
(1.8)

The value ofp̂ with the maximum likelihood of producingp can be found by finding the

minimizer of the negative logarithm ofL:

− logL =
∑

j

[p̂j − pj log p̂j] + constant

=
∑

j

[

∑

i

Cjixi − pj log
∑

i

Cjixi

]

+ constant. (1.9)

From this point forward we discard the constant term since itcan be ignored for the

purposes of minimization. Denote the contribution of voxeli to p̂j by

p̂ji = Cjixi. (1.10)

In practice we cannot make the analogous observationpji, since we are only capable of

measuring the sum of allpji, namelypj. This quantity is theoretically useful, however,

since we can then express the log likelihood for a single image voxel as

− logLi =
∑

j

[Cjixi − pji log Cjixi.] (1.11)
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Taking partial derivatives with respect toxi then gives

−
∂

∂xi

logLi =
∑

j

[

Cji −
pji

xi

]

(1.12)

−
∂2

∂x2
i

logLi =
∑

j

pji

x2
i

(1.13)

Since the right-hand side of (1.13) is always positive, thisimplies that the negative log

likelihood is minimized when the right-hand side of (1.12) is zero; i.e., when

J
∑

j=1

Cji =
1

xi

∑

j

pji

xi =
∑

j

pji

/

∑

j

Cji. (1.14)

Sincepji is unobservable, it must be estimated. The best estimate is obtained by takingpj,

which is the sum of thepji, and multiplying it by the ratio of̂pji to p̂j:

pji = pj

p̂ji

p̂j

= pj

Cjixi
∑

i Cjixi

. (1.15)

Substituting (1.15) into (1.14) then gives a fixed-point iteration forxi:

x
(n+1)
i = x

(n)
i

1
∑

j Cji

∑

j

Cji

pj
∑

i′ Cji′x
(n)
i′

. (1.16)

This is the maximum likelihood expectation maximization (MLEM) algorithm for emission

tomography, as first derived in [65]. Intuitively, MLEM can be viewed as a repetition of

the following procedure:

1. The current estimate,x(n), is projected forward, i.e. multiplied by the system matrix

C. This operation gives an estimate of what the measured projection data “would”

look like for the current image estimate.

2. The ratio of each actual projection measurementpj to the forward projected esti-

mate from Step 1 is taken. Thus if the values in the forward projected estimate are

lower than the corresponding measured values, the ratios will be greater than one;

otherwise, the ratios will be less than one.
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3. The ratios are backprojected into image space. This is equivalent to multiplying the

vector of ratios from Step 2 by the transpose ofC. This operation maps the ratios

back into image space, so that each elementx
(n)
i in image space can be scaled by an

appropriate factor.

4. Every backprojected ratio is normalized by dividing by
∑

j Cji. If every column of

C sums to one then this step is not necessary, but in general this is not the case. The

normalization ensures that the values inx remain proportional to the measured data.

5. Finally, each normalized, backprojected ratio is multiplied by the corresponding

value ofx(n) to produce the new estimatex(n+1).

A well-known property of MLEM is that in the presence of noisydata, image quality

begins deteriorating after a fairly small number of iterations [30]. Once the large-scale

features of the image have been recovered, further iterations mostly fit the noisy distribution

of emitted counts, rather than the underlying activity. To reduce this effect, MLEM is

typically stopped after some pre-determined number of iterations, rather than being run

until a convergence criterion is met. This approach is simple, but may result in image

artifacts since the MLEM algorithm does not converge at the same rate in all regions of

the image. An alternative approach includes a smoothing prior into the update formula,

through the use of maximuma posteriori(MAP) reconstruction [25]. The MAP update is

given by:

x
(n+1)
i = x

(n)
i

1
∑

j Cji + β ∂U(x(n))
∂xi

∑

j

Cji

pj
∑

i′ Cji′x
(n)
i′

. (1.17)

HereU(x) is an energy function which penalizes deviations between neighbouring image

voxels, andβ is a weighting term for the prior. BothU andβ must be carefully chosen to

avoid over-smoothing the image and losing fine detail.

An accelerated version of MLEM, known as ordered subsets expectation maximization

(OSEM), is typically used in practice [28]. OSEM is identical to MLEM, except that every

iteration of OSEM consists of several subiterations which act only on a subset,Ωm, of the

acquired projection data:

x
(n+1)
i = x

(n)
i

1
∑

j∈Ωm
Cji

∑

j∈Ωm

Cji

pj
∑

i′ Cji′x
(n)
i′

. (1.18)
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For instance, if the projection data consist of 64 views which are divided into four subsets,

thenΩ1 would consist of every fourth view starting with the first view, Ω2 of every fourth

view starting with the second view, etc. One full iteration of OSEM over all four subsets

thus requires roughly the same computation time as one iteration of MLEM; however, the

image is typically of the same quality as one produced with four full MLEM iterations [30].

Finally, least-squares approaches are sometimes used to solve the image reconstruction

problem as well [36]. In this case, the objective function tominimize is given by

g(x) =
1

2
‖p − Cx‖2

2 , (1.19)

rather than the negative log likelihood (1.9). This objective function can be derived by

using a Gaussian likelihood model for the datap, rather than the Poisson model. Since

Poisson noise is well-approximated by Gaussian noise at high count rates, this is a rea-

sonable assumption in many cases. Approaches for solving least-squares problems are

well-studied, and include methods such as conjugate gradient for least squares (CGLS) and

the generalized minimum residual method (GMRES) [48]. One complication in using a

generic least-squares method for image reconstruction is that such methods generally do

not enforce non-negativity of the solution. Nonnegativitycan be enforced through the in-

clusion of a penalty term in the objective function or by modifying the update formula in

these algorithms; however, these approaches may adverselyaffect convergence of the al-

gorithm or increase computation time [36]. MLEM-based approaches, in contrast, ensure

non-negativity since the update ofx(n) consists only of multiplication by strictly positive

quantities.

1.2 Dynamic SPECT

In conventional SPECT reconstruction, the projections are assumed to beconsistent; i.e.,

each projection corresponds to the same distribution of tracer, viewed from a different

angle. In general, a static single-rotation SPECT reconstruction algorithm is able to accu-

rately reconstruct an image if the total acquisition time isless than the effective (biological

+ physical) half-life,T 1
2
, of the tracer. If the tracer kinetics are faster, then noticeable ar-

tifacts will be present in the image [6, 49, 51]. In cases where adjacent regions exhibit
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different washout rates (e.g., in healthy vs unhealthy tissue), the effect is even more se-

vere [51, 42]. Thus, in conventional static SPECT imaging, itis important for the washout

of the tracer to be slow relative to the acquisition time.

There are clinical applications, however, where rapid, dynamic behaviour of a tracer

could be used as an indication of function within an organ or region of the body. Myocar-

dial blood flow, renal filtration, and the binding of ligands and receptors in the brain, for

instance, are all dynamic processes that can be imaged usingnuclear medicine tracers. Sev-

eral types of dynamic NM imaging are possible. In planar dynamic imaging, the dynamic

behaviour of a single-photon emitting tracer is imaged using a stationary camera head, pro-

viding a time series of two-dimensional projections acquired from one angle. Regions of

interest are then drawn over some portion of the image, and atime activity curve(TAC)

showing the change in tracer concentration within that region over time is extracted. This

TAC can then be fit to an appropriate model in order to obtain kinetic parameters, such as

the rate of uptake or wash-out of tracer within that region.

Planar imaging only provides two-dimensional information, which cannot be reliably

corrected for effects such as attenuation and organ overlap. A PET camera, on the other

hand, is able to rapidly acquire three-dimensional dynamicinformation, due to its high sen-

sitivity and the fact that it acquires data from all angles around the patient simultaneously.

As a result, dynamic imaging using PET has been applied to many clinical situations, par-

ticularly imaging dynamic processes in the brain, such as cerebral blood flow and glucose

metabolism, or the binding of ligands to targeted receptors. The dynamic images produced

by PET can be analyzed using techniques such as compartmental modeling, to produce

parametric maps which quantify the level of function in different regions of the imaged or-

gan. While PET is ideally suited to dynamic studies, however,there are several challenges

associated with its clinical use. These challenges includethe high cost of PET equipment,

and the need for a cyclotron to produce PET tracers. Thus, obtaining three-dimensional,

dynamic information using a SPECT system is of considerable interest. Since views around

the object are not acquired simultaneously by standard SPECTcameras, however, the issue

of how to deal with inconsistent projection data must be addressed.

Approaches to dynamic SPECT imaging can be broadly categorized in several ways.

Certain methods require the acquisition of data using multiple fast rotations of the camera,

for instance, while others attempt to reconstruct a dynamicimage from data acquired in the
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conventional way using a single slow camera rotation. Some methods attempt to recon-

struct a four-dimensional time series of 3D images (time frames), from which TACs and

kinetic parameters can be extracted afterward; others skipthis step and extract TACs or

kinetic parameters directly from the projection data. What follows is an overview of differ-

ent proposed approaches to dynamic SPECT data processing andreconstruction. A more

thorough review of dynamic SPECT principles, reconstruction approaches and applications

has recently been presented in [26].

1.2.1 Fast-rotation approaches

Methods using conventional reconstruction algorithms

If the gamma camera completes a rotation around the patient in a time period that is rela-

tively short compared toT 1
2
, then the projection data acquired during this rotation canbe

considered consistent. So, if the camera rotates around thepatient many times at suffi-

ciently high speed, it can acquire multiple sets of consistent, 360◦ projection data, each of

which can be used to reconstruct a 3D image using a conventional method such as OSEM.

This procedure provides a set of independently reconstructed time frames which, taken to-

gether, form a 4D image. To accurately image a tracer withT 1
2

on the order of several

minutes, for instance, a full set of projection data must be acquired over at most a minute

in order to achieve satisfactory temporal resolution. This“fast rotation” is much quicker

than the one used in a conventional “slow rotation” SPECT study, which is typically on the

order of 15 to 30 minutes.

The fast-rotation approach has been used in many dynamic cardiac imaging studies

using various tracers such as99mTc-teboroxime [50, 72, 71],99mTc-pertechnetate [9]

and123I-BMIPP [45]. All of these studies used triple-head cameras,which allowed for the

rapid acquisition of 360◦ of projection data by rotating each head only 120◦. The time per

rotation (i.e. the temporal resolution of the final dynamic image) varied from 5 seconds

to two minutes in these studies. The effect of various factors on the accuracy of kinetic

parameters extracted from from dynamic99mTc-Teboroxime cardiac SPECT images using

fast-rotation methods has been particularly well-studied[14, 77, 70, 61, 33]. In addition

to cardiac imaging, the fast-rotation technique has also been applied to dynamic SPECT

imaging of the lungs [74], brain [80], and kidneys [1, 47].
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The fast-rotation approach suffers from several drawbacks. From a practical point of

view, many clinical SPECT systems are not even capable of multiple fast rotations, as they

are designed for conventional SPECT acquisitions. Images produced using this method

also tend to be very noisy, as the increased rotation speed greatly diminishes the number

of counts acquired in every rotation, reducing the signal-to-noise ratio. Using triple-head

cameras helps to mitigate this problem, but these cameras are also not clinically prevalent.

Finally, reconstructing each frame of the image separatelyusing a static 3D algorithm does

not enforce any temporal consistency on the resulting 4D image. Since each frame of the

image is reconstructed independently, the temporal correlation between the activity distri-

butions in every frame of the image is not considered during the reconstruction procedure.

Using interpolation to simulate fast-rotation data from a slow-rotation scan has also

been proposed [52, 13]. If a dual-head camera makes two complete slow rotations around

a patient, for instance, then projections of the object froma given angle are acquired at

four different times. Projections corresponding to that angle for other time frames can then

be approximated using time-weighted interpolation between the actual measured projec-

tions from that angle. This method produces images that are much less noisy than the

fast-rotation approach, due to the improved count rate provided by slow rotation. The ma-

jority of the data used to produce the image is interpolated rather than actually measured,

however, and thus the reconstructed image may not accurately reflect reality.

New camera systems, which make use of alternative camera geometries and improved

detectors to increase camera sensitivity, have been developed in recent years and have

strong potential for dynamic SPECT applications [22, 60, 23,69]. Several of these sys-

tems feature multiple detectors arranged in a stationary orquasi-stationary manner around

the patient, rather than a large rotating camera head. Thesecameras are able to acquire

projections from multiple angles through the patient in a short time period, which can then

be used to independently reconstruct 3D frames of a dynamic image, similarly to the fast-

rotation method. At the present time, however, these systems are not yet widely available

in clinics.

Methods using compartmental modeling

Extraction of kinetic parameters from dynamic SPECT images is often useful to assess

function. Since the images produced by fast rotation methods are noisy and may contain
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artifacts, it is often preferable to estimate the parameters directly from the projection data,

without reconstructing actual images. Direct estimation can be accomplished by first using

a kinetic model to represent the transfer of radiotracer between the blood and various tissue

types, and solving for the time-dependent concentration ofradiotracer,Cn(t), in each tissue

type n as a function of the blood input function,B(t). B(t) is assumed to be known,

usually either from blood sampling, or by extracting it fromsome part of the projection

data assumed to contain mostly contributions from blood. A one-tissue compartmental

model betweenB(t) and eachCn(t) is usually assumed, with transfer coefficientKn to

tissue from blood. Every measured projection is then assumed to be a linear combination

of B(t) and theCn(t), and after multiple rotations of the camera, theKn between each

tissue type and the blood is estimated by solving a system of difference equations.

This approach was first developed in [81] and tested on a small-scale 2D simulation,

with later work focused on applying it to more complex and realistic situations [58, 59, 29].

With this method, an image is first reconstructed from summedprojections using conven-

tional OSEM, in order to obtain a spatial segmentation of thepatient body into different

tissue types. Then, the volume corresponding to each tissuetype is forward-projected in

order to ascertain which projection bins contain contributions from that volume, and the

projections can be used to estimate the washout parameter from each tissue type.

More recently the direct estimation approach has been modified to include the use of

B-splines to model the TACs for every tissue type in the model [56, 57]. Using this method,

the estimation problem becomes a matter of determining the spline coefficients for every

tissue type from the projection data, then fitting the resulting TAC to the compartmental

model in order to estimate the washout parameters. This method has the advantage of

being much more computationally efficient than the originalone, especially as the total

size of the projection data set becomes large.

A third approach that incorporates kinetic modeling is a 4D maximum a posteriori

(MAP) algorithm using a compartmental model-based prior [34]. Unlike in direct estima-

tion of kinetic parameters, this method does reconstruct a time series of 3D images. During

reconstruction, the TACs in each voxel of the image are encouraged to conform to a com-

partmental model through the use of a prior term and a MAP-based iterative reconstruction

algorithm.

Another method has focused on the extraction of TACs for each compartment from the
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projection data, rather than kinetic parameters [44]. Thismethod uses a small-dimensional,

orthogonal basis to model the kinetic behaviour of the tracer. The basis is derived by tak-

ing the singular value decomposition of a matrix consistingof a spectrum of exponential

functions, then convolving the first few singular vectors with the (known) blood input func-

tion. As with the B-spline approach, the reconstruction problem is then to determine the

coefficients corresponding to each basis function and tissue type.

The main advantages of these methods over those discussed inthe previous section

is that they include modeling of the dynamic behaviour of thetracer, thus exploiting the

temporal correlation between time frames of the image. Additionally, kinetic parameter

estimates obtained using these methods are not biased by image artifacts resulting from

high noise levels or inconsistent projection data. As was the case with the methods of

the previous section, however, most of these methods require cameras capable of multiple

rotations around the patient, which may not be widely available. Use of fast rotations also

results in data that is noisier than the data acquired using aconventional slow rotation.

1.2.2 Slow-rotation approaches

At the present time the vast majority of systems available inclinics are standard SPECT

systems which are only capable of acquiring data over a single slow camera rotation. Dy-

namic SPECT imaging on these systems requires reconstructing an image from extremely

inconsistent projection data, since in the majority of dynamic studies, the tracer distribution

changes drastically during the acquisition period. Slow-rotation dynamic SPECT methods

usually assume that the activity concentration in every image voxel changes with every

projection view acquired by the camera. Thus, the number of time frames,K, in the 4D

reconstructed image corresponds to the number of stops madeby the rotating camera. The

system representation of the data acquisition then changesfrom (1.3) to:

C ′x′ = p (1.20)

Herep represents the same vector of measured projection data as in(1.3), but the activ-

ity vectorx′ and system matrixC ′ now have different dimensions. The vectorx′ represents

a 4D distribution of activity, whose size isK times greater thanx. As a result,C ′ is also

enlarged, withK times as many columns as the static system matrixC. The components
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of C ′, however, are identical to those ofC since the system geometry is the same; further-

more, the number of non-zero entries is the same since the activity in time framek only

contributes to thekth projection. Consequently,C ′ is block-diagonal and very sparse (see

Figure 1.7).

Standard SPECT effects such as patient-specific attenuationand depth-dependent colli-

mator response can be incorporated intoC ′, just as in the static case. Attenuation correction

(AC) is particularly important for slow-rotation dynamic SPECT, since varying attenuation

as the camera rotates around the patient produces the same effect on the projection data

as actual tracer dynamics. For instance, without AC it is notpossible to know whether a

decrease in measured activity over several projections is due to tracer washout, or to an

increase in the density or amount of material between the detector and the activity source.

As will be discussed in Chapter 4, however, modeling attenuation in the system matrix is

not sufficient to fully correct for its effects in slow-rotation dynamic SPECT.

Since the number of unknowns has increasedK-fold from the static case, but the

amount of data has remained the same, the problem is extremely underdetermined. There

are infinitely many potential solutionsx′ that fit the data, the vast majority of which are

physiologically meaningless. To obtain a meaningful solution, assumptions must be made

in order to reduce the number of unknowns or constrain the behaviour of the activity. Sev-

eral different approaches to this problem have been studied.

Methods using an exponential model

One early method [41, 7] proposed modeling the time-dependent activity in each voxelx′
i

by dual exponential washout:

x′

i(t) = aie
−λit + bie

−ηit + ci, (1.21)

for some constantsai, bi, ci, λi andηi. Then, only five parameters have to be estimated for

each voxel, rather than the activity concentration in allK time frames. Some disadvantages

of this method include that it assumes a specific functional form for the activity in every

voxel that may not be appropriate in reality; that it only models decaying activity, and that it

requires nonlinear optimization to determine theλi andηi, which increases the complexity

of the calculation.
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Figure 1.7: Change in system representation from static case(top row, equation (1.3)) to

slow-rotation dynamic case (bottom row, equation (1.20)).The system matrix and activity

vector are both enlarged, but the vector of projection data is unchanged. The dimensions

of each matrix are given underneath it. In the above figure, each Ck is aJ × I submatrix

whosejith element gives the contribution of voxeli to projection binj at timek, and each

pk is a vector of sizeJ representing the counts detected in allJ camera bins at timek.
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This problem can be linearized by assuming instead that activity in every voxel consists

of a sum of arbitrarily many decaying exponential terms [27]:

x′

i(t) =

∫

∞

0

mi(λ)eλt dλ (1.22)

which yields a linear algebraic system of equations for the coefficientsmi(λ) when dis-

cretized overλ. In addition to linearizing the problem, this approach has the advantage of

eliminating the need to assumea priori how many exponential terms are needed to model

the activity. It was later concluded, however, that a more general assumption of monotoni-

cally decreasing activity was more flexible and computationally simpler than an exponential

model [3]. This led to the development of the dSPECT method, which is discussed later in

this section.

Methods using factor analysis of dynamic structures

Factor analysis of dynamic structures (FADS), is an image decomposition method that

is typically used to analyze an existing dynamic image, suchas a time series of planar

nuclear medicine scans, or a fully 4D dynamic image [2, 15]. The principle behind FADS

is that the activity in every voxel of the image is composed ofa linear combination of a

small number of time-dependent factors. Least-squares optimization can then be used to

determine the temporal behaviour of the different factors (encapsulated in a basis matrix

F ), as well as their coefficients in every image voxel (encapsulated in a coefficient matrix

A). Extracting factors from an existing image can improve analysis of the image; for

instance, by separating dynamic behaviour of the blood poolfrom that of the myocardium

in 99mTc-Teboroxime cardiac SPECT studies [66], or removing contaminating activity

due to the liver from these same studies [67].

The FADS method can also be incorporated into the actual reconstruction of images

from projection data. Replacing the vectorx′ in (1.20) by the matrix productAF gives an

inverse problem for determining appropriate values for these two matrices. These can be

determined either simultaneously using a least-squares method [68], or using MLEM in an

alternating fashion, by holding one ofA or F fixed in every iteration [55].

In addition to providing a factor decomposition of the imageimmediately, the main

advantage of the FADS approach is that it significantly reduces the number of unknowns
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to be estimated. The full problem of estimating the activityin every voxel at every time

frame requires estimatingIK unknowns; the FADS-based method requires estimating only

S(K + I), whereS is the number of factors, typically no greater than 3 or 4. Some draw-

backs of this approach are that it represents a considerablesimplification of the actual

physiology, that it may not be clear how many factors are necessary to accurately model

the tracer dynamics, and that the factors determined by the method are not generally mean-

ingful, due to nonuniqueness of the solution [55].

Methods using Kalman filtering

Some recent work has focused on using the recursive Kalman filtering algorithm [35] to

estimate the dynamic distribution of activity based on slow-rotation data [37, 53]. In this

approach, a first-order Markov chain model is used to model the time evolution of the

tracer distribution. The dynamic image is then estimated from the projection data using

the Kalman algorithm, which includes prediction, correction, and smoothing steps. Since

Kalman filtering does not guarantee non-negativity of the solution, this condition must

be added in some way. This can be accomplished by solving an optimization problem

using non-negative least squares after the Kalman filteringstep [37], or by incorporating

regularization techniques such as Bregman projection [53].The Kalman filtering approach

has been tested on small, 2D simulations and provided reasonable results, but it has not yet

been determined whether it is feasible for larger-scale, realistic clinical data.

dSPECT method

The dSPECT method arose as a generalization of the exponential model-based methods

discussed earlier. Even if activity is decreasing exponentially, a more general assumption –

namely, that the activity is monotonically decreasing – is computationally simpler, and pro-

vides comparable results [3]. Thus, the dSPECT algorithm [19] was originally formulated

as a constrained linear least squares problem; namely, thatof minimizing

f(x′) =







∑

j,k

σj,k
−2

(

∑

i

C ′

ji,kx
′

i,k − pj,k

)2






, (1.23)

subject to the constraint

x′

i,1 ≥ x′

i,2 ≥ . . . x′

i,k ≥ 0 ∀ i (1.24)
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Here,x′
i,k refers to the value of theith pixel at time framek, C ′

ji,k is the system matrix

element indicating the contribution of voxeli to projection binj at timek, pj,k are the

counts measured in projection binj at timek, andσj,k is a weighting factor determined

from the variance inpj,k. Although the projection datap is the same size as in the static

case, here we explicitly index it byj andk to make the time dependence clear. The dSPECT

method has been tested extensively with different acquisition protocols (e.g. dual and triple-

head camera acquisitions) in simulations and physical phantom experiments [16, 12].

The constraint (1.24) is trivially adapted to the case of monotonically increasing activ-

ity, simply by reversing the order of the inequalities. Uptake and washout (increasing then

decreasing activity) in a region, however, requires a more sophisticated approach. If the

activity in voxelx′
i is known to peak in time frameti, then the constraint is given by:

0 ≤ x′

i,1 ≤ x′

i,2 ≤ . . . x′

i,ti
≥ x′

i,ti+1 · · · ≥ x′

i,k−1 ≥ x′

i,k ≥ 0 ∀ i. (1.25)

In general, however, the value ofti is not knowna priori. The original approach to

determiningti was to reconstruct two preliminary images, one assuming increasing activity

in every voxel, the other assuming decreasing activity [18]. As it attempts to fit the data

under these assumptions (which are known to be incorrect), dSPECT gives an indication

of the true time-to-peak in every voxel (see Figure 1.8). This approach is time-consuming,

however, and was replaced with one that allows the assumed peak location to be adjusted

between iterations of the algorithm as it tries to fit the data[16]. This second approach is

described in detail in Section 2.1.

dSPECT can also be applied using an expectation maximization(EM) approach, de-

noted dEM, which is similar to the MLEM algorithm (1.16). This approach provides com-

parable results to the CLS formulation (1.23) while being computationally simpler [17, 16].

An additional benefit of dEM is that positivity does not need to be included as a constraint,

as it is inherent to the MLEM algorithm. The dEM formulation of the problem is given in

Chapter 2, Equation (2.8).

Since the development of dSPECT, further studies have focused on modifications to the

algorithm, and on its application to certain clinical situations. These studies have included

incorporating depth-dependent resolution into the dynamic system matrix [20], including

additional regularization to improve image quality [43, 5], implementing dSPECT using

sophisticated nonlinear optimization software [4], and unifying dSPECT with gated SPECT
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Figure 1.8: Illustration of the original dSPECT method for finding time-to-peak, from a

simple phantom experiment. The true TAC for a region of interest in the phantom is shown

as a solid line, with dashed lines showing TACs obtained from reconstructed images as-

suming increasing behaviour (lower dashed curve) and decreasing behaviour (upper dashed

curve). Both dashed TACs are essentially flat during the sixth to eighteenth time frames,

indicating that the true peak occurs somewhere in that interval.

to account for cardiac motion and produce 5-dimensional (5D) images [31, 21]. Clinical

applications that have been studied include using dSPECT to assess renal function [11],

and to reduce artifacts caused by high bladder uptake in pelvic SPECT imaging [78].



Chapter 2

Concavity-constrained dSPECT

reconstruction

Since dynamic tracer behaviour within the body arises as a result of continuous physiolog-

ical processes, we expect that the time activity curves (TACs) in a given region of interest

(ROI) should be fairly smooth, provided adequate temporal sampling. While the dSPECT

constraint – namely, that activity in every voxel must either increase, decrease, or increase

to a maximum value and then decrease – does eliminate many nonphysical solutions, it

does not force the TAC in every voxel to be smooth. As a result,TACs with unphysical

behaviour, such as sharp spikes, may be present in images reconstructed using dSPECT.

In this chapter we develop a modification to dSPECT which, instead of acting on the first

derivative of the TAC in every voxel, constrains the second derivative. The method, which

we denote d2EM, guarantees smoother TACs than dSPECT through the use of this stronger

constraint. The use of a concavity-based constraint was previously proposed in [16], but

not implemented.

We first review details on the implementation of dSPECT, and specifically its EM-based

formulation, dEM. These details are necessary to understand the implementation of d2EM.

We then discuss the design and implementation of the new method.

27
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2.1 Implementation of dEM

In dSPECT, the TAC in every voxel is only permitted one of threebehaviours: strictly

increasing, strictly decreasing, or increasing to a maximum value and then decreasing.

This behaviour is enforced through the use of adifference tensor, denoted byA. By acting

on the dynamic image vectorx′ (see (1.20)),A defines a new vector:

x̃ = Ax′. (2.1)

The vectorx̃, which has the same dimensions asx′, consists of differences in activity

between successive time frames, for each voxel. The key mechanism behind dSPECT is

that if every element of̃x is held positive, then the inverse mapping fromx̃ to x′, A−1, con-

trols the temporal behaviour ofx′. For instance, if one wishes to enforce strictly increasing

activity on voxelx′
i, the block ofA corresponding tox′

i is aK × K matrix given by

Ai =













1

−1 1
. . . .. .

−1 1













. (2.2)

Let x′
i,k denote the value of voxeli at time framek, and correspondingly for̃xi,k. Then,

since x̃i contains only positive values, the inverse mappingA−1
i ensures thatx′

i,1 > 0,

(x′
i,2 − x′

i,1) > 0, etc., giving the desired increasing behaviour. Note thatAi also maps̃xi,1

to x′
i,1, making it the only element of̃xi that is not a first difference value. This mapping

guarantees that the TAC for voxeli is non-negative, and provides a one-to-one correspon-

dence betweeñxi andx′
i.

Decreasing behaviour in voxeli is enforced using a similar matrix;x′
i,K is held positive

as well as the negative first differencesx′
i,K−1 − x′

i,K , etc.:

Ai =













1 −1
.. . .. .

1 −1

1













. (2.3)

For increasing-then-decreasing behaviour in voxeli, with peak activity occurring in
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time framek ∈ [2, K − 1], the following tensor is used:

Ai =





























1

−1 1
. .. . . .

−1 2 −1
. .. . . .

1 −1

1





























, (2.4)

where thekth row contains the three entries -1,2 and -1 in the(k − 1)th, kth and(k + 1)th

columns, respectively. This matrix enforces increasing behaviour in all frames earlier than

k, and decreasing behaviour in all frames later thank. At framek, we have:

x̃i,k = −x′

i,k−1 + 2x′

i,k − x′

i,k+1, (2.5)

which, when solved forx′
i,k, gives

x′

i,k =
1

2

(

x′

i,k−1 + x′

i,k+1

)

+
1

2
x̃i,k. (2.6)

That is to say,x′
i,k is the average ofx′

i,k−1 andx′
i,k+1, plus some value specified bỹxi,k.

As a result, the maximum value of the TAC corresponding to voxel i may actually occur in

framek − 1, k or k + 1, depending on the magnitude ofx̃i,k. The actual constraint being

enforced is that the TAC be concave-down at pointk – thus preventingx′
i,k from being the

smallest of the three values, which would violate the dSPECT constraint.

This condition provides a mechanism by which the assumed peak time can shift be-

tween iterations of the algorithm. For instance, suppose the maximum value ofx′
i was

assumed to occur in framek, but after updating̃x and mapping back tox′, we find that

the maximum value ofx′
i occurs in framek + 1. Then, for the next iteration, the peak is

assumed to occur in framek +1. After the next update of̃x, the assumed peak location can

be shifted again (e.g. to framek + 2).

This is an important feature because the time of peak activity for each voxel is not

knowna priori. Some initial assumption about the time of peak activity in every voxel is

made, and the assumed peak times for each voxel are then adjusted based on the projection
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data between every iteration of the algorithm. This is the second approach to determining

the time of peak activity, as opposed to the first one discussed in the previous chapter

(see Figure 1.8). It has the advantage of allowing peak timesto be adjusted between every

iteration of the algorithm, rather than requiring multipleruns of the dEM algorithm using

different assumptions.

Combining (1.20) and (2.1) gives the following system model:

C ′A−1x̃ = p, (2.7)

The update formula for dEM is then analogous to (1.16):

x̃
(n+1)
i,k =

1
∑

j

(

C ′
ji,kA

−1
i,k

) x̃
(n)
i,k

∑

j

C ′

ji,kA
−1
i,k

pj,k
∑

i′ C
′
ji′,kA

−1
i′,kx̃

(n)
i′,k

(2.8)

with all terms defined as in (1.23). This iterative formula isessentially the same as the

update formula for MLEM reconstruction of static images, with the combined dynamic

system matrix and difference tensorC ′A−1 used in place of the static system matrixC. One

key difference from MLEM is that not only the solution vectorx̃, but also the matrixA−1

may change at every iteration of the algorithm. This has implications for the convergence

of the algorithm, as will be shown in Section 3.3 of the next chapter.

The dEM algorithm must typically be run for a large number of iterations (between

50 and 100) before converging to a satisfactory solution. This is due to the fact that the

the algorithm must determine the location of peak activity in every voxel as well as the

activity intensity in every time frame, making the reconstruction problem more challenging

than that of conventional static SPECT. Furthermore, the OSEM acceleration cannot be

employed since the projections are inconsistent. Thus the full set of projection data must

be used at every iteration of the algorithm [17].

2.2 Design of d2EM

The second derivative constraint imposed by d2EM should have the following properties:

1. The intent is to impose a stronger constraint than dEM; thus, the permitted TACs

should be a subset of those permitted by dEM. In other words, it should not be pos-

sible to generate a solution in d2EM that violates the dEM constraint.
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2. The concavity of the TAC must be allowed to change once, as forcing TACs to be ei-

ther concave-up or concave-down only is too restrictive. Allowing the second deriva-

tive to change sign once could allow the first derivative to change sign twice, however,

which would violate the dSPECT constraint. Therefore, only TACs where the first

derivative also changes sign at most once can be permitted.

3. The second derivative of the TAC should be able to change sign from positive to

negative (concave-up to concave-down) as well as from negative to positive. This

is in contrast to dSPECT, which only allows the first derivative to change sign from

positive to negative.

4. The constraint should be imposed in the same way as in dEM, using a tensor denoted

by B. The d2EM algorithm will optimize over the vector

˜̃x = Bx′. (2.9)

The update formula will then be analogous to (2.8):

˜̃x(n+1)
i,k =

˜̃x(n)
i,k

∑

j

(

C ′
ji,kB

−1
i,k

)

∑

j

C ′

ji,kB
−1
i,k

pj,k
∑

i′ C
′
ji′,kB

−1
i′,k

˜̃x(n)
i′,k

. (2.10)

Figure 2.1 shows the general shapes of all possible TACs whoseconcavity changes at

most once, and indicates whether each type will be permittedor prohibited by d2EM. Most

TAC shapes are prohibited because the first derivative changes from negative to positive,

which violates the dSPECT constraint. Shapes M and P cannot beallowed in d2EM for

reasons that will be explained later, despite being valid TACs in dSPECT.

2.3 Implementation of d2EM

Recall that TAC for voxelx′
i consists ofK time frames, whereK is the number of stops

made by the camera. In dEM, for increasing or decreasing behaviour, the corresponding

K-vector x̃i consists ofK − 1 first differences, and one additional value (x′
i,1 or x′

i,K ,

respectively) to ensure positivity and provide a one-to-one mapping betweenx′
i andx̃i. For

peaking activity,̃xi contains(K − 3) first differences, one second difference value at the
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Figure 2.1: General shapes of all TACs which change concavityat most once, grouped by

whether or not they should be permitted by d2EM.

assumed peak location, and the voxel activity values at the first and last time frame. In this

case, since the derivative changes sign at an interior timeframe, it is necessary to store both

endpoint voxel values to ensure positivity of the TAC.

Analogously, the vector̃̃xi in d2EM will include (K − 2) second difference values in

cases where the concavity does not change, and(K − 4) second differences and one third

difference if it does. The vector can therefore include two other values in the first case, and

three in the second case. These values will be chosen specifically to preserve positivity and

enforce the desired TAC shapes illustrated in Figure 2.1.

2.3.1 Tensor construction

A concave-down curve can be either increasing, decreasing,or increase and then decrease

(shapes A, B and C in Figure 2.1). Downward concavity can be enforced by storing the

negative second difference at each point in˜̃xi:

˜̃xi,k = −x′

i,k−1 + 2x′

i,k − x′

i,k+1, k ∈ [2, K − 1] (2.11)
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To ensure positivity of the TAC, it is sufficient to store the two endpoint valuesx′
i,1 and

x′
i,K in ˜̃xi, since a concave-down curve cannot lie below the secant lineconnecting the two

endpoints. So any of shapes A, B or C can be enforced in voxelx′
i by theK × K tensor

blockBi:

Bi =



















1

−1 2 −1
.. . . .. . . .

−1 2 −1

1



















(2.12)

Unlike in dEM, the location of the peak activity is not storedexplicitly. Whether the

concave-down curve is increasing, decreasing, or peaking at an intermediate time frame

is determined by the relative magnitudes of the values in˜̃xi.

A similar construction cannot be used for a concave-up curve, since the prohibited

shape J can occur even if both endpoints are held positive. Instead, the concave-up decreas-

ing and concave-up increasing cases (shapes D and E) are treated separately. Concave-up

increasing behaviour is enforced by forcingxi,1 andxi,2 − xi,1 (the first difference at the

earliest timeframe) to be positive, as well as all second difference values (2.13). Concave-

up decreasing behaviour is enforced by imposing similar conditions at the last time point

(2.14).

Bi =



















1

−1 1

1 −2 1
. . . .. . .. .

1 −2 1



















(2.13)

Bi =



















1 −2 1
. . . . . . .. .

1 −2 1

1 −1

1



















(2.14)

For the case where the TAC is initially concave-up and later concave-down (denoted

concave-up-down), shapes F and G are permitted, while shapes K, L and M are not.Both
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shapes F and G can be enforced by forcing the activity values at both endpoints, as well

as the first difference at the earliest timeframe, to be positive. Doing so ensures positivity

of the TAC, since it must increase initially and cannot decrease below the endpoint at the

latest timeframe. Finally, shapes K, L and M are prevented from occurring, since all three

have a negative first derivative at the first timeframe. Thus,the following tensor block is

used to enforce concave-up-down behaviour:

Bi =



































1

−1 1

1 −2 1
.. . .. . . ..

1 −3 3 −1
. . . . . . .. .
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(2.15)

The change in concavity occurs at thekth time frame, where rowk contains the entries

1, -3, 3 and -1 in the(k − 2)th to (k + 1)th columns, respectively. As with the tensor for

the peaking TAC (2.4) in dEM, this construction allows the actual inflection point to occur

either in the(k−1)th, kth or (k+1)th frame. Between iterations of d2EM, the first derivative

values in each of these frames can be checked, and the assumedlocation of the inflection

point shifted to the frame with the maximum first derivative value.

Note that both shapes L and M are concave-up-down, and decreasing at both endpoints.

As a result, it is not possible to differentiate between these two shapes by constraining only

the endpoint behaviour. This is why shape M is prohibited even though it does not violate

the dEM constraint; it is not possible to prevent it from assuming shape L without a more

cumbersome restriction on values of˜̃xi other than the endpoints.

A TAC that changes from concave-down to concave-up (concave-down-up) can be en-
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forced using a mirror version of tensor (2.15):

Bi =
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(2.16)

This tensor allows shapes H and I while preventing shapes N, Oand P from occurring.

Shape P is forbidden for the same reason as shape M in the concave-up-down case.

The d2EM update formula (2.10) requires inverting the tensorB. In dEM, since the

tensorA is essentially bidiagonal in all cases, invertingA involves only forward or back-

ward solving for entries inx′. In d2EM, the tensorB is either triangular (2.13 and 2.14),

tridiagonal (2.12), or tetradiagonal (2.15 and 2.16).B can, therefore, be inverted easily

using forward or backward solving for the triangular matrices, Crout factorization [10] for

the tridiagonal matrices, or a combination of these for the tetradiagonal matrices.1

2.3.2 Transition rules

Both dEM and d2EM impose shape constraints on the TACs in every voxel throughthe

use of the difference tensor. Since it is not knowna priori which TAC shape is the correct

choice for a given image voxel, the tensor must be adjusted inbetween iterations of the

algorithm, in order to find the best fit to the data. As mentioned previously, in dEM this

is accomplished by allowing the assumed time of peak activity to be adjusted in between

iterations. This adjustment is possible because of the formof the tensor (2.4), which allows

the activity in a voxel to peak one frame earlier or later thanthe assumed time. Through

this mechanism, the assumed behaviour can shift through theentire spectrum of behaviours

permitted by dSPECT, from decreasing (maximum activity in the first time frame) to in-

creasing (maximum activity in the last time frame), as illustrated in Figure 2.2. Strictly

1Crout factorization was implemented using code provided bythe authors of [10] at

http://www.as.ysu.edu/∼faires/Numerical-Analysis/DiskMaterial/index.html.
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Figure 2.2: Range of possible TAC shapes in dEM, from decreasing (activity peaks in

first time frame), to increasing/decreasing (activity peaks in intermediate time frame) to

increasing (activity peaks in last time frame).

speaking, the tensors for increasing and decreasing activity (Equations (2.2) and (2.3), re-

spectively) are not necessary, since all behaviours can be achieved with tensor (2.4). They

are useful, however, if one does know beforehand that activity shouldonly be increasing

or decreasing, and wishes to impose that constraint on the solution without allowing the

constraint to change.

For d2EM, the situation is somewhat more complicated because there is a wider range of

constraints that can be imposed, as indicated by the need forthe five different tensors (2.12)

to (2.16). In order for the algorithm to be robust, there mustbe a mechanism by which the

assumed behaviour of the TAC in any voxel can be adjusted fromthe current assumed

shape to any of the other basic curve constraints. For example, if the behaviour in a voxel

is initially assumed to be concave-down, but the true activity is concave-up increasing, then

over some number of iterations, there must be a way for the algorithm to recognize that the

current assumption of concave-down behaviour for that voxel is not correct, and to adjust

the tensor accordingly until it attains concave-up increasing behaviour. We now discuss

how this adjustment can be achieved.
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In the concave-down-up state (2.16), the TAC is initially concave-down, then becomes

concave-up at an inflection point in some time framek between 2 and(K − 1). As dis-

cussed previously, the location of the inflection point in any voxel with concave-down-up

behaviour can be shifted one frame earlier or one frame laterafter every iteration, based on

the data. If the inflection point shifts earlier and earlier until k = 2, then the TAC is almost

entirely concave-up, as well as decreasing since the tensor(2.16) forces it to be decreasing

at the last time frame. Thus, if the inflection point shifts tok = 2, this suggests that the

TAC should be concave-up and decreasing, and so the assumed shape for that voxel can

be changed by using tensor (2.14). Conversely, if the inflection point shifts until it reaches

the last possible time frame,k = (K − 1), the TAC is now almost entirely concave-down,

suggesting that concave-down behaviour (2.12) is the most suitable assumption.

Similarly, in the concave-up-down state, the inflection point can shift over tok = 2,

resulting in a curve that is almost entirely concave-down, or to k = (K − 1), resulting

in a curve that is almost entirely concave up and increasing.As illustrated in Figure 2.3,

these transitions suggest that there are two “branches” of behaviour, connected through

the concave-down state. To complete the picture, however, we need to define rules to al-

low transitions from the concave-down, concave-up increasing and concave-up decreasing

states as well. Since there is no inflection point in any of these states, we must judge

whether a transition to a different state should occur basedon the magnitude of the concav-

ity at either end of the TAC.

As an example, suppose the TAC in a voxel is assumed to be concave-down, but the true

activity curve is concave-down-up. As d2EM attempts to fit the data under the incorrect

assumption, the concavity of the TAC in the later time frameswill approach zero, since

the true activity curve is concave-up during this time period. Thus, if the concavity in the

late time frames is tending to zero, this is an indication that the assumed behaviour should

be changed to concave-down-up. A similar argument can be made to define a transition

from the concave-down state to concave-up-down, if concavity tends to zero in the early

time frames. Transitions from concave-up-increasing behaviour to concave-up-down (if

concavity in late time frames tend to zero) and from concave-up-decreasing to concave-

down-up (if concavity in early time frames tends to zero) complete the diagram, tying all

five shape constraints together and allowing transitions between all of them. Figure 2.4

shows this completed transition diagram.
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Figure 2.3: Illustration of how the assumed shape can be adjusted based only on the shifting

of the inflection point, for the concave-up-down (A) and concave-down-up (B) states.

One disadvantage of this scheme is that it may take a large number of iterations before

the algorithm determines the correct shape, if the initial assumption is incorrect. For in-

stance, if the TAC in a voxel is initially assumed to be concave-down-up, but the true TAC is

concave-up-increasing, then the assumed shape has to pass through the concave-down and

concave-up-down states before arriving at the correct shape. Furthermore, the transitions

out of the concave-down, concave-up-increasing and concave-up-decreasing states require

defining some tolerance at which the concavity of the curve isconsidered to be “tending to

zero,” since in practice the concavity values in˜̃x can become only arbitrarily small. It may

take many iterations before the concavity at either end of the TAC becomes small enough

to justify changing the assumption. Performing many iterations is problematic in terms of
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Figure 2.4: Full diagram of transitions between five d2EM shape constraints. In the

concave-down-up and concave-up-down states, the inflection point can shift earlier or

later until reaching one of the other three shapes. From the concave-down, concave-up-

increasing and concave-up-decreasing states, the concavity at one or both end frames of

the TAC is examined to determine whether changing the assumption is justified.

image quality as well as computation time, as it amplifies thenoise in the image.

To avoid these potential issues, an alternative transitionscheme is possible, where

the concave-down, concave-up-increasing and concave-up-decreasing states are omitted.

Omitting these three states does not reduce the range of shapes permitted by d2EM, since

these shapes can be obtained under the constraints for concave-up-down and concave-

down-up behaviour (tensors (2.15) and (2.16), respectively) as well. For instance, if the

time of inflection under the concave-down-up assumption occurs at the earliest possible

time, it is possible for the curve to be concave-up-increasing. The modified scheme, illus-

trated in Figure 2.5, eliminates the need for transitions based on examining the concavity

of the curve, and should allow d2EM to determine the correct curve shape more quickly. In

Section 3.4 of the next chapter, we will compare the two transition schemes to see which is
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Figure 2.5: Alternate d2EM transition diagram in which only the concave-down-up and

concave-up-down tensors are used.

more effective.



Chapter 3

Experimental validation of d2EM

In this chapter we assess the performance of d2EM against dEM using simple, 2D digital

phantom simulations. A digital phantom is a computerized image mimicking the distri-

bution of tracer inside a sensibly modeled object. Once the phantom has been created, it

can be used to generate simulated projection data, which is then input to a reconstruction

algorithm to produce a reconstructed image. Phantom simulations are useful because the

accuracy of the reconstructed image can be assessed by directly comparing it to the truth

(i.e. the original phantom), which is not possible with real-life data. Furthermore, digital

phantom simulations allow a fine level of control over different experimental parameters,

such as the acquisition protocol used to acquire the projection data, the level of noise in the

data, and the kinetic behaviour of the phantom.

In this chapter, two-dimensional phantoms were used to limit computation time, so that

the performance of d2EM could be tested for a wide range of kinetic behaviours and ex-

perimental conditions, and so that convergence could be examined over a large number of

iterations. These simulations represent a considerable simplification of real-life situations,

since the phantoms consisted of simple, 2D geometries with spatially uniform dynamic re-

gions. In Chapter 5, dEM and d2EM will be assessed using more realistic 3D phantom ex-

periments, as well as two sets of real-life dynamic renal data. Analyzing these experiments

requires discussion of some additional considerations, however; particularly those related

to the impact of attenuation and collimator blurring on slow-rotation dynamic SPECT re-

construction. This discussion takes place in Chapter 4. Consequently, neither attenuation

nor collimator blurring were modeled in any of the simulations presented in this chapter.

41
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Figure 3.1: Geometry of 2D annulus (left) and ball (right) phantoms. Dynamic regions are

labeled from r1 (Region 1) to r4 (Region 4). Large, light grey circle indicates the region of

background activity.

3.1 Phantom construction

Two phantom geometries were used in these experiments, bothconsisting of a 128×128

voxel dynamic image with 64 time frames. The first geometry consisted of an annulus

divided into four regions of equal size. The annulus had an outer radius of 10 voxels and

thickness of 4 voxels. It was located off-centre within a circular region of radius 32 voxels,

which was filled with low-level, constant background activity. The annulus shape was cho-

sen because it is similar to a short axis slice through the myocardium. The second geometry

consisted of four separate circular regions (balls), each with a radius of 6 voxels, arranged

in a circle. These four regions were also situated in a circular region of background activ-

ity. The ball geometry modeled the situation of distinct, well-separated dynamic regions,

as would be seen in dynamic imaging of the kidneys, for instance. Images of the both

geometries are shown in Figure 3.1, with the four dynamic regions labeled. The dynamic

regions were arranged asymmetrically to add further complexity to the simulation.

Each of the four regions in these two geometries featured different simulated tracer ki-

netics, modeled by a simple curve. In order to test a wide range of kinetic situations, three
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Figure 3.2: The twelve kinetic behaviours used in the 2D phantom simulations. Concave-

up-decreasing shapes shown in left plot, concave-down-up shapes in middle plot, concave-

down on right. For each category of behaviour, kinetics ranged from fast (r1) to slow (r4).

general categories of time activity curve were defined: concave-up-decreasing, concave-

down-up, and concave-down, corresponding to the differentcurve models shown in Fig-

ure 2.4. Concave-up-increasing and concave-up-down behaviour were not simulated, since

they are essentially mirror images of concave-up-decreasing and concave-down-up be-

haviour, respectively.

For each of these three categories of behaviour, four curvesranging from fast to slow

kinetics were created, giving a total of 12 different TACs. The fastest-changing curve was

always assigned to Region 1, and the slowest to Region 4. The 12 curves are illustrated

in Figure 3.2, and the functions and parameters used to generate the curves are given in

Table 3.1. The curves were defined for a simulated time interval of 0 to 20 minutes. Every

voxel in each of the four dynamic regions of the phantom was then assigned dynamic

behaviour corresponding to the appropriate curve. The background region was assigned a

constant value of 1. To summarize, a total of six different phantoms, each consisting of four

dynamic regions, were created: two geometries (annulus andball) times three categories of

behaviour (concave-up-decreasing, concave-down-up, andconcave-down).

Projection data corresponding to the six phantoms were computed by simulating an
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Concave-up-decreasing Concave-down-up Concave-down

1 + 9e−λt 1 + 40
(

−e−λ1t + e−λ2t
)

1 + 10
(

−e−λ1t + e−λ2t
)

T 1
2
(λ) T 1

2
(λ1) T 1

2
(λ2) T 1

2
(λ1) T 1

2
(λ2)

r1 0.5 0.125 0.25 0.5 40.0

r2 2.0 0.5 1.0 1.0 60.0

r3 4.0 2.0 4.0 2.0 80.0

r4 8.0 4.0 8.0 4.0 100.0

Table 3.1: Functions and parameters used to generate the 12 TACs in Figure 3.2. The ex-

ponential functions used to generate each TAC are shown in the column heading. Both the

timet and half-life valuesT 1
2

are in minutes. TheT 1
2

values are related to the corresponding

λ values byλ = ln(2)/T 1
2
.

acquisition using a dual-head camera with heads perpendicular to one another. This config-

uration was chosen because dual-head cameras are widely available in clinics, and because

a single-head acquisition, which gives only one view through the object for every time

frame, is not sufficient to obtain reasonable results using dSPECT [16]. The heads started

at 0◦ and 90◦ (corresponding to the left and bottom sides of the objects inFigure 3.1) and

rotated counterclockwise over 360◦. Poisson-distributed noise was added to the projection

data only in the third and fourth experiments. Some sample sinograms are shown in Fig-

ure 3.3. The projection data were computed using the same dynamic system matrixC ′ as

was used in the reconstruction algorithms.

3.2 Image analysis

In every experiment, each set of projection data was used to reconstruct an image using

500 iterations of both the dEM and d2EM algorithms. This is a considerably larger number

of iterations than would be used in practice, but it was useful to examine the long-term

convergence behaviour of the two algorithms. A total of fourdifferent experiments, which

are described in subsequent sections, were run to examine various aspects of the d2EM

algorithm.
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Figure 3.3: Sample dual-head sinograms used in the 2D phantom experiments. Top row:

annulus phantom for the concave-down-up kinetic behaviour; Bottom row: ball phantom

for the concave-down behaviour. Left column shows noiseless data, middle column shows

medium-noise data, and right column shows high-noise data.Noisy data was used only in

Experiments 3 and 4.

Five different figures of merit were defined to assess the performance of dEM and

d2EM, and the quality of the reconstructed images. The first twofigures defined below

were examined as functions of the number of iterations, in order to assess the convergence

properties of either algorithm. The last three figures of merit were used to assess the quality

of images after a fixed number of iterations had been run, and were only examined in

Experiments 3 and 4.

1. Residual:The residual was defined as

r(n) =
∥

∥

∥C ′x
′(n) − p

∥

∥

∥

2
(3.1)

wheren is the number of iterations,p is the simulated projection data, andC ′ is the slow-

rotation dynamic SPECT system matrix as defined in (1.20).x
′(n) is the vector representing

the dynamic image at iterationn, obtained by inverting (2.1) for dEM or (2.9) for d2EM.

The residual is a measure of how well the current image estimate fits the projection data,
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under the assumed system model given byC ′.

2. Total relative error: Total relative error was given by

E(n) =
∥

∥

∥
x

′(n) − x
′true

∥

∥

∥

2

/

∥

∥

∥
x

′true
∥

∥

∥

2
× 100%. (3.2)

wherex
′true is the original phantom used to generate the projections.E(n) is a measure

of how close the current image estimate is to the true image. Note that since the slow-

rotation dynamic SPECT reconstruction problem is highly underdetermined, two solutions

with vastly different values ofE(n) could produce the same residualr(n).

3. Relative error of mean TAC in regions of interest: One typical method of analyzing

a dynamic image is to draw a region of interest (ROI) over partof the image and observe

the time activity curve for that region, averaged over all voxels. Thus, assessing how well

the reconstruction method recovers the mean TAC for a regionis a good practical measure

of performance. For both the annulus and ball phantoms, ROIscorresponding to the four

dynamic regions r1 to r4 were defined, as given by the true phantom boundaries. The1×64

vector representing the mean TAC for each region, obtained from the reconstructed image,

was denoted byτ , and the equivalent vector representing the true mean TAC was denoted

by τ true. The relative TAC error for each region was then defined as

ε = ‖τ − τ true‖2

/

‖τ true‖2 × 100%. (3.3)

This error measure indicated how well the reconstructed image agreed with the truth in

the aggregate sense, in the most important dynamic regions of the image.

4. Weighted relative standard deviation between voxel TACs: Since the dynamic ac-

tivity in every ROI of the phantoms was known to be homogenous(i.e. the same in every

voxel), it is desirable for this to be reflected in the reconstructed images as well. While it

is not reasonable to expect the TACs in every voxel of a reconstructed ROI to be identical,

ideally there should not be a great deal of variation betweenthem. In order to assess the

amount of variation, a weighted relative standard deviation for each ROI, summed over all

time frames, was calculated by

σ̄ =
K

∑

k=1

Wk

σk

νk

× 100%, (3.4)
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whereσk is the standard deviation between true and reconstructed activities in every voxel

of the ROI at timek, νk is the true activity at timek for a voxel in the ROI, and the weighting

factor is

Wk = νk

/ K
∑

k′=1

νk′ .

The weighting ensured that the relative variation in time frames where the activity level

was high was weighted more heavily than variation in time frames of low activity.

5. Average relative shape error:Even if the amount of variation between TACs within

an ROI is similar for two different images, one may still be judged to be superior to the

other. Consider the example presented in Figure 3.4. Supposewe have an ROI consisting

of two voxels, where the true dynamic behaviour is a constantcurve (dashed line). In

reconstructed image A, the TAC in one voxel of the ROI has increasing behaviour, and the

TAC in the other has decreasing behaviour (solid lines, leftplot). In Image B, both voxels

are reconstructed as having constant behaviour, but with the incorrect magnitude (right

plot). In both cases, the variation within the ROI, as would be quantified bȳσ, is the same.

Image B, however, has recovered the correct, constant dynamic behaviour in both voxels,

while Image A has not. The TACshapesprovided by Image B are in better agreement with

the truth than those provided by Image A, and thus this image should be judged to have

higher quality.

In order to quantify the consistency of TAC shapes within each ROI, then, an average

relative shape error was calculated by:

S =
1

I ′

I′
∑

i=1

(

‖τ true− αiτi‖2

/

‖τ true‖2

)

× 100% (3.5)

whereI ′ is the number of voxels in the ROI,τi is the1 × 64 vector representing the re-

constructed TAC in voxeli, τ true is the true TAC vector for that ROI, andαi is the scaling

factor which minimizes the 2-norm difference between the two vectors:

αi =
τ true · τi

τi · τi

,

where· is the dot product between the two vectors. The average relative shape error mea-

sured how consistent the shapes of TACs were with the truth inside each ROI, while ignor-

ing their magnitudes. If the shape of the TAC in a voxel of the reconstructed image was
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Figure 3.4: Example motivating the use of the shape errorS to quantify the consistency of

TAC shapes within an ROI. The true TAC within the ROI, which consisted of two voxels,

is indicated by the dashed line, and the reconstructed TACs are indicated by solid lines for

both Images A and B.

close to the true shape, then the difference between them would be small after scaling; if

their shapes were different, then the difference would still be relatively large.

3.3 Experiment 1: fixed and non-fixed difference tensors

Both dEM and d2EM require adjusting the difference tensor in between iterations of the

algorithm in order to determine the correct dynamic behaviour. The goal of this experiment

was to determine to what extent the need to adjust the difference tensor affects convergence

of either algorithm. This information was useful in interpreting the results of subsequent

experiments.

In this experiment, a first set of reconstructed images was created where the true times

of peak activity, or times of inflection, for every voxel wereprovided to the dEM and

d2EM algorithms, respectively. That is to say that the correctdifference tensorA or B

was provided, and not allowed to change in between iterations. This experiment was then

repeated for the general case, where the difference tensor was unknown and had to be

adjusted between iterations. For the dEM reconstruction, the TAC in every voxel was

initially assumed to peak at the midway point of the acquisition (the 32nd time frame). For

d2EM, the TAC in every voxel was assumed to be concave down-up, with the inflection
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Figure 3.5: Residual valuesr(n) as a function of the number of iterations for the annulus

phantom reconstructions (left, middle and right columns),for both the fixed tensor (top

row) and non-fixed tensor (bottom row) experiments. Y-values are on a logarithmic scale.

point occurring in the 32nd time frame. The expectation was that the performance of both

algorithms should be better in the first case than in the second case, where the correct

difference tensor was not knowna priori.

Figures 3.5 and 3.6 show the behaviour of the residualr(n) and total relative errorE(n)

for the reconstruction of the three annulus phantoms using both dEM and d2EM. The top

row of both figures show the results when the tensor was held fixed at the correct configu-

ration, while the bottom row shows the results when the tensor was adjusted between every

iteration after a generic initial assumption. The behaviour of r(n) andE(n) for the three ball

phantom experiments were similar.

The most noticeable difference between the fixed and non-fixed tensor reconstructions

was that the convergence of bothr(n) andE(n) was no longer monotonic when the tensor

was not fixed. For the phantoms with concave-up-decreasing and concave-down-up TACs,
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Figure 3.6: Total relative error valuesE(n) as a function of the number or iterations for the

annulus phantom reconstructions (left, middle and right columns), for both the fixed tensor

(top row) and non-fixed tensor (bottom row) experiments.

the errors briefly increased between 30 and 40 iterations, before monotonically decreasing

again. It is evident when looking at the reconstructed images that this occurs as a result of

the adjustments being made to the difference tensor during these iterations. As an example,

Figure 3.7 shows average TACs in region 2 of the annulus phantom with concave-down-

up kinetics. As the location of peak activity/inflection point shifts left towards the correct

location, the error between the reconstructed and true timeactivity curves briefly increases

before the correct shape is found.

For every experiment, whether dEM or d2EM was used, the value ofr(n) at the 500th

iteration was smaller if the tensor was not fixed than if it washeld fixed; however, the value

of E(n) was almost always smaller in the fixed tensor case. This illustrates the dichotomy

between the residual and image error for a large, underdetermined problem such as this one.

By relaxing the conditions on the solution (i.e. making the tensor non-fixed), one is able
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Figure 3.7: Non-monotonic convergence of dEM and d2EM when the difference tensor

is adjusted between iterations. The true TAC in region 2 of the concave-down-up ball

phantom is shown as a dashed line, while the average TAC in r2 of the reconstructed dEM

(top row) and d2EM (bottom row) images is shown as a solid line. The error between the

true and mean TAC increases briefly in iterations 30 and 35 as the algorithm determines the

correct locations of peak activity (for dEM) or inflection point (d2EM).

to better fit the data, even though the solution is actually farther from the truth than if the

tensor is held fixed at the correct configuration. Thus, the method that provides the smallest

residual is often not providing the most accurate image. This also held when comparing

the images generated by dEM vs d2EM for both the fixed and non-fixed experiments; in

almost every case the method that provided the lower error (usually d2EM) had the higher

residual.

Finally, although the values ofE(n) when the tensor was held fixed were always smaller

than the corresponding values in the non-fixed case, the discrepancy was usually not large.

This is somewhat surprising given that the true behaviour ofthe phantom was known in

the fixed experiment, but had to be determined in the non-fixedcase. Thus, the dEM and

d2EM algorithms were both able to determine the correct behaviour quickly when it was
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not known beforehand.

3.4 Experiment 2: comparison of transition schemes

Two methods for allowing d2EM to adjust the assumed dynamic behaviour in a voxel were

discussed in Section 2.3.2; the five-state transition scheme illustrated in Figure 2.4, and the

two-state transition scheme illustrated in Figure 2.5. In this experiment, these two schemes

were compared by re-running the d2EM reconstructions from Experiment 1 without hold-

ing the tensor fixed, but with the initial assumption of concave-up-down behaviour with the

inflection point occurring in the 32nd time frame. Concave-up-down behaviour is a poor

initial assumption for both concave-down-up and concave-up-decreasing behaviour, since

the inflection point must be shifted earlier through the concave-down and concave-down-

up states before arriving at the correct one (see Figures 2.4and 2.5). Thus, the choice of

transition rule has a larger impact on the convergence of thealgorithm than if an initial

behaviour that is “close” to the true one is chosen, as was thecase in Experiment 1.

Convergence results of this experiment are shown in Figure 3.8. These results clearly

show the superiority of the two-state transition model, which provided much better con-

vergence in the concave-up-decreasing and concave-down-up experiments. The five-state

transition model struggled to successfully adjust to the correct behaviour in these cases, as

a result of the fact that the transition from the concave-down state to the concave-down-up

state required the concavity of TACs to approach zero in the final time frame. Figure 3.9

shows an example from the reconstruction of region 2 of the concave-down-up ball phan-

tom. While the voxel-level TACs are able to adapt smoothly to the correct behaviour under

the two-state transition model, when the five-state model isused, several TACs are “stuck”

in the concave-down state, even after many iterations. The TACs that do adjust to the

concave-down-up state have their magnitudes scaled to veryhigh values to compensate for

the voxels that are stuck in the concave-down state. As a result, the E(n) values shown in

Figure 3.8 actually increased sharply after 150 iterationsin these two cases.

The convergence for the phantom with concave-down TACs (right column, Figure 3.8)

was essentially the same using either transition scheme. This is due to the fact that adjust-

ing from concave-up-down behaviour to concave-down behaviour does not require passing

through the concave-down state, which was the main obstruction to the convergence of the
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Figure 3.8: Comparison of the convergence behaviour ofr(n) (top row) andE(n) (bottom

row) for the three ball phantom experiments (left, middle and right columns), using d2EM

with both of the two proposed transition schemes.r(n) values are shown on a logarithmic

scale. Results obtained for the annulus phantom were similar.

algorithm when the five-state model was used for the other twocases. This also illustrates

that d2EM is able to reconstruct concave-down TACs just as well when using the two-state

model as when using the five-state model, despite the fact that the two-state model does not

include the concave-down tensor (2.12). Finally, we note that even though the two-state

model was successfully able to adapt to the correct behaviour despite the poor initial as-

sumption, the error value to which it converged was still significantly larger than when a

better initial estimate of concave-down-up behaviour was provided (cf. Figure 3.6, bottom

row). This illustrates that the d2EM method is sensitive to the initially assumed behaviour

regardless of the transition rule that is used, and that one should take care to choose a
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Figure 3.9: Illustration of the failure of the five-state model to adjust to correct kinetic

behaviour. The true TAC in region 2 of the concave-down-up ball phantom is shown as

a dashed line, while eight randomly selected voxel TACS extracted from r2 of the recon-

structed d2EM images using the five-state transition scheme (top row) and two-state tran-

sition scheme (bottom row) are shown as solid lines. Number of iterations is shown in

column headings.
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suitable initial condition, depending on what the expectedkinetics are.

3.5 Experiment 3: effect of noise

In this experiment, Poisson noise was added to the projection data in order to assess its

effect on reconstructions performed using the dEM and d2EM algorithms. Three different

levels of noise (high, medium and low) were added to every setof projection data. Since

Poisson noise is proportional to the square root of the counts present in the projection

data, the noise level was adjusted by scaling the counts prior to adding noise. Specifically,

“medium-noise” projection data was generated by adding Poisson noise to the data used

in the first two experiments; low-noise data was generated bymultiplying the noiseless

data by 4 before adding noise, and high-noise data by first dividing the noiseless data by a

factor of 4. It is difficult to quantify the levels of noise absolutely, since they varied in time

along with the count rates in the different dynamic regions.As an example, for the annulus

phantom with concave down-up behaviour, the maximum pixel intensity at the five-minute

mark for the “medium noise” projection data was 210, corresponding to a noise level of

7%; at the 15-minute mark it was 140, corresponding to a noiselevel of 8.5%. If noise is

quantified in this way, then the “medium” noise level was 7 to 11% for the annulus phantom

data, and slightly lower for the ball phantom data, since thedynamic regions were larger,

which produced higher count levels in the projection data. The noise level was then twice

as great in the high-noise data compared to the medium-noisedata, and half as great in the

low-noise data. Some examples of the noiseless and noisy projection data were presented

in Figure 3.3.

Adding noise had little effect on the convergence of the residual; just as in the noiseless

case,r(n) decreased monotonically with the number of iterations – aside from a brief period

initially when the tensor was being adjusted. The algorithms were now simply fitting noisy

instead of noiseless data. Convergence ofE(n) was significantly different, however. In par-

ticular, after some number of iterations,E(n) began to monotonicallyincreaseas more itera-

tions were performed. As discussed in Section 1.1.3, this phenomenon is well-documented

for MLEM, and occurs because as the algorithm continues to maximize the likelihood that

the image fits the noisy data, the image itself becomes noisier [30]. Figure 3.10 shows the

behaviour ofE(n) for several different noise levels and kinetic profiles. It is apparent from
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Figure 3.10: Effect of noisy projection data on the convergence of total relative error,E(n).

Plots are shown for low (top row), medium (middle row) and high (bottom row) levels of

noise, for the three ball phantoms. (Left, middle and right columns).

this figure that d2EM performs better in the presence of noisy data than dEM does, espe-

cially if the level of noise in the projection data is high. For both algorithms, the solution

diverges from the truth more quickly in the presence of more noise.

Based on the convergence plots and visual examination of the images, it was determined

that 80 iterations was a reasonable cut-off point at which toanalyze the actual images

produced by dEM and d2EM. Running further iterations made the images noisier without

appreciably improving the accuracy of TACs, in general. Images from two of the phantom

simulations are shown in Figure 3.11. Since a total of eighteen simulations were run (six
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phantoms, 3 noise levels), it is not possible to comprehensively show the results of all of

them, but Figure 3.11 is representative of the results in general. Visually, the d2EM images

tended to be somewhat less noisy than the dEM reconstructed images. For instance, in

the last column of both images shown in Figure 3.11, the d2EM image is noticeably less

speckled than the corresponding dEM image. Since the d2EM constraint links time frames

of the image together more strongly, the effect of noise on the images has been better

controlled.

More differences are apparent when examining representative voxel-level TACs from

the dEM and d2EM images, as in Figure 3.12. The behaviour of the TACs in the dEM im-

ages is erratic and often incorrect. Many TACs contain sharp spikes as a result of the noise

in the image. The d2EM constraint prevents these spikes from occurring, since asharp peak

in one voxel would require that the concavity of the TAC change twice. The behaviour of

TACs at the voxel level is not always correct in the d2EM image either (for instance, many

of the TACs in the d2EM images shown in Figure 3.12 have washout rates that are toofast

or too slow), but in general they have more consistent shapesand are in better agreement

with the true TAC than those obtained from dEM. There is stillconsiderable variation in

magnitude among voxel level TACs in both the dEM and d2EM images, however.

Figure 3.13 shows the mean TACs extracted from the four dynamic regions in the same

two phantom reconstructions, for both the dEM and d2EM images. At the low and medium

noise levels, the discrepancy between dEM and d2EM was not very apparent when looking

at the mean TACs. For instance, in the top set of plots in Figure3.13 (concave-down ball

phantom, medium noise level), the mean TACs for the dEM and d2EM images are quite

similar. At the high noise level, more of a difference was visible as the mean TAC in the

dEM images was more severely affected by the noise.

The error measuresε, σ̄ andS (Equations 3.3 to 3.5) were calculated for each of the

four dynamic regions in every image. The full results of the annulus and ball phantom

simulations are tabulated in Tables A.1 and A.2 of Appendix A, respectively. Several sum-

mary statistics, presented in Table 3.2, were also computedby grouping the error measures

together. The average of each error measure within a group was calculated for both the

dEM and d2EM reconstructions, and the percentage improvement was defined by

Improvement (%)= (dEM average− d2EM average)

/

dEM average× 100% (3.6)
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Figure 3.11: Images showing time frames from two representative reconstructed images

after 80 iterations. Frames from the true image (top row), dEM reconstructed image (mid-

dle row) and d2EM reconstructed image (bottom row) are shown at various time points

(horizontal axis). Images are scaled to the maximum value inthe true image.
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Ball – concave-down – medium noise

Annulus – concave-down-up – high noise

Figure 3.12: Representative TACs from voxels in the four different regions (r1, r2, r3 and

r4) of the two selected reconstructed images after 80 iterations. Red line shows true TAC

for that region, while thin black lines show TACs from 10 randomly selected voxels within

the region. Top row of each set of plots corresponds to the dEMimage, bottom row to the

d2EM image.
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Figure 3.13: Mean time activity curves from the four different regions (r1, r2, r3 and r4) of

the two selected reconstructed images after 80 iterations.Dashed line shows true TAC for

that region, solid line with circles shows mean TAC for that region extracted from the dEM

image, and solid line with crosses shows mean TAC extracted from d2EM image.
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Paired t-testing was also performed to compare the error measures obtained from the dEM

and d2EM images, in order to assess the significance of any improvements made by d2EM.

A p-value of 0.05 or less was considered to be a significant improvement.

To compute these summary statistics, the simulations were grouped in three ways: by

noise level (high, medium or low), by kinetic behaviour (concave-up-decreasing, concave-

down-up and concave-down) and by geometry (annulus, ball).So, for instance, the average

value ofε for the low noise images reconstructed using dEM, which is the top left-hand

value in Table 3.2, is the average of the 24ε measures corresponding to the four regions

in all six low-noise simulations (three annulus, three ballphantoms). A paired t-test was

then performed on the same 24 values to produce thep-value given in the same table. The

statistics grouped by noise and kinetic behaviour are all based on 24 values each, while the

statistics grouped by geometry are based on 36 values each (four regions, times three noise

levels, times three kinetic behaviours). A final set of statistics over all the simulations (72

values) is also given in Table 3.2.

Referring to Tables A.1 and A.2, the relative error in the meanTACs within regions,ε,

was improved by using d2EM in nearly every case. The lone exceptions were for region

1 of the phantoms with concave-up-decreasing and concave-down-up TACs. These two

cases featured the fastest kinetic behaviour of any that were simulated, with wash-out half-

lives of 15-30 seconds. Since the TACs in these regions changed rapidly, they were the

least smooth, so the d2EM constraint was not as effective as in regions where the kinetics

were more gradual. In most regions, however,ε was considerably improved. Results of

paired t-testing indicated a significant improvement over all groups of experiments (see

Table 3.2). Improvements toε were generally more significant at higher noise levels and

for simulations with slower kinetic behaviour, such as those with concave-down TACs.

Improvements to the weighted standard deviation within regions, σ̄, were not as great

as toε, and failed to pass the significance test in several cases. This is reflective of the

fact that there is considerable deviation in magnitude among TACs in images reconstructed

with both dEM and d2EM, as is visible in Figure 3.12. Despite this fact, the paired t-test did

indicate that d2EM significantly improved̄σ in several cases, particularly in the simulations

with high noise levels and slow tracer kinetics.

The shape errorS, which ignores the magnitudes of voxel TACs, was improved in most

regions; again with the exception of those regions with veryfast kinetic behaviour. Im-
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Noise Kinetics Geometry

ε σ̄ S ε σ̄ S ε σ̄ S

dEM avg.

Low

13.1 23.2 14.7

c-u-d

17.1 34.3 21.5

Annulus

17.4 36.7 23.4

d2EM avg. 11.7 22.5 12.5 14.7 34.3 19.7 14.3 35.0 18.2

Imprv. (%) 10.6 3.0 14.7 14.3 -0.2 8.6 17.6 4.7 22.4

p-value 1.8E-2 1.1E-1 1.7E-2 1.4E-4 4.5E-1 2.2E-2 1E-5 5.3E-3 2.1E-5

dEM avg.

Mid

14.4 30.0 19.9

c-d-u

18.5 39.4 26.7

Ball

12.5 32.1 20.4

d2EM avg. 12.3 29.2 15.7 15.5 37.4 22.1 10.6 29.8 15.8

Imprv. (%) 14.4 2.6 16.7 16.2 5.1 17.3 15.3 7.2 22.6

p-value 1.4E-3 1.4E-1 4.5E-3 5.6E-3 3.8E-2 5.3E-3 7.5E-4 2.0E-3 4.5E-5

dEM avg.

High

17.4 50.1 32.1

c-d

9.2 29.5 17.5

All

14.9 34.4 21.9

d2EM avg. 13.4 45.5 22.7 7.2 25.4 9.2 12.5 32.5 17.0

Imprv. (%) 23.0 9.2 29.4 21.8 13.9 47.5 16.6 5.9 22.5

p-value 3.9E-5 6.4E-5 2.3E-7 4.2E-7 1.3E-6 5.8E-9 5.1E-8 5.1E-5 5.2E-9

Table 3.2: Summary statistics of data presented in Tables A.1 and A.2. c-u-d, c-d-u and c-d refer to the concave-up-

decreasing, concave-down-up and concave-down kinetic behaviours, respectively. “Imprv (%)” refers to the percent

improvement (3.6).p-values obtained from paired t-testing are given in scientific notation.
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provements inS were particularly noticeable in the simulations with concave-down TACs,

which had the most gradual kinetic behaviour. In the dEM images, the shapes of voxel

TACs in these simulations varied considerably, while in the d2EM images they were much

more consistent.

All three error measures tended to be larger in the annulus phantom experiments than

in the ball phantom experiments, whether dEM or d2EM were used. This discrepancy is

reflective of the fact that the dynamic regions of the ball phantom were larger and better-

separated than in the annulus phantom. The use of d2EM over dEM reduced errors for both

geometries, however. Taking the experiments as a whole, allthree error measures were

significantly reduced by using d2EM over dEM. Improvements were the greatest in those

simulations that involved high noise levels and/or more gradual tracer kinetics. Of the three

error measures,ε andS were improved by a greater margin thanσ̄.

3.6 Experiment 4: d2EM versus OSEM

A final experiment was run to provide context for some of the results of Experiment 3.

Specifically, although using d2EM over dEM generally reduced all three measures of error,

some error values seemed large even when d2EM was used. This was particularly true ofσ̄,

which quantified the deviation among TACs within each homogenous dynamic region. It

is not clear what constitutes a “low” value ofσ̄, however, since a value of zero would mean

that the image has been perfectly reconstructed, which is not realistically achievable. In

order to provide context, an additional set of images was produced using the static OSEM

algorithm (described in Section 1.1.3).

Since OSEM is a static reconstruction algorithm, it is unable to produce a dynamic

image from the slow-rotation data used by dEM and d2EM, where only two views of the

object are available for every time frame. For the OSEM reconstructions, then, projection

data consisting of 64 views around the object foreachof the 64 time frames was used,

modeling a ring SPECT-like system with 64 detectors. Thus, 32times as many views

were acquired per time frame (compared to the projection data used by dEM and d2EM),

while the counts for each view were not reduced, as they wouldbe by acquisition using

a fast-rotating camera. This is a highly idealized situation; the intent was to provide a

“gold standard” against which to compare the d2EM images, using a well-established image
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reconstruction method. Six iterations of OSEM with 8 subsets were used to reconstruct

each frame of the dynamic images separately. The same three kinetic profiles and three

noise levels were used as in Experiment 3, but only the ball phantom geometry was used.

Time frames from two representative images are shown in Figure 3.14. Visually the

OSEM images are superior, which is to be expected given the higher quality of the data

used to reconstruct them. In particular, in the first frame ofthe d2EM images, the outlines

of the four dynamic regions are visible even though these regions do not yet contain any

more activity than the background. This is a consequence of the fact that d2EM (and dEM)

link the time frames of the image together, so that information from projection data ac-

quired later can influence earlier time frames. In the OSEM image, only the projection data

corresponding to that time frame was used.

Regions with fast kinetics were also much better reconstructed using OSEM. Since

d2EM only had a small number of views around these regions during the time period when

the kinetics were changing rapidly, it tended to underestimate the amount of activity in

these regions as a result of blurring. For instance, in the concave-down-up reconstruction

(bottom image, Figure 3.14), region 1 is apparent at 1 minutein the image reconstructed

with OSEM, but is hardly visible in the image reconstructed with d2EM. Aside from these

regions, however, the visual quality of the d2EM image was comparable to that obtained

using OSEM, despite the much smaller amount of data used.

Representative voxel TACs from the d2EM and OSEM images are shown in Figure 3.15.

The TACs in the OSEM images oscillate considerably as a resultof the fact that no temporal

regularization was included in the reconstruction algorithm, and there is also considerable

variation in the magnitude of the TACs in many regions. Mean TACs from two simula-

tions are shown in Figure 3.16. In most regions, the mean TACs obtained from images

reconstructed with either method are similar. Again, the exceptions are in the two regions

with very fast kinetics (r1 of the phantoms with concave-up-decreasing and concave-down-

up TACs), where the d2EM TAC is underestimated as a result of blurring due to limited

angular information1.

The calculated error values for all the OSEM and d2EM reconstructed images are tab-

ulated in Table A.3. From these results, it is apparent that some variation among TACs, as

quantified bȳσ, is inevitable using either approach. For low-noise simulations, the value of

1This effect is discussed further in Chapter 4.
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Figure 3.14: Images showing time frames from two representative reconstructed images

after six iterations of OSEM per frame (middle row) and 80 iterations of d2EM (bottom

row). Frames are shown at various time points (horizontal axis). Images are scaled to the

maximum value in the true image (top row).
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Ball – concave-down – medium noise

Ball – concave-down-up – high noise

Figure 3.15: Representative TACs from voxels in the four different regions (r1, r2, r3 and

r4) of the two selected reconstructed images after 6 iterations of OSEM (8 subsets) per

frame (top row) and 80 iterations of d2EM (bottom row). Red line shows true TAC for

that region, while thin black lines show TACs from 10 randomlyselected voxels within the

region.
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Figure 3.16: Mean time activity curves from the four different regions (r1, r2, r3 and r4)

of the two selected reconstructed images after 6 iterationsof OSEM (8 subsets) per frame

and 80 iterations of d2EM. Dashed line shows true TAC for that region, solid line with

squares shows mean TAC for that region extracted from the OSEM image, and solid line

with crosses shows mean TAC extracted from d2EM image.



CHAPTER 3. EXPERIMENTAL VALIDATION OF D2EM 68

ε σ̄ S

OSEM avg. 5.1 24.2 16.5

d2EM avg. 6.5 26.5 11.2

Improvement (%) -26.6 -9.3 32.3

p-value 1.5E-4 6.0E-4 1.3E-6

Table 3.3: Summary statistics of error values presented in Table A.3, taken over all experi-

ments.

σ̄ within a region was never less than 15%, while in the high-noise simulations the values

were typically in the range of 30-50%, using either method. Values ofS, on the other hand,

were generally lower using d2EM, aside from in regions with fast kinetics, as a result of the

smoothness constraint imposed by d2EM.

Summary statistics, calculated over all the experiments, are given in Table 3.3. These

summaries exclude values from region 1 of the phantoms with concave-up-decreasing and

concave-down-up TACs, which were considered to be outliers due to the poor performance

of d2EM in these regions. As mentioned previously, the dramatically larger error values for

these regions obtained from d2EM occurred largely as a result of the fast kinetics in these

regions coupled with the limited projection data availableto d2EM. From the summary

statistics, it is apparent that bothε and σ̄ were significantly lower in the OSEM recon-

structions, whileS was significantly smaller using d2EM. Nonetheless, this experiment has

shown that the variation in TAC magnitudes observed in the d2EM reconstructions is, to a

large extent, intrinsic to the reconstruction problem itself. Given that this variation is visi-

ble even in images reconstructed using much more complete projection data and OSEM, it

is not surprising that it is also apparent in the images reconstructed using d2EM and dEM.



Chapter 4

Artifacts in slow-rotation dynamic

SPECT

Single slow-rotation dynamic SPECT reconstruction is a verychallenging problem, due to

its highly underdetermined nature. Consider that in conventional SPECT reconstruction,

it would be impossible to accurately reconstruct a image based on only one to three views

of the object; yet in slow-rotation dynamic SPECT, this is typically the amount of data

that is available for every time frame of the image. Approaches such as dEM and d2EM

are successful because the temporal constraints that they impose allow the reconstruction

of any time frame of the image to be guided by geometric information acquired in earlier

and later time frames. Nonetheless, there are consequencesarising from the fact that the

projection data corresponding to every time frame consistsonly of a small number of views.

In this chapter we identify and discuss artifacts that occurin dynamic SPECT images

reconstructed from a single slow camera rotation, as a result of this fact. These artifacts

can be divided into two categories: those caused by fast tracer kinetics, and those caused

by the effects of attenuation and collimator blurring. Artifacts due to fast kinetics have

been observed and discussed in other slow-rotation dynamicSPECT studies (e.g. [68, 16]),

and we mention them here only briefly. Conversely, while the importance of correcting

for attenuation (and to a lesser extent, collimator blurring) has been discussed in existing

literature on slow-rotation dynamic SPECT (e.g. [20, 12, 16]), in this chapter we present

new results and analysis indicating that past studies have not properly compensated for

these effects. It is very challenging, in fact, to properly separate the effects of attenuation

69
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on projection data acquired by a slowly rotating camera fromthe effects of the actual tracer

kinetics. In the last section of this chapter, we propose twopost-reconstruction, template-

based approaches to compensate for these artifacts. The effectiveness of these approaches

is investigated in Chapter 5.

4.1 Artifacts due to fast kinetics

In many dynamic NM applications, the kinetic behaviour of the tracer is rapid compared to

the acquisition time typically used in SPECT. Following injection of the tracer, for example,

the concentration in the blood typically peaks sharply and then decreases to an equilibrium

state in less than one minute. This means that if a region consisting of mostly blood (e.g.

the right ventricle blood pool of the heart) is being imaged,then its dynamic behaviour is

captured by only a small number of views acquired by a slowly rotating camera. Thus,

there is insufficient angular information to accurately reconstruct these regions.

An analogy can be drawn to static SPECT reconstruction where views over fewer than

180◦ are acquired. Figure 4.1 shows an example from a simple digital phantom simulation.

The geometry of this static phantom was the same as the ball geometry used in the phantom

experiments of Chapter 3, with activity concentration of 10 units/voxel inside the four small

regions and 1 unit/voxel in the background region. The projection data corresponding

to the 180◦ acquisition (left column) consisted of 32 views, while the data used for the

reconstruction in the right column simulated two detectorsat 90◦ to one another, acquiring

eight views each over 45◦. Since the data used to reconstruct the images in the right column

were incomplete, noticeable streaking is visible, and the circular regions themselves are

distorted.

Similar effects are visible in images reconstructed using dEM or d2EM, when rapid

kinetics are present in some regions. Figure 4.2 shows reconstructions of the concave-

down-up phantom used in Chapter 3, which featured relativelyfast kinetics in regions 1

and 2. (See Figure 3.2 and Table 3.1 for the phantom description). The kinetics in region 1,

in particular, consisted of complete uptake and washout of the tracer within the first two

minutes, at which point each camera head in the simulated acquisition had rotated only

about 33◦. Thus, region 1 appears distorted in the images reconstructed using either dEM

or d2EM (bottom two rows of Figure 4.2, red circled region). The nature of this distortion is
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Figure 4.1: Simulation showing image artifacts caused by insufficient angular sampling

in static SPECT reconstruction. Images were reconstructed using 20 iterations of MLEM.

Arcs indicate the angles over which projection views were taken for both cases. Projection

data did not include attenuation, collimator blurring or noise.

very similar to the one observed in the static image in Figure4.1. If 64 views of the object

are available for every time frame, as in the top row of the figure (where each frame was

independently reconstructed using OSEM), this distortionis not present. Region 2 is also

somewhat distorted in the images reconstructed with dEM andd2EM, due to its relatively

fast kinetics, while regions 3 and 4 are well-reconstructed. This effect was observed in

Section 3.6 of the previous chapter, when comparing images reconstructed with d2EM

against the images reconstructed using OSEM based on complete angular information.

4.2 Artifacts due to attenuation

None of the simulations studied so far have included the effects of collimator blurring or

attenuation. As discussed in Chapter 1, these physical factors degrade image quality if they

are not accounted for in the reconstruction algorithm. In slow-rotation dynamic SPECT, it

is particularly important to account for the effects of attenuation, since the varying amount

of attenuating material between a dynamic region and the detector, caused by rotation of

the camera, produces similar effects on the projection dataas the actual kinetic behaviour

of the tracer in that region. If the detected counts corresponding to some region diminish

as the camera rotates, for instance, then this may occur as a result of washout of the tracer,

or due to an increased amount of attenuating material between that region and the camera.



CHAPTER 4. ARTIFACTS IN SLOW-ROTATION DYNAMIC SPECT 72

Figure 4.2: Image artifacts caused by fast kinetics in slow-rotation dynamic SPECT re-

construction. Top row: time frames of image reconstructed using 6 iterations of OSEM

(8 subsets) with 64 views around the object for each time frame. Bottom two rows: time

frames of images reconstructed using 80 iterations of dEM and d2EM, respectively, with

only two views of the object per time frame. X-axis shows the time frame (in seconds)

corresponding to each column. The red circle indicates region 1, which was poorly recon-

structed. Projection data did not include attenuation, collimator blurring or noise.
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In conventional SPECT image reconstruction using iterativemethods such as MLEM,

the effects of attenuation and collimator blurring are typically included in the system ma-

trix, ensuring that they are accounted for during the forward and backward projection steps

of the reconstruction algorithm. Since the system matrix used in slow-rotation approaches

such as dSPECT is simply a reordering of the conventional system matrixC into a block

diagonal matrixC ′ (see Figure 1.7), it stands to reason that the effects of attenuation and

collimator blurring can be accounted for in dSPECT simply by incorporating them into the

dynamic system matrix. This has been the approach taken in previous dSPECT studies

(e.g. [19, 12, 18]). In this section, however, we show that simply modeling attenuation

and collimator blurring in the dynamic system matrix does not adequately correct for their

effects during image reconstruction. We will focus on effects caused by attenuation, as they

are much more severe than those caused by collimator blurring.

As in the previous section, an analogy can be made to static SPECT reconstruction. One

established property of MLEM is that including attenuationand depth-dependent resolu-

tion in the system matrix does not uniformly correct for their effects in the reconstructed

image [30]. An example is presented in Figure 4.3, using the same static phantom as in

Figure 4.1, but including attenuation with coefficientµ = 0.15 cm−1 within the object.

The valueµ = 0.15 cm−1 was used because this is the attenuation coefficient for 140 kEV

photons (such as those emitted by99mTc) in water. The phantom is 128×128 voxels, with

a voxel size of 5 mm/side.

When views are only taken over a 180◦ arc (centre column of Figure 4.3), regions

on the opposite side of the object (r3 and r4) are severely distorted due to attenuation.

Many iterations of MLEM are required to eliminate this effect (see bottom row); typically,

more iterations than are practical in the presence of noisy data. Only with views taken over

360◦ (right column) does MLEM accurately compensate for attenuation within a reasonable

number of iterations, providing accuracy comparable to thecase where no attenuation is

present (left column). Even if views are taken over 360◦, however, regions in the centre of

an attenuating medium can suffer from similar effects; see Figure 2 in [30], for example.

We now extend this reasoning to single slow rotation dynamicSPECT. If a dual-head

camera is used, the projection data corresponding to every time frame consists of only two

views of the object – usually from heads placed at 90◦ to one another. In these two views,

counts from regions on the far side of the object are more attenuated than from regions on
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Figure 4.3: Simulation consisting of static images reconstructed after 20 and 200 itera-

tions of MLEM, showing effects of attenuation. Image reconstructions in centre and right

columns included attenuation withµ = 0.15 cm−1 within the object. Projection data did

not include noise or collimator blurring, and consisted of 32 views over the bottom 180◦

arc for left and middle columns, and 64 views over 360◦ for the right column.

the near side. As was the case in the static image reconstruction shown in Figure 4.3, the

quality of the reconstructed image on the far side of the object at any time frame suffers as

a result, despite the inclusion of attenuation modeling in the system matrix.

We demonstrate this fact with another simple phantom experiment using the ball ge-

ometry. In this experiment, all four dynamic regions had thesame dynamic behaviour,

corresponding to the TAC from region 3 of the concave down-upphantom (see Figure 3.2).

Acquisition was once again modeled as a dual-head, 90◦ mode acquisition where each head

made 64 stops over a 360◦ counterclockwise rotation, with the heads starting on the left and

bottom sides of the object. Two sets of projection data were created: one without attenua-

tion, and one assumingµ = 0.15 cm−1 inside the object. Images were then reconstructed
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using 80 iterations of dEM, using the appropriate system matrix (i.e. with or without at-

tenuation modeling). Noise and collimator blurring were not included in the projection

data. Since the kinetic behaviour in each of the four regions(r1 – r4) was identical, any

discrepancies in the TACs reconstructed in each region must have occurred as a result of

attenuation effects.

Time frames of the reconstructed images, and mean TACs extracted from them, are

shown in Figure 4.4. The mean TACs for the attenuation-free image (circular markers) are

the same in all four regions, but the TACs in the image with attenuation (cross markers)

vary considerably due to attenuation effects. For instance, since the heads remained close

to r1 through the first 10 minutes of the acquisition, when theactivity concentration was

changing most rapidly, the effect of attenuation on the TAC for this region is negligible. In

r3, which was on the opposite side of the object from the camera heads through much of the

first 10 minutes of acquisition, the TAC is severely depressed. Effects due to attenuation

are also visible in the TACs for r2 and r4.

The choice of reconstruction algorithm has an impact on the severity of these effects.

Figure 4.5 shows results of the same experiment, using 80 iterations of d2EM to reconstruct

the images instead of dEM. The artifacts the TACs extracted from r2, r3 and r4 are now

less severe, although in r4, a different artifact is presentin the last 5 minutes of the TAC.

It must be noted, however, that the reduction in the severityof artifacts does not occur

because d2EM compensates for attenuation any differently from dEM. Rather, its stronger

constraint on the concavity of the TAC in every voxel has simply prevented the occurrance

of some of the artifacts that were present in the images reconstructed using dEM.

Unlike the artifacts shown in the static MLEM reconstruction of Figure 4.3, these arti-

facts are not eliminated even after many iterations of dEM ord2EM. This is likely due to

the underdetermined nature of the slow-rotation dynamic reconstruction problem; the re-

constructed image, although incorrect, still provides a good fit to the projection data. While

the static reconstruction example was also solving an underdetermined problem – 32 views

consisting of 128 bins were used to reconstruct a 128×128 voxel image – the solution space

was not as large as in the dynamic case, and so the artifacts onthe far side of the object

eventually had to be resolved in order to fit the projection data.

Simulations where only the effects of collimator blurring were included show analogous

results. The TACs for the regions that were farther from the two camera heads during the
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Figure 4.4: Images and TACs reconstructed using dEM, showingthe effects of attenuation.

Top figure: Top row shows time frames of true image, with position of camera heads (H1

and H2) at each time point; middle row corresponding frames from image reconstructed

using 80 iterations of dEM, without any attenuation; bottomrow shows frames from image

reconstructed using 80 iterations of dEM including attenuation. Bottom figure: mean TACs

extracted from each of the four dynamic regions r1–r4.
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Figure 4.5: Mean TACs extracted from four dynamic regions in image reconstructed using

80 iterations of d2EM. Compare to TACs shown in Figure 4.4.

early stage of the acquisition (e.g. r3) were underestimated compared to the TACs for

regions that were close to them (e.g. r1). This occurs for thesame reason as for the

artifacts caused by attenuation: at every stop made by the camera, regions that are far from

the camera are more blurred than regions that are close, and the inclusion of collimator

blurring in the system matrix does not uniformly correct forthis effect. For realistic levels

of blurring, however, the effect was minor compared to the artifacts caused by attenuation.

It is interesting that these effects have not been noted in previous studies on slow-

rotation dynamic SPECT. Indeed, one study specifically examined the inclusion of colli-

mator blurring into dSPECT reconstruction [20], and many dSPECT studies have included

attenuation effects [19, 12, 18]. All of these studies simply included attenuation and colli-

mator blurring in the system matrix, which we have demonstrated to be insufficient to ac-

count for their effects. However, these studies usually featured centrally-located dynamic

objects, for which the effects of attenuation or collimatorblurring would not vary nearly as

much during acquisition as in the examples considered here.Thus, any errors introduced by

these effects would have been more subtle, and probably attributed to the difficult nature of
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the reconstruction problem. Some experiments have also used triple-head cameras, where

attenuation effects would be less noticeable since the camera heads were evenly distributed

around the object at 120◦ intervals.

One paper using FADS-based reconstruction1, however, featured several digital phan-

tom experiments which simulated dynamic renal studies, where attenuation between the

camera and the two dynamic regions representing the kidneysvaried considerably during

acquisition [68]. Since the approach proposed in this paperuses data acquired with a single

slow camera rotation, the same attenuation effects should have been apparent. While this

paper did not note any such effects, the tabulated results (Table 1 in the paper) indicate that

they may have been present. In several simulations modelingsingle and dual-head acqui-

sitions, errors in the reconstructed TACs varied by up to 2-3 times in magnitude depending

on the initial position of the camera heads. Failure of the algorithm to properly compensate

for attenuation would seem to be the most likely reason for these discrepancies, since the

effect of attenuation on the two dynamic regions would have been the factor that varied the

most in these different acquisitions.

4.3 Template-based correction

We now consider how to correct for these artifacts in the reconstructed images. It is not

clear how to accomplish this during the actual reconstruction of the image. In principle the

physical effects are being modeled correctly in the system matrix; the root of the problem

is the fact that only a small number of views corresponding toeach time frame of the image

are acquired – which is a fundamental component of single slow-rotation dynamic SPECT

reconstruction. Thus, we consider how these artifacts can be treated after reconstruction

of the image. A post-reconstruction approach is challenging as well, since the artifacts

created in different regions of the image by attenuation depend on numerous factors such

as the acquisition protocol, object geometry, tracer kinetics and reconstruction algorithm.

In this section we propose two approaches.

The first approach is a modification to one that has previouslybeen applied to partial

volume effect (PVE) correction in static SPECT imaging [64].The PVE occurs as a result

of both the limited resolution of the SPECT system and the discretization of image space

1This method is described in Section 1.2.
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into voxels, which make it impossible to determine the exactlocation of activity sources

inside the object being imaged. The net effect is that the reconstructed activity concentra-

tions along the borders of adjacent regions tend to mix, resulting in low contrast between

these regions. A common example is “spill-out” of activity from regions of high inten-

sity into the surrounding lower-intensity background. Since the severity of PVE depends

on factors such as the geometry of the different ROIs and the relative concentrations of

activity between adjacent regions, it is difficult to compensate for PVE during the actual

reconstruction of the image. Hence, post-reconstruction corrections are often used [73].

In the method proposed in [64], a static image,x, is first reconstructed using OSEM,

with full correction for attenuation, collimator blurringand scatter. A digital template

image having the same dimensions asx, denotedy, is then created by segmenting the

original image into several ROIs. The activity concentration in each ROI of the template is

made spatially uniform, and proportional to the ratio of activity concentration in that region

to the background. Projection data of the template image arethen analytically created,

simulating the same protocol that was used to acquire the measured data. This projection

data is then input to OSEM and reconstructed using the same parameters as were used to

reconstruct the original image. By comparing the reconstruction of the template, denoted

R(y), to the original templatey, the severity of PVE in different regions of the image can be

assessed and the original image,x, can be corrected. The assumption is that any artifacts

present inR(y) versusy are similar to those present inx versus the true distribution of

activity.

Since the dynamic SPECT image artifacts we observed in the previous section depend

on the time-varying concentration of activity within regions of the image, this method must

be adapted to the dynamic context. The modified method, illustrated in Figure 4.6, is as

follows:

1. The dynamic imagex′ is reconstructed from the acquired projection data. In principle

any single slow-rotation dynamic SPECT algorithm could be used, though here we

restrict ourselves to dEM and d2EM.

2. The image is segmented into ROIs assumed to have consistent dynamic behaviour.

Depending on the situation, this segmentation could be created based on the image

x′ itself, or on a co-registered CT image. The dynamic digital template,y′, is then
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created by extracting the average TAC from each ROI and assigning it to every voxel

in that ROI.

3. Projections ofy′ are created by multiplying it by the dynamic system matrixC ′,

including the effects of attenuation and collimator blurring, to simulate the same

protocol that was used to acquire the measured datap.

4. These projection data are used as input to the reconstruction algorithm, to produce a

reconstructed dynamic templateR(y′).

5. A correction factor for every voxel at every time frame is determined by taking the

ratio ofy′ to R(y′). The final, corrected image is thus given by

x′

C = x′ ×
y′

R(y′)
, (4.1)

where all operations have been applied voxelwise in every time frame.

The main advantage of this method, which we denote as the “CF” (correction factor)

approach, is that is models the introduction of artifacts bythe reconstruction process, mean-

ing that it is fairly generic and able to account for effects that are complicated and may be

difficult to anticipatea priori. The method is, however, based on the assumption that any

artifacts introduced during the reconstruction of the template image are similar to those

introduced during the reconstruction of the original image. In the presence of moderate

to severe artifacts in the original image reconstructionx′, the template may be sufficiently

different from the truth that the same artifacts will not be reproduced. In this case, the cor-

rection factor determined in the last step may be too large (resulting in overcompensation)

or too small. Since the correction factor is applied as the final step of this approach, there

is no mechanism to compensate for any errors in the correction.

Our second approach, then, integrates the use of the template into the reconstruction

process. In this approach, the image is reconstructed and the template is created, as in the

first approach. Instead of creating projections of the template, however, the template is used

as an initial estimate in a second run of the reconstruction algorithm. This second run uses

the original measured projection data as input; the only difference from the first run of the

algorithm is that the template is used as an initial estimate, rather than a generic, uniform

image. This approach is illustrated in Figure 4.7.
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Figure 4.6: Flow diagram indicating steps and data used in CF-based dynamic template

correction method.

The rationale for this approach is that the incorrect dynamic image containing attenua-

tion artifacts is still a valid solution, in the sense that itprovides a good fit to the projection

data under the assumed system model. The correct dynamic image is also a valid solu-

tion, to which the reconstruction algorithm has failed to converge, due to the insufficient

compensation for attenuation effects during the reconstruction. By starting with an initial

estimate that is closer to the correct image than the genericinitial estimate used to generate

the first image, it may be possible to reduce the severity of the attenuation artifacts. This

approach, which we denoted as the “IE” (initial estimate) approach, is somewhat safer than

the CF approach since the correction occurs in the context of the reconstruction algorithm.

Since the final corrected image represents a fit to the measured projection data, it is less

likely that it will contain overcorrections or other errorsthat could result from the applica-

tion of the CF method. This approach does not, however, attempt to model or determine
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Figure 4.7: Flow diagram indicating steps and data used in IE-based dynamic template

correction method.

the nature of any artifacts that are present in the original reconstruction.

Both the CF and IE approaches require additional reconstruction time, since they re-

quire a second run of the reconstruction algorithm. For the CFapproach, the reconstruction

time is doubled since the same number of iterations must be run as were run in the original

reconstruction, in order to properly replicate image artifacts. In the IE approach, fewer

iterations may be necessary in the second run, since it begins with a better initial estimate.

The accuracy of both methods will also be affected by the quality of the segmentation, and

how well the the true dynamic distribution of activity can bemodeled as a group of ROIs

with spatially homogeneous behaviour.

Figure 4.8 shows the result of applying these two correctionmethods to the simulation

shown in Figure 4.4. In this case, the segmentation used to create the template was based

on the true boundaries of the four dynamic regions, which were known from the phantom.

For the IE method, only 40 iterations of dEM were performed inthe second run, which is

half the number used in the first run. Both methods have introduced similar improvements

to regions 1, 2 and 4 of the image. In region 2, the corrected TACs are in much better
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Figure 4.8: Results of applying the CF and IE template corrections to the 2D phantom

simulation shown in Figure 4.4. Plots show the true TAC for each region, as well as the

mean TACs extracted from the uncorrected image, the image corrected with the CF method,

and the image corrected with the IE method.

agreement with the truth than the uncorrected TAC; however, an artifact that caused the

TAC to flatten slightly between 6 and 10 minutes has persisted. In region 4, neither method

was able to correct for a sizeable overestimation in the firstthree minutes, although the

agreement of the reconstructed TACs with the truth has been improved in later time frames.

Region 3 is the only one wherein the correction introduced by the CF approach differed

substantially from that introduced by the IE approach. The CFapproach has resulted in

an overcorrection between the 3rd and 7th minutes, while the IE approach has not. The IE-

corrected image underestimates the TAC slightly, but overall the correction seems better

than that provided by the CF method.
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Overall, these approaches have been successful in correcting for some mild artifacts,

but not for more severe ones. It must be noted that the most severe artifacts occurred in r3

and r4, which were on the opposite side of the object at the beginning of the acquisition.

In a real-life study, this acquisition protocol would not have been chosen if r3 and r4 were

the most important regions to be imaged. Thus, the choice of asensible acquisition pro-

tocol, in addition to the application of one of these corrections, is essential to reduce any

artifacts caused by attenuation. Accordingly, in the next chapter we investigate the effects

of realistic acquisition protocols on a 3D simulation of a dynamic renal scan, and assess

the effectiveness of these methods in correcting for any artifacts.



Chapter 5

3D simulations and experiments

One potential clinical application of dynamic SPECT is assessment of renal function by ex-

amining washout of the tracer99mTc-DTPA in the kidneys.99mTc-DTPA is an imaging

agent which is excreted by the kidneys in a process known as glomerular filtration. Fol-

lowing injection, the tracer enters the renal cortex (the outer shell of the kidney, illustrated

in Figure 5.1) via the renal arteries. During glomerular filtration, the tracer filters into the

medulla before collecting in urine in the centrally locatedrenal pelvis. From there, it is

transported through the ureter into the bladder [75].

Current clinical protocol for dynamic renal imaging using99mTc-DTPA consists of a

planar dynamic renogram acquired posteriorly. By drawing 2DROIs over the regions of

the image corresponding to the left and right kidneys (excluding the pelvis), it is possible to

obtain a TAC for each kidney as a qualitative measure of renalfunction. Impaired function

or obstruction in either kidney is typically indicated by high retention of the tracer within

the kidney. Accurately compensating for patient-specific attenuation and effects due to or-

gan overlap is impossible in a planar scan, although approximate corrections are often used.

As a result, one cannot obtain reliable quantitative information from these scans. Both of

these effects could be accounted for using the 3D information present in a dynamic SPECT

scan, which would allow for a more reliable quantitative assessment of renal function.

In this chapter we investigate reconstruction of dynamic renal SPECT images based

on slow-rotation data, using digital phantom simulations as well as two sets of real-life

data. Attenuation artifacts of the type discussed in the previous chapter may be especially

problematic for renal scans, since the effects of attenuation on either kidney varies consid-

85
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Figure 5.1: Diagram of renal anatomy, showing the renal cortex, medulla and pelvis.

Retrieved from the U.S. National Cancer Institute’s Surveillance, Epidemiology and

End Results (SEER) website,http://training.seer.cancer.gov/anatomy/

urinary/components/kidney.html on June 7, 2011.

erably during the acquisition of projection data. Assessing the severity of these effects on

the reconstructed images is one goal of the experiments in this chapter. We also assess the

effectiveness of the methods proposed in Chapter 4 to correctfor any artifacts introduced

by attenuation, as well as continue to investigate the performance of d2EM versus dEM.

5.1 3D renal phantom

5.1.1 Phantom construction

A dynamic renal phantom was created in two stages. First, an anatomical map consist-

ing of 64×64×64 voxels (voxel size 9.3mm/side) was created using the 3D NCAT digital

phantom, which provides a realistic, 3D model of the human torso [63]. NCAT was used to

create an attenuation map of the phantom, and to determine organ boundaries correspond-

ing to dynamic regions in the left and right kidneys, left andright ureters, and bladder.

In this simulation the region corresponding to each ureter also included the renal pelvis.

In the second step, tracer kinetics modeling the uptake and washout of99mTc-DTPA in
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the renal system were simulated using a compartmental model, illustrated in Figure 5.2.

This compartmental model describes the absorption of99mTc-DTPA from the blood into

the kidneys, followed by transit through the pelves and ureters into the bladder. Uniform

background activity is modeled, but no modeling of uptake inother organs (e.g. the liver

or lungs) is included. The compartmental model is describedby a system of ordinary dif-

ferential equations (ODEs):

d
dt

ABl(t) = I(t) − 5(kBRK + kBLK)ABl(t)

d
dt

ARK(t) = kBRKABl(t) − kRKUARK(t)

d
dt

ALK(t) = kBLKABl(t) − kLKUALK(t)

d
dt

ARU(t) = kRKUARK(t) − kRUBdARU(t) (5.1)

d
dt

ALU(t) = kLKUALK(t) − kLUBdALU(t)

d
dt

ABd(t) = kRUBdARU(t − δ) + kLUBdALU(t − δ)

d
dt

ABg(t) = 4(kBRK + kBLK)ABl(t)

The seven time-dependent functionsABl, ARK , ALK , ARU , ALU , ABd andABg corre-

spond to the total activities in the compartments representing the blood, right kidney, left

kidney, right ureter, left ureter, bladder and background,respectively.I(t) is the input func-

tion, which was represented by an initial impulse equivalent to an injection of 370 MBq of

tracer. The subscriptedk values represent transfer coefficients between the compartments

(see Figure 5.2), and were varied to simulate different behaviours, as described later. Since

only 20% of the injected dose of99mTc-DTPA is typically taken up in the renal system, the

transfer coefficient to the background is defined to be four times larger than the sum of the

coefficients for the left and right kidneys. Due to the much larger size of the background

region, however, the actual concentration of tracer in the background was only roughly 5%

that of the peak concentration in the kidneys, in the actual phantom. A value ofδ = 7.5

seconds was used in order to simulate delayed uptake in the bladder.

The system of ODEs was solved numerically to determine the time-dependent total
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Figure 5.2: Compartmental model used to generate TACs for the different anatomical re-

gions in the dynamic digital phantom. Differential equations governing the compartmental

model are provided in Equation (5.1).

activity in each region. These curves were integrated in 20 second intervals to provide a

total activity value for each region during every 20 second frame. This activity value was

then divided by the total number of voxels to provide a uniform concentration inside each

region. The blood activity,AB(t), was not assigned to any voxels in the image; it simply

served as input to the compartmental model. Two types of renal behaviour, healthy and un-

healthy, were modeled. The parameter values used to generate these two behaviours, along

with the time of peak activity (Tmax) and effective half-life (T 1
2
) which resulted are shown

in Table 5.1. These values were chosen to simulate dynamic behaviours that were simi-

lar to those in sample planar renogram obtained from a local hospital. Six different cases

(denoted A–F), summarized in Table 5.2, were simulated using different combinations of

healthy and unhealthy behaviour in either kidney.

Projections of the phantom were computed using the AnalyticPhoton Distribution with

Interpolation (APDI) method [79, 76]. This method created noiseless projections of the

activity distribution, including the effects of depth-dependent resolution and attenuation.

A general-purpose collimator (hole length 42 mm, hole width1.78 mm) was simulated.

The APDI method was used so that the system matrix used to generate the projections

was not the same as the one used in the reconstruction algorithm, as would be the case
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kBRK , kBLK kRKU , kLKU kRUBd, kLUBd Tmax T 1
2

Healthy 0.2 0.3 1.0 100 290

Unhealthy 0.2 0.03 0.1 200 2135

Table 5.1: Kinetic coefficient values used in the compartmental model (Figure 5.2) to gen-

erate the healthy and unhealthy kinetic behaviours in each organ. Unhealthy behaviour was

simulated by kidney-to-ureter and ureter-to-bladder coefficients that were 10% the value of

the healthy coefficients.Tmax andT 1
2

values are given in seconds.

Case Left kidney Right kidney

A healthy healthy

B unhealthy unhealthy

C unhealthy healthy

D healthy unhealthy

E 33% unhealthy healthy

F healthy 33% unhealthy

Table 5.2: Description of the dynamic behaviour in each kidney for the six renal phantom

simulations. Healthy or unhealthy behaviour (see Table 5.1) was simulated in either kidney.

In cases E and F, the unhealthy behaviour was present in the bottom 33% of the specified

kidney, with the rest of the kidney having healthy behaviour.
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with data acquired on a real system. Poisson noise was added to the projection data after

computation. Based on the maximum pixel intensity in the regions corresponding to the

kidney, the noise level was roughly 5–6%. Since the generation of projections using APDI

simulates a realistic acquisition, the images reconstructed from APDI projection data had

to be scaled by a normalization factor in order to directly compare them to the original

phantom. Based on a point source simulation, this normalization factor was determined to

be1.0087 × 10−4.

5.1.2 Experiment 1: Effect of acquisition

As seen in Chapter 4, the effects of attenuation on the projection data as the camera rotates

can cause substantial errors in the TACs extracted from dynamic regions. Tomographic dy-

namic renal scans may be particularly affected, since the two kidneys are located off-centre,

meaning that the effects of attenuation on each kidney will vary more during acquisition

than they would for a centrally-located object. This could have serious implications in eval-

uation of renal function, since the split function (i.e. theproportion of total renal function

attributed to each of the kidneys) is often a quantity of interest. If the reconstructed TACs

corresponding to either kidney are differently affected byattenuation, then an incorrect

evaluation of split function could occur.

In order to assess the potential severity of such artifacts,we simulated four different

acquisitions for each of the four renal phantoms A–D. Cases E and F were omitted in

this experiment. The four acquisitions, which were numbered I–IV, all consisted of two

detectors at 90◦ to one another, each making 48 stops over a 360◦ rotation, with each

stop lasting 20 seconds. The two parameters that were variedwere the initial position

of the detectors and the direction of rotation, although allfour acquisitions were chosen

sensibly so that the camera acquired data posteriorly during the early part of the scan.

The projection data were then input to both the dEM and d2EM algorithms to produce

reconstructed images. Sixty iterations of dEM were used to generate each image, while

eighty iterations of d2EM were run, since its convergence was slower than dEM’s in some

cases. Mean TACs for the left and right kidneys were extractedfrom each image using the

true organ boundaries, and the relative error in the mean TAC,ε, which was used in the

2D phantom experiments of Chapter 3, was computed. Full results of the experiment are
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presented in Table 5.3, and summarized in Table 5.4. Figure 5.3 shows an example of the

reconstructed mean TACs for the simulation using Phantom D.

Several trends are apparent from the statistics presented in Table 5.4. In the experiments

as a whole, the errors in the right kidney tended to be larger than errors in the left kidney,

possibly due to the fact that the right kidney was approximately 10% smaller than the

left kidney in the NCAT geometry. The right kidney’s smaller size likely made it more

challenging to reconstruct accurately. Also, the value ofε when the kidney featured healthy

behaviour (fast washout) was typically larger than when thekidney featured unhealthy

behaviour (slow washout), due to the fact that the relative underestimation was more severe,

particularly at the point of maximum activity. This discrepancy is consistent with the results

of the 2D phantom experiments of Chapter 3, where it was found that TACs corresponding

to faster tracer kinetics tended to be underestimated more severely than those corresponding

to slower kinetics.

After taking these facts into account, it is clear that each of the four acquisition protocols

considered in this experiment reconstructed the TAC in one kidney more accurately than

in the other. Specifically, acquisitions I and III both consistently gave less accurate results

for the right kidney than for the left kidney, while the opposite was true of acquisitions

II and IV. The accuracy of the TAC corresponding to either kidney is directly affected by

whether the amount of attenuating material between that kidney and the camera increased

or decreased during certain periods of the acquisition. Forinstance, although acquisition

III started with one head on the phantom’s right side and the other behind the phantom

(i.e., with little attenuating material between the cameraand the right kidney, initially), the

heads rotated away from the right kidney and towards the leftkidney during the first four

minutes of the acquisition. As a result, the TAC in the left kidney was reconstructed more

accurately, since the right kidney TAC was underestimated during the first four minutes.

As indicated by the “Max∆” results in Table 5.4, which show the greatest difference

in ε values for each simulation over the four acquisitions, the accuracy of the reconstructed

TAC varied considerably depending on the acquisition. For instance, for the reconstruction

of phantom C using d2EM, the error in the left kidney TAC in the image corresponding

to acquisition IV was 80% larger than in the image corresponding to acquisition I. Of the

four acquisition protocols that were considered, it is apparent from the results tabulated in

the right half of Table 5.4 that the bias introduced by acquisitions II and III was less severe



CHAPTER 5. 3D SIMULATIONS AND EXPERIMENTS 92

Acquisition I II III IV

Initial pos. 135◦ + 45◦ 90◦ + 0◦ 270◦ + 0◦ 225◦ +315◦

Rotation 360◦ ccw 360◦ ccw 360◦ cw 360◦ cw

LK RK LK RK LK RK LK RK

A
dEM 16.0 22.1 20.5 15.6 16.4 23.7 22.4 15.9

d2EM 12.3 16.6 15.6 11.7 12.4 17.8 16.3 12.7

B
dEM 12.9 16.4 15.7 16.4 16.9 19.5 16.8 13.8

d2EM 11.2 19.9 12.2 16.7 15.5 14.1 20.0 12.0

C
dEM 12.9 23.0 15.9 17.1 16.6 24.5 16.4 16.8

d2EM 11.0 15.6 12.1 12.1 15.4 17.4 20.3 13.5

D
dEM 15.9 16.4 21.5 16.8 15.7 19.8 22.6 14.0

d2EM 12.2 19.6 16.2 16.7 12.3 13.8 15.8 11.7

Table 5.3: Relative error in mean TAC values,ε, for different acquisitions. The angular

conventions used to indicate initial position of heads are shown in top figure, along with a

transaxial slice through the phantom showing the kidneys, ureters, and background region.

“cw” and “ccw” in the column headings refer to clockwise and counterclockwise rotations;

“LK” and “RK” to the errors for the left and right kidneys, respectively.
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dEM

d2EM

Figure 5.3: Mean TACs (dashed lines) extracted from reconstructed images of Phantom D,

using dEM (top figure) and d2EM (bottom figure). True TAC shown as a solid line in each

plot. Columns correspond to acquisition protocols used to acquire the data.
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Avg. value Max∆ Avg. value

Simulation LK RK LK RK Acquisition LK RK

A
dEM 18.8 19.3 6.4 8.2

I
dEM 14.4 19.5

d2EM 14.2 14.7 4.0 6.1 d2EM 11.7 17.9

B
dEM 15.6 16.5 3.9 5.7

II
dEM 18.4 16.5

d2EM 14.7 15.6 8.8 8.0 d2EM 14.0 14.3

C
dEM 15.4 20.4 3.7 7.7

III
dEM 16.4 21.9

d2EM 14.7 14.7 9.2 5.3 d2EM 13.9 15.8

D
dEM 18.9 16.7 7.0 5.9

IV
dEM 19.6 15.1

d2EM 14.2 15.5 4.0 7.9 d2EM 18.1 12.5

Table 5.4: Summary of the results presented in Table 5.3. Avg. value refers to the average

ε value over the four acquisitions for each simulation (in theleft half of the table) or to the

averageε value over the four simulations for each acquisition (in theright half of the table).

Max ∆ is the greatest difference inε values over the four acquisitions for each simulation.

“LK” and “RK” refer to errors in the left and right kidneys, respectively.

than that introduced by acquisitions I and IV.

The results also indicate that overall, d2EM provided more accurate TACs than dEM,

in terms of the errorε. In some cases where unhealthy behaviour was present in the kidney

on the far side of the initial position of the camera (e.g. theleft kidney of Phantom B, using

acquisition IV), d2EM did perform more poorly than dEM. For acquisitions II and III,

however,ε values from images reconstructed using d2EM were always smaller or roughly

the same size as those obtained from the images reconstructed using dEM. Thus, the errors

caused by attenuation in images reconstructed using d2EM was generally less severe than

in images reconstructed using dEM, provided that a sensibleacquisition protocol was used.

Finally, it is apparent from Figure 5.3 that the TACs in both kidneys are noticeably un-

derestimated, regardless of which acquisition protocol was used. In addition to the effects

of attenuation, there appears to be some amount of spill-outfrom both kidney ROIs into the

surrounding background. In Figure 5.4, we show the total counts reconstructed inside the

left and right kidney ROIs for the simulation using Phantom Band acquisition II, with and

without attenuation present. While TACs within the true boundaries of the left and right
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Figure 5.4: Summed TACs extracted from images of Phantom B, acquisition II, recon-

structed using 60 iterations of dEM. TACs corresponding to the simulation without atten-

uation (circular marker) and with attenuation (square marker) are shown, along with the

true TAC (dashed line). The summed TACs for the left and right kidneys were computed

using the true organ boundaries (top row) as well as rectangular box-shaped ROIs that

encompassed each kidney and some surrounding background (bottom row).
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kidneys (top row) for the simulation without attenuation were closer to the truth than when

attenuation was included, they were still underestimated by roughly 10%. When the counts

were summed over a larger, rectangular ROI that included each kidney as well as some of

the surrounding background (bottom row), the true TAC and the TACs reconstructed with

and without attenuation were all in good agreement with one another. Thus, it is apparent

that activity from the kidneys has spilled out into the surrounding region in both cases.

This spill-out effect was not prevalent in the 2D experiments of Chapter 3, and so it may

be related to the more complicated 3D geometry of this simulation, or to the fact that a

different method (APDI) was used to generate the projectiondata.

5.1.3 Experiment 2: Application of template corrections

In the preceding experiment, all four of the simulated acquisition protocols resulted in a

more accurate reconstruction of one kidney over the other, due to effects of attenuation on

the reconstructed image. While it may be possible to find an acquisition protocol that re-

duces this bias, it is impossible to ensure that the effects of attenuation on both kidneys will

be the same. Thus, these artifacts will always be present to some extent. In this experiment,

we investigate whether the CF and IE methods proposed in Chapter 4 can successfully re-

duce these artifacts. We consider only the images reconstructed using acquisition II from

the previous section. This protocol was found to have a bias towards the right kidney,

due to the fact that it rotates away from the left kidney initially, increasing the amount of

attenuating tissue between that kidney and the detectors.

The CF and IE corrections were applied to reconstructed images corresponding to the

six simulations A–F described in Table 5.2. A third correction, denoted CF-IE, was also

applied to each reconstructed image. In this approach, the imagex′
C resulting from the

application of the CF correction (see Figure 4.6) was used in place of the original recon-

structed imagex′ to create the template used in the IE correction (Figure 4.7); that is, the

two correction approaches were applied serially. It was expected that this correction would

combine the benefits of both the CF and IE approaches; namely, explicit modeling of arti-

facts introduced during reconstruction, through the CF method, and a subsequent fit to the

projection data using the IE method. In these experiments, the second run of the recon-

struction algorithm used in the IE and CF-IE approaches consisted only of 40 iterations, as
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further iterations did not appreciably improve the accuracy of the corrected image.

Since both the CF and IE methods require a segmentation of the image, the accuracy

of this segmentation has an impact on their effectiveness. We investigated two segmen-

tation methods: the true segmentation based on the known region boundaries from the

phantom, and a computed, probabilistic segmentation basedonly on the reconstructed dy-

namic image. The probabilistic segmentation was created byloading each reconstructed

image into a user-assisted dynamic segmentation program [62]. Using this program, the

user placed “seeds” in voxels of the reconstructed image to identify segments correspond-

ing to different organs. The program then generated a probabilistic field using a random

walk approach, which took into account both the proximity ofeach voxel to the seeds,

as well as the similarity between TACs in each voxel within a segment. Each voxel was

thus assigned a probability of belonging to each of the segments, and was made part of the

segment corresponding to the highest probability.

After this semi-automatic process, the user was able to viewthe segmented volume

and make corrections if required. For instance, if a voxel that was clearly part of the

right kidney was mistakenly assigned to the left kidney, it could be reassigned to the right

kidney. This procedure only allowed for the correction of obvious errors, however. Thus,

the probabilistic method allowed us to assess the impact of using an imperfect segmentation

when applying the CF and IE correction methods. An example of one of the segmented

volumes generated using this method is shown in Figure 5.5. Although the segmented

volume shown in this figure is fairly similar to the true segmentation, it does contain errors,

particularly in the right kidney. The probabilistic methodprovided a fast, repeatable method

of segmentation that did not require drawing ROIs by hand, orknowing the truth.

For both segmentation methods, the image was segmented intoregions corresponding

to background, the left and right kidneys, left and right pelves (including ureters) and the

bladder. Simulations E and F included unhealthy behaviour in only a small part of one

kidney, in order to see if the proposed correction methods could be successfully applied to

small adjacent regions with different dynamic behaviour. For these simulations, two situa-

tions were tested. In the first, the small unhealthy regions were segmented separately from

the healthy portion of the kidney; in the second situation, the entire kidney was consid-

ered as a single segment. This second situation modeled the case where the segmentation

was created based purely on anatomy, without recognizing that the unhealthy region had
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True seg.

R L

Prob seg.

R L

Figure 5.5: Example segmentations used for CF and IE corrections. Left figure shows

coronal slice through the segmented volume based on true organ boundaries, right figure

the same slice through the volume generated from the probabilistic segmentation of the

dEM reconstruction of Phantom A. Different shades of grey indicate the segment to which

each voxel belonged.

different dynamic behaviour. It was expected that the effectiveness of the correction meth-

ods would suffer as a result. This incorrect segmentation was only tested using the true

organ boundaries; since the small regions had clearly different dynamic behaviour than

the rest of the kidneys, it was apparent when performing the probabilistic segmentation

that they should be segmented separately. After applying the three different correction

approaches, the error measuresε, σ̄ andS (as described in Chapter 3, Equations (3.3),

(3.4) and (3.5), respectively) were computed within the dynamic regions of interest. The

true organ boundaries were used for these calculations, regardless of whether the true or

probabilistic segmentation was used during the correction.

Since a large number of simulations were run, only summary statistics for the simula-

tions involving phantoms A–D are provided in Table 5.5. The full results of these exper-

iments are tabulated in Tables A.4 to A.9 in Appendix A. All three correction approaches

resulted in a substantial improvement toε, both when the exact boundaries and the prob-

abilistic segmentation were used to generate the template.As expected, the correction

was more effective when the true organ boundaries were used.The improvement toε was

generally comparable regardless of whether the CF, IE, or CF-IE approach was used. Fig-

ure 5.6 shows the mean TACs in the left and right kidneys beforeand after the application
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True boundaries

Uncorrected CF method IE method CF-IE method

LK RK LK RK LK RK LK RK

ε
dEM 18.4 16.5 3.2 4.2 3.3 4.4 2.6 3.7

d2EM 14.0 14.3 3.0 3.7 2.6 4.8 3.0 3.8

σ̄
dEM 31.9 32.4 21.0 20.0 12.8 13.3 10.8 11.0

d2EM 28.4 28.2 18.6 17.4 12.3 11.7 9.7 9.2

S
dEM 16.9 18.6 12.4 13.8 6.6 8.5 6.5 7.0

d2EM 11.5 12.6 8.7 8.9 6.1 6.6 4.5 4.4

Probabilistic segmentation

Uncorrected CF method IE method CF-IE method

LK RK LK RK LK RK LK RK

ε
dEM 18.4 16.5 3.9 4.7 4.5 5.1 4.2 5.4

d2EM 14.0 14.3 4.1 4.9 3.4 4.7 4.0 5.9

σ̄
dEM 31.9 32.4 37.7 27.5 33.7 23.7 34.1 21.5

d2EM 28.4 28.2 28.7 26.2 25.5 22.3 25.5 21.0

S
dEM 16.9 18.6 17.1 15.7 12.8 11.6 13.7 10.6

d2EM 11.5 12.6 10.9 10.3 9.2 8.2 8.1 9.0

Table 5.5: Average error valuesε, σ̄ andS before and after application of template-based

corrections, for experiments involving Phantoms A–D. Values shown are the average error

in each kidney over the four simulations. The smallest errorfor either kidney is bolded in

every row.
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Figure 5.6: Mean TACs extracted from the left and right kidneyROIS of the dEM recon-

struction of Phantom C, before and after application of each correction method. Dashed line

in each plot represents true TAC, circular markers the uncorrected TAC, and cross markers

the corrected TAC. Columns correspond to the three correctionmethods. Segmentation

based on the true organ boundaries was used

of the three correction methods (using the true segmentation), for the dEM reconstruction

of Phantom C. Again, this figure is a representative sample of the many simulations that

were run. From this figure, it is clear that all three correction methods have compensated

for the spill-out effect noted in the last section, as well asthe effect of attenuation on the

TACs. For instance, the TAC in the left kidney of the uncorrected image was more severely

underestimated during the first eight minutes than during the last eight minutes, since the

amount of attenuating material between the detector and theleft kidney increased during

this period; in the corrected images, this discrepancy has been eliminated.

It is somewhat surprising that all three correction methodshave a comparable effect on

the mean TAC in each region. Although both the CF and IE methodsuse the same template
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as part of the correction, the mechanism that they employ to produce the final corrected

image is quite different. It is particularly interesting that the corrected TACs resulting from

the application of the IE method appear to be free of any errors caused by attenuation,

since unlike the CF approach, this method does not explicitlyattempt to correct for these

errors at any point. It appears that when the reconstructionalgorithm is started from a

generic, uniform initial estimate, it converges to a local minimum (the image which suffers

from attenuation artifacts); when it is started from a better initial estimate (the template), it

avoids this local minimum and converges to a more accurate minimizer (the image which

is largely free of these errors).

When the true organ boundaries were used to create the template, σ̄ andS were also

improved by the application of the corrections. It is apparent from the top set of plots in

Figure 5.7, which shows some of the reconstructed TACs at the voxel level in the corrected

and uncorrected images, that the TACs are more tightly clustered around the true TAC

after application of the correction methods. The IE and CF-IEmethods provided a greater

reduction in these error measures than the CF method. This result is not surprising, since the

CF method simply applied a correction factor to each voxel of the uncorrected image, while

the IE and CF-IE methods restarted the reconstruction algorithm from an initial estimate

that was spatially uniform within each ROI (the template). Thus, provided that this initial

estimate was reasonably accurate, these TACs remained fairly consistent during the second

run of the reconstruction algorithm. As was the case in the phantom experiments of Chapter

3, the images reconstructed using d2EM tended to have smaller values ofσ̄ andS than those

reconstructed using dEM.

When the probabilistic segmentation was used by the correction methods, improve-

ments toσ̄ andS were not as large; in some cases, the application of the template correc-

tions actually increased the value ofσ̄. (See Table A.7). This increase inσ̄ can be attributed

to the errors present in the segmentation. For instance, in the third row of Figure 5.7, two

of the twelve TACs that are shown for the left kidney have very low activity after the ap-

plication of the corrections. These TACs correspond to voxels of the left kidney that were

incorrectly assigned to the background region by the probabilistic segmentation algorithm,

meaning that they were adjusted as if they were part of this region. These errors persisted

even when the IE and CF-IE methods were applied, despite the fact that these methods

attempted to correct for errors of this nature by fitting the template to the data in the second
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True boundaries

Probabilistic segmentation

Figure 5.7: Voxel-level TACs within the left and right kidneyROIs of the dEM recon-

struction of Phantom C, before and after application of each correction method. True TAC

is shown in red, with 12 randomly-selected voxel level TACs shown as solid black lines.

Columns correspond to the uncorrected image and each of the three corrected images. Top

plot shows the application of corrections using template based on true organ boundaries,

while the bottom plot shows the same corrections applied using the probabilistic segmen-

tation.
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run of the reconstruction algorithm.

The results for phantom experiments E and F, which included unhealthy behaviour

in only a portion of either kidney, are tabulated in Tables A.10 to A.12 in Appendix A.

When the “correct” segmentation was used (true boundaries, with the unhealthy portion

segmented separately), the results were similar to those obtained for the experiments with

Phantoms A-D; specifically,ε was improved considerably by all three methods, while the

IE and CF-IE methods were the most successful in reducingσ̄ andS. When the “incorrect”

segmentation was used, in which the partially unhealthy kidney was considered as a sin-

gle segment, the resulting template was inaccurate since the regions corresponding to the

partially unhealthy kidney were assigned a TAC that was a combination of the healthy and

unhealthy behaviours. As a result, the two regions of the partially unhealthy kidney were

not adjusted based on an accurate approximation to their true dynamic activity, resulting in

much larger errors than when the correct segmentation was used.

Results using the probabilistic segmentation were also poorer than when the true seg-

mentation was used, and in many cases, worse than when the “incorrect” segmentation

was applied as well. The diminished effectiveness of the correction methods in this case

can be attributed to problems in segmenting the partially unhealthy kidney, which featured

three relatively small dynamic regions (the healthy portion, the unhealthy portion, and the

pelvis/ureter) in close proximity to one another. The probabilistic segmentation method

had difficulty distinguishing between these three regions,due to their close proximity and

small size, which resulted in errors in the segmented volume. Even when the incorrect or

probabilistic segmentation were used, however, the error measures were still smaller in the

corrected images than in the uncorrected images in nearly every case, aside from a few

cases wherēσ was increased.

Overall, this experiment has indicated that all three correction methods substantially

reduce errors in the mean TAC in each kidney, even if the segmentation used in the creation

of the template is imperfect. Errors in the segmentation do reduce the extent of the im-

provement to the mean TAC, however. Consistency of TACs inside each ROI may also be

improved by the application of these methods, but any improvement is more heavily depen-

dent on the accuracy of the segmentation. If the segmentation contains errors, the overall

consistency of TACs may not be improved, and could even be worsened with respect to

the uncorrected image. Provided that the segmentation was accurate, however, the CF-IE
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method typically provided the greatest improvement of the three methods.

5.2 Renal volunteer experiment

5.2.1 Methodology

In this section, we apply the techniques discussed so far to dynamic renal images produced

of two consenting healthy adult volunteers. A 370 MBq (10 mCi) injection of99mTc-

DTPA was used in both studies. The data were acquired using a dual-head Siemens Symbia

T2 SPECT/CT system with detectors positioned at 90◦, and attenuation correction data

provided by the 2 slice CT scanner. The camera heads started behind the volunteer and on

their left side, and completed a 360◦ rotation consisting of 64 stops of 20 seconds each.

Images consisting of128 × 128-voxel slices and sixty-four 20 second time frames were

reconstructed using 60 iterations of dEM and 80 iterations of d2EM. Voxels were 4.79 mm

per side, and the effects of attenuation and collimator blurring were incorporated into the

system matrix. A planar renogram of both volunteers, taken two days prior to the SPECT

scan, indicated that both had healthy renal function.

The three correction methods studied in the previous section were applied to the re-

constructed images. For this experiment, the segmented volumes used by the correction

methods were generated by hand. Specifically, the CT map that was acquired during the

SPECT scan was examined slice-by-slice to identify the left and right kidneys, while the re-

nal pelvis in each kidney was identified by looking at slices of the reconstructed image that

had been summed over time. The pelves were clearly visible inthis summed image since

they had much higher intensity than the cortex. This segmentation process is illustrated in

Figure 5.8.

5.2.2 Effect on mean TAC

We first examine the effect of these corrections on the mean TAC for each kidney. Based

on the results of the phantom experiments in the previous section, the uncorrected TACs re-

constructed in both kidneys are probably underestimated relative to the true TAC, as a result

of spill-out effects. Furthermore, since the acquisition used here was the same as acquisi-
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CT map Summed image

Figure 5.8: Illustration of process used to generate segmentations for the two sets of renal

data. Left: Transaxial slices of the CT map were viewed, and regions of interest were

drawn around the right and left kidneys. Right: The corresponding slice of the image

reconstructed using dEM, summed over all time frames, was viewed and ROIs were drawn

around the right and left pelves.

tion II in the phantom experiments, the left kidney should beunderestimated by a greater

margin than the right kidney due to attenuation effects, as the camera rotated away from

the left kidney during the early phase of the acquisition. Toassess the effectiveness of the

correction methods on reducing these effects, we compared the peak values of the TACs

in the left and right kidneys before and after the application of each correction method.

Since there was not a known, true TAC against which to comparethe reconstructed TACs,

we simply measured the relative increase in the left and right kidney peak activities after

applying each correction (denoted LK+ and RK+, respectively), as well as the relative dif-

ference between the peak activity in the left and right kidneys (denoted∆RL). Specifically:

LK+ = (τmax
LK, corr − τmax

LK, uncorr)

/

τmax
LK, uncorr× 100%,

RK+ = (τmax
RK, corr− τmax

RK, uncorr)

/

τmax
RK, uncorr× 100%, (5.2)

∆RL = (τmax
RK − τmax

LK )

/

τmax
LK × 100%,
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whereτmax
LK, corr refers to the peak activity in the left kidney of the corrected image, and

correspondingly for the other quantities. Results are tabulated in Table 5.6, and an exam-

ple of the mean TACs before and after application of the correction methods is shown in

Figure 5.9.

The results in Table 5.6 show that all three correction methods have similar effects on

the mean TACs in this case as they did in the phantom experiments. The TACs in both the

left and right kidneys have been scaled upwards by a factor of20 to 45%. Looking back at

the phantom experiments of the previous section, the analogous relative increases RK+ and

LK+ (which were not tabulated in that section, but can be easily calculated) were generally

lower than the values observed here, typically on the order of 15 to 25%. As such, the

corrected TACs here may have been overestimated slightly, although it is not possible to

know for certain. The value of LK+ was greater than RK+ in everycase, indicating that

the left kidney was almost certainly underestimated more severely than the right kidney, as

was predicted by the phantom experiments. As a result of the corrections, the discrepancy

between the left and right kidneys,∆RL, was reduced by the correction approaches in every

case but one. The extent of this reduction varied depending on the reconstruction algorithm

used and the correction that was applied.

5.2.3 Effect on consistency of TACs

In the absence of the known truth against which to compare thereconstructed images, it was

also not possible to use the same measures of TAC consistency, σ̄ andS, as were used in the

phantom experiments. Furthermore, in reality the kidney itself is comprised of numerous

individual lobes, which may contain different concentrations of activity or exhibit slightly

different regional dynamic behaviour. Thus, assuming uniform dynamic behavior in the

entire kidney when calculatinḡσ or S could be a misleading measure of image accuracy.

So, in order to assess the consistency of TACs in the reconstructed images, small cubes

consisting of several voxels were first defined in the inferior and superior regions of each

kidney, yielding four ROIs in total, as illustrated in Figure 5.10. In the first volunteer,

each cube was 4×4×4 voxels in size (corresponding to a volume of approximately7 cc).

Since the second volunteer had smaller kidneys, smaller cubes of 3×3×3 voxels were

used. Due to the small size of each ROI, the true behavior within them was expected to be
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Uncorr. CF IE CF-IE

∆RL LK+ RK+ ∆RL LK+ RK+ ∆RL LK+ RK+ ∆RL

Volunteer #1
dEM 12.1 27.0 22.3 7.9 30.0 27.3 9.8 34.1 31.0 9.5

d2EM 14.7 24.9 20.8 10.9 27.0 25.3 13.1 29.1 25.7 11.7

Volunteer #2
dEM 11.4 30.3 28.9 10.1 39.2 28.8 3.1 43.2 33.9 4.1

d2EM 4.2 27.1 27.7 4.7 38.8 36.8 2.7 42.9 40.6 2.5

Table 5.6: Effect on the mean TACs of each of the three correction methods, for the two sets of volunteer data. Formulas

for LK+, RK+ and∆RL are given in Equation (5.2).
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dEM image

d2EM image

Figure 5.9: Mean TACs extracted from left and right kidney regions of reconstructed im-

ages of Volunteer #1, before and after application of correction methods. Top plots are of

the dEM reconstruction, bottom plots of the d2EM reconstruction. Dashed line shows the

mean TAC extracted from uncorrected image, while solid lineshows the mean TAC after

the application of the CF, IE, and CF-IE corrections.



CHAPTER 5. 3D SIMULATIONS AND EXPERIMENTS 109

Figure 5.10: Volume rendering of the regions of interest used to assess consistency of

TACs within the reconstructed images. Image is of the ROIs used for the first volunteer

(posterior view). Faint outline shows left and right kidneys, with pelves shown in blue and

ROIs shown as red cubes. Light patches around edges appear due to the volume rendering.

Figure prepared with the assistance of A. Saad. [62]

fairly consistent. Values of̄σ andS inside each of the ROIs were then calculated using a

modified formula. Since the true TAC was not known, the mean TAC for each region was

used as a surrogate in the error formulas (3.4) and (3.5). We denote these modified error

measures bȳσ∗ andS∗, respectively, to distinguish them from the ones used in thephantom

experiments. This modification changes the nature of these error measures to some extent;

in the phantom experiment,̄σ andS measured the consistency of the TAC in every voxel

with the true TAC, while here,̄σ∗ andS∗ simply measure consistency with the mean TAC,

regardless of how accurate that mean TAC is.

Full results of these experiments are presented in Tables A.13 and A.14, and sum-

marized in Table 5.7. The results presented in Table A.13 indicate that the effect of the

correction methods on̄σ∗ is unpredictable. In half of the cases, applying any of the three

methods caused̄σ∗ to increase, while in the other half, at least one of the threemethods

reduced̄σ∗. It is surprising that the application of IE and CF-IE methodscould result in a

largerσ̄∗ value, since these methods initialized the second run of thereconstruction using

the template, which one would expect would result in less variance between TACs. Fig-

ure 5.11 shows a sampling of the voxel-level TACs within the four small regions of the
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dEM

d2EM

Figure 5.11: Voxel-level TACs within the four ROIs defined in the kidney regions of im-

ages of Volunteer #2, before and after application of the IE correction method. Top plot

shows results for image reconstructed using dEM, bottom plot for image reconstructed us-

ing d2EM. True TAC is shown in red, with 12 randomly-selected voxellevel TACs shown

as solid black lines. Columns correspond to the each of the four regions.
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Volunteer #1 Volunteer #2

Uncorr. CF IE CF-IE Uncorr. CF IE CF-IE

σ̄∗
dEM 14.0 15.1 14.6 14.6 12.0 16.1 13.7 14.9

d2EM 15.6 17.3 14.4 14.6 12.3 15.8 13.8 15.0

S∗
dEM 7.0 6.3 5.8 5.8 8.0 7.9 6.1 6.5

d2EM 6.0 7.0 4.3 4.3 6.1 6.1 4.1 4.2

Table 5.7: Average values of̄σ∗ andS∗ before and after application of the template-based

corrections. Averages were taken over the four ROIs defined in the kidneys. The smallest

error value in each row is bolded.

reconstructed image corresponding to Volunteer #2, beforeand after application of the IE

method. In this case,̄σ was reduced in the two ROIs of the right kidney after application

of the IE method, but increased in the two ROIs of the left kidney. It is apparent from these

images that there is more variation among the TACs within these two left kidney regions

after the IE correction was applied, but it is difficult to ascertain why this is the case. It may

in fact be that the behaviour within even these small ROIs wasnot homogenous in reality.

Conversely, the relative shape errorS∗ was consistently reduced by the application of

the IE and CF-IE methods. So, although the use of the template as an initial estimate did

not prevent the TACs within each ROI from diverging in magnitude, it did generally result

in more consistent shapes within each ROI. The use of d2EM over dEM also consistently

resulted in lower values ofS∗, both before and after application of the correction methods.

This improvement is apparent in Figure 5.11, particularly in the inferior left kidney region.

In the images reconstructed using dEM, the mean TAC for the region peaks twice as a result

of inconsistencies at the voxel level. In the images reconstructed using d2EM, the mean

TAC corresponding to this region is smoother and appears to be much more physiologically

realistic.



Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we have investigated the reconstruction of dynamic SPECT images from data

acquired using a single slow camera rotation. The investigation has focused on two main

areas: the use of a temporal concavity constraint (the d2EM method) to promote smooth-

ness and consistency of time activity curves within regionsof interest, and a discussion of

artifacts – particularly those due to effects of attenuation – that occur in dynamic images

reconstructed from slow-rotation data, as well as methods to potentially correct for them.

The phantom experiments of Chapter 3 have demonstrated that,compared to dEM,

d2EM provides TACs with smoother, more consistent shapes in dynamic regions of inter-

est. In these experiments, images reconstructed using d2EM were more accurate than the

corresponding images reconstructed using dEM, as indicated by significant improvements

in all three measures of error that were computed. The improvements provided by d2EM

were especially noticeable in phantom simulations with high levels of noise and relatively

gradual tracer kinetics. The stronger constraint used by d2EM meant that the algorithm was

more resistant to the effects of noise, such as spurious “spikes” in activity occurring in a

single time frame.

The experiments using renal data indicated that d2EM can be successfully applied to

a real-life clinical application, and that it provides someimprovements over dEM in this

situation as well. TAC shapes were again found to be more consistent within small ROIs of

the kidneys, and the mean TACs for those regions were smootherand more physiologically

112
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realistic as a result. The fact that TAC shapes at voxel levelwere more consistent with

the mean TAC in the d2EM images is important, because it provides more confidence that

averaging the TAC over that ROI accurately represents the kinetics in that region. If TAC

shapes vary drastically within a region, it is not clear whether the mean TAC is physically

meaningful.

In the second part of the thesis, we identified several types of artifact that occur in

dynamic images reconstructed from slow-rotation data. Artifacts caused by the effects

of attenuation were shown to be particularly severe, resulting in the underestimation of

regional TACs during time periods corresponding to those when the amount of attenuating

material between that region and the camera increased during the acquisition of projection

data. These effects occur as a result of the relatively smallamount of projection data used

in single slow-rotation dynamic SPECT imaging. Inclusion ofattenuation modeling in the

system matrix used to reconstruct the image does not accountfor these effects, and the

artifacts that result persist even after many iterations ofthe reconstruction algorithm. In

3D phantom simulations of a dynamic renal SPECT study, it was shown that as a result of

these effects, the accuracy of the reconstructed TAC corresponding to either kidney varied

depending on the protocol used to acquire the data.

Three different methods to correct for these effects were investigated, all of which made

use of a numerical template to approximate the true dynamic distribution of activity. In

phantom experiments, all three of these methods were found to substantially increase the

accuracy of the mean TAC corresponding to each kidney, and provided correction for the

differing effects of attenuation on either kidney. The effect of the correction methods on

the consistency of TACs within each ROI was unpredictable, however, as the use of these

methods was found in some cases to increase the variation among TACs within ROIs. Of

the three correction methods that were investigated, the two that used a template as the

initial estimate to a second run of the reconstruction algorithm (the IE and CF-IE methods)

generally resulted in better uniformity than the third (CF) approach. In the experiments

with real-life renal data, the effect of these correction methods on the mean TACs in either

kidney were shown to be similar to those seen in the phantom experiments.
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6.2 Future work

The findings in this thesis suggest several avenues for further investigation. The arti-

facts identified in Chapter 4 appear to be somewhat problematic for slow-rotation dynamic

SPECT. While the correction methods investigated in this thesis are able to reduce these

artifacts to a large extent, these methods are not ideal in some respects. In particular, their

effectiveness depends to some extent on the accuracy of the segmentation, and they as-

sume that the true distribution of activity is well-approximated by a template consisting of

a small number of regions with spatially homogenous dynamicbehaviour. This assumption

may not be justified in real-life situations, and application of these techniques could lead

to errors or bias as a result. The development of a more elegant approach to correct for

attenuation artifacts would be useful, although at the present time it is not clear how this

can be accomplished. It must be noted that these artifacts are just one of many sources of

error that are present in any image reconstructed from SPECT data. Even if they cannot

be corrected for fully, it is still possible to obtain usefulinformation from a slow-rotation

dynamic SPECT study provided that one is aware that these artifacts may be present.

A considerable amount of variation in TAC magnitudes was apparent in images recon-

structed by both dEM and d2EM. In 2D phantom experiments, images were also produced

using OSEM to reconstruct each time frame independently, based on more complete projec-

tion data. The magnitude of TACs also varied noticeably in these images (see Figure 3.15),

although less so than in the images reconstructed with d2EM. Nonetheless, this indicates

that even in idealized situations (i.e., the availability of complete dynamic projection data),

variation among voxel-level TACs is inevitable if no spatialsmoothing is performed. In-

vestigating the use of spatial smoothing in tandem with d2EM would be worthwhile. This

could possibly be achieved by including a prior in the reconstruction algorithm, as is done

in maximum a posteriorireconstruction for static imaging.

Testing the d2EM algorithm in different clinical situations, such as dynamic cardiac

imaging, would provide more context on its ability to recover accurate, three-dimensional

information about dynamicin vivo processes. Dynamic cardiac imaging using a slow-

rotating camera is challenging since the kinetic behaviourof tracer in some regions (e.g.

the blood pool of the heart) is very rapid, meaning that reconstruction of these regions

could be hampered by blurring effects such as those discussed in Chapter 4. Regions with



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 115

different dynamic behaviour are also not as well-separatedin cardiac studies as in the renal

studies considered here. The fact that voxels in the heart region may contain a mixture

of blood and myocardial tissue could be particularly problematic. Since the blood TAC

features a sharp early peak followed by rapid washout, whilethe uptake and washout of

tracer in the myocardium is more gradual, a mixture of the twomay produce a TAC with

two peaks, which dEM and d2EM expressly forbid.

The development of new-model cardiac SPECT systems which acquire multiple simul-

taneous views of the patient has the potential to be a boon to dynamic cardiac SPECT

imaging [69]. Although it is possible to produce dynamic images from data acquired on

these systems by using a conventional algorithm such as OSEMto reconstruct each time

frame independently, the use of an integrated approach suchas dEM or d2EM could pro-

vide benefits, since they process the entire dynamic data setsimultaneously. Although the

application of the dSPECT approach to this situation would befundamentally the same as

in the case of a slowly rotating camera, the system matrix used by the current dSPECT

software would have to be altered in order to properly model the complicated geometry of

these systems.



Appendix A

Full experimental results

This appendix contains full tabulated results from the experiments run in Chapters 3 and 5.

Tables A.1 to A.3 contain results for the 2D phantom simulations of Chapter 3, while Ta-

bles A.4 to A.12 and Tables A.13 to A.14 contain results from the 3D phantom simulations

and renal volunteer experiments of Chapter 5, respectively.

116



A
P

P
E

N
D

IX
A

.
F

U
LL

E
X

P
E

R
IM

E
N

TA
L

R
E

S
U

LT
S

117

Concave-up-decreasingConcave-down-up Concave-down

ε σ̄ S ε σ̄ S ε σ̄ S

low noise

r1 dEM: 31.4 33.6 29.8 28.6 47.8 32.5 8.8 21.5 12.3

d2EM: 29.0 36.7 32.1 34.7 54.0 42.3 8.4 19.2 7.9

r2 dEM: 20.0 25.7 19.8 25.8 34.2 25.1 8.2 21.1 11.6

d2EM: 13.2 23.3 13.3 17.8 31.5 19.3 7.2 18.9 5.3

r3 dEM: 9.5 21.2 11.6 12.9 23.2 14.2 9.1 21.3 10.0

d2EM: 6.8 20.8 11.5 10.3 21.2 9.9 7.9 20.4 5.9

r4 dEM: 8.8 20.1 7.9 11.5 22.3 12.3 9.9 21.3 8.9

d2EM: 7.2 20.2 7.6 9.4 20.4 7.5 8.3 20.9 5.7

mid noise

r1 dEM: 35.3 41.5 30.3 32.4 52.5 39.5 9.2 24.3 15.2

d2EM: 32.7 45.0 32.0 36.7 60.3 50.1 8.1 22.6 9.9

r2 dEM: 20.1 36.1 26.3 30.2 44.5 31.7 10.2 25.4 14.8

d2EM: 13.0 33.1 20.6 21.3 41.9 23.6 8.5 22.6 7.8

r3 dEM: 13.0 27.3 15.2 12.2 29.1 19.1 9.5 26.7 13.6

d2EM: 9.2 25.7 12.7 9.0 26.8 12.5 7.7 24.4 7.9

r4 dEM: 8.4 21.4 9.6 12.8 27.2 15.5 10.7 25.6 10.6

d2EM: 6.9 21.4 8.9 10.0 24.4 9.1 8.8 24.9 7.2

high noise

r1 dEM: 28.7 73.7 40.5 34.0 84.2 50.8 13.6 47.6 32.8

d2EM: 28.6 76.6 41.2 37.9 79.9 55.1 10.4 37.4 15.3

r2 dEM: 22.5 58.2 36.9 33.5 59.6 45.7 13.9 43.9 33.1

d2EM: 14.9 57.2 27.8 20.0 60.8 32.3 10.3 34.9 14.9

r3 dEM: 17.2 45.4 25.3 16.2 43.6 32.7 11.4 40.0 27.1

d2EM: 13.5 44.3 18.9 8.8 34.5 16.2 6.8 34.3 13.1

r4 dEM: 17.6 41.9 23.6 16.6 43.9 30.4 12.3 45.6 25.3

d2EM: 15.0 42.3 19.2 9.8 34.1 14.3 7.7 42.5 14.4

Table A.1: Error values after 80 iterations, 2D annulus phantom experiments.
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Concave-up-decreasingConcave-down-up Concave-down

ε σ̄ S ε σ̄ S ε σ̄ S

low noise

r1 dEM: 28.2 23.8 22.8 22.8 24.5 23.7 6.1 20.4 12.5

d2EM: 30.2 27.0 28.7 26.8 30.3 32.7 6.5 17.2 6.5

r2 dEM: 9.3 20.9 14.1 14.4 24.7 17.7 6.5 19.8 12.0

d2EM: 6.6 18.7 10.6 7.9 21.2 12.0 5.8 16.5 5.3

r3 dEM: 9.2 18.3 10.8 7.5 17.9 8.7 6.4 19.1 10.6

d2EM: 8.2 17.0 9.6 5.2 16.6 5.4 5.3 16.8 4.8

r4 dEM: 5.2 16.1 6.9 7.2 17.6 9.2 6.4 19.8 7.2

d2EM: 5.0 15.9 5.8 6.8 16.4 6.2 5.5 18.6 4.4

mid noise

r1 dEM: 29.7 36.4 27.7 24.0 36.3 29.8 6.4 25.4 15.4

d2EM: 33.9 40.9 35.5 25.8 45.1 39.5 5.9 21.3 8.5

r2 dEM: 11.7 30.9 19.8 15.6 34.5 23.4 6.6 24.3 14.8

d2EM: 7.8 29.4 14.2 8.3 31.3 15.4 5.5 20.9 8.5

r3 dEM: 11.8 26.8 16.5 7.1 26.9 14.6 6.7 27.2 13.6

d2EM: 9.9 25.4 13.1 3.8 24.6 8.4 5.3 24.6 7.0

r4 dEM: 5.1 21.9 10.5 8.3 25.2 14.9 7.4 21.5 10.7

d2EM: 4.2 21.7 9.8 7.0 22.2 8.6 5.9 20.0 6.7

high noise

r1 dEM: 34.3 55.4 39.4 28.4 85.6 55.7 9.4 45.1 28.2

d2EM: 35.4 60.4 42.6 33.3 73.2 53.9 6.5 36.3 15.0

r2 dEM: 13.9 51.9 31.9 21.9 56.9 37.2 9.1 39.8 26.2

d2EM: 8.0 48.7 23.2 10.0 57.0 27.0 6.4 30.8 12.5

r3 dEM: 13.8 41.3 21.9 10.5 42.1 28.8 11.3 42.4 27.3

d2EM: 10.5 40.0 17.9 5.1 38.1 15.7 7.1 31.4 12.1

r4 dEM: 6.6 32.7 16.9 9.9 42.2 28.0 10.5 38.6 25.0

d2EM: 3.0 32.2 15.1 6.2 32.6 13.2 5.8 31.5 13.2

Table A.2: Error values after 80 iterations, 2D ball phantomexperiments.
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Concave-up-decreasingConcave-down-up Concave-down

ε σ̄ S ε σ̄ S ε σ̄ S

low noise

r1 OSEM: 4.8 16.5 11.9 4.7 17.0 11.5 5.1 17.5 6.5

d2EM: 30.2 27.0 28.7 26.8 30.3 32.7 6.5 17.2 6.5

r2 OSEM: 5.1 16.4 9.6 4.6 16.8 8.9 5.0 17.3 6.4

d2EM: 6.6 18.7 10.6 7.9 21.2 12.0 5.8 16.5 5.3

r3 OSEM: 5.1 16.4 8.7 4.6 16.6 7.3 4.9 17.7 6.7

d2EM: 8.2 17.0 9.6 5.2 16.6 5.4 5.3 16.8 4.8

r4 OSEM: 4.7 16.5 7.9 4.5 16.6 6.7 5.2 17.7 6.9

d2EM: 5.0 15.9 5.8 6.8 16.4 6.2 5.5 18.6 4.4

mid noise

r1 OSEM: 4.6 27.7 19.8 4.0 27.8 19.1 4.9 20.5 12.8

d2EM: 33.9 40.9 35.5 25.8 45.1 39.5 5.9 21.3 8.5

r2 OSEM: 5.4 24.3 17.4 4.9 24.3 16.1 5.0 20.5 12.9

d2EM: 7.8 29.4 14.2 8.3 31.3 15.4 5.5 20.9 8.5

r3 OSEM: 4.8 22.7 16.5 5.1 20.7 13.9 5.0 20.7 12.8

d2EM: 9.9 25.4 13.1 3.8 24.6 8.4 5.3 24.6 7.0

r4 OSEM: 5.1 21.5 15.7 4.7 20.0 13.1 5.5 21.1 13.5

d2EM: 4.2 21.7 9.8 7.0 22.2 8.6 5.9 20.0 6.7

high noise

r1 OSEM: 6.3 52.2 36.5 6.0 53.4 35.7 5.4 29.8 25.0

d2EM: 35.4 60.4 42.6 33.3 73.2 53.9 6.5 36.3 15.0

r2 OSEM: 5.3 44.1 33.2 4.9 42.0 29.4 5.5 30.0 25.0

d2EM: 8.0 48.7 23.2 10.0 57.0 27.0 6.4 30.8 12.5

r3 OSEM: 5.8 38.1 31.0 5.6 32.2 26.4 5.7 29.9 25.0

d2EM: 10.5 40.0 18.0 5.1 38.1 15.7 7.1 31.4 12.1

r4 OSEM: 5.9 34.6 29.6 5.2 29.4 24.7 5.7 31.6 26.4

d2EM: 3.0 32.2 15.1 6.2 32.6 13.2 5.8 31.5 13.2

Table A.3: Error values after 80 iterations of d2EM versus 6 iterations of frame-by-frame OSEM with 8 subsets, 2D

phantom experiments.
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Uncorrected CF IE CF-IE

LK RK LK RK LK RK LK RK

A
dEM 20.5 15.6 3.9 4.3 4.2 4.5 3.4 4.0

d2EM 15.6 11.7 3.8 3.7 4.9 3.8 4.1 4.5

B
dEM 15.7 16.4 2.3 3.1 2.1 4.0 1.4 3.0

d2EM 12.2 16.7 2.0 3.6 0.9 5.2 1.6 2.1

C
dEM 15.9 17.1 2.6 5.9 2.3 5.0 1.5 4.7

d2EM 12.1 12.1 2.1 3.5 0.8 4.9 1.9 5.5

D
dEM 21.5 16.8 4.0 3.3 4.5 4.1 4.0 3.3

d2EM 16.2 16.7 4.2 4.0 3.9 5.3 4.7 3.0

Avg.
dEM 18.4 16.5 3.2 4.2 3.3 4.4 2.6 3.7

d2EM 14.0 14.3 3.0 3.7 2.6 4.8 3.0 3.8

Table A.4: Error valuesε before and after application of template correction for Phantoms

A-D. Segmentation based on the true organ boundaries was used to create the template.

The smallest error in each row for either kidney is bolded.

Uncorrected CF IE CF-IE

LK RK LK RK LK RK LK RK

A
dEM 20.5 15.6 3.8 5.2 4.2 6.0 4.4 6.5

d2EM 15.6 11.7 4.4 5.1 4.1 2.6 4.6 6.8

B
dEM 15.7 16.4 2.7 3.4 4.4 4.1 3.2 4.3

d2EM 12.2 16.7 3.1 5.0 2.4 6.5 2.3 4.6

C
dEM 15.9 17.1 3.7 6.0 4.2 6.1 3.5 6.6

d2EM 12.1 12.1 3.7 4.3 2.8 2.8 3.3 7.2

D
dEM 21.5 16.8 5.3 4.1 5.3 4.1 5.7 4.3

d2EM 16.2 16.7 5.3 5.3 4.1 6.6 5.6 5.1

Avg.
dEM 18.4 16.5 3.9 4.7 4.5 5.1 4.2 5.4

d2EM 14.0 14.3 4.1 4.9 3.4 4.7 4.0 5.9

Table A.5: Error valuesε before and after application of template correction for Phantoms

A-D. Probabilistic segmentation was used to create the template. The smallest error in each

row for either kidney is bolded.
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Uncorrected CF IE CF-IE

LK RK LK RK LK RK LK RK

A
dEM 34.2 33.2 23.0 22.0 16.3 16.4 13.4 14.0

d2EM 30.1 28.4 20.5 18.6 14.8 14.0 11.4 10.8

B
dEM 28.4 30.3 18.0 17.1 8.5 9.7 7.5 7.4

d2EM 25.3 27.1 14.8 15.0 8.5 9.3 6.6 6.6

C
dEM 29.3 36.2 17.6 24.0 8.2 17.8 7.3 15.4

d2EM 26.2 30.7 15.5 22.2 9.1 15.0 7.3 12.6

D
dEM 35.7 30.0 25.3 17.0 18.3 9.3 15.2 7.3

d2EM 32.2 26.4 23.6 13.8 17.0 8.4 13.5 6.8

Avg.
dEM 31.9 32.4 21.0 20.0 12.8 13.3 10.8 11.0

d2EM 28.4 28.2 18.6 17.4 12.3 11.7 9.7 9.2

Table A.6: Error values̄σ before and after application of template correction for Phantoms

A-D. Segmentation based on the true organ boundaries was used to create the template.

The smallest error in each row for either kidney is bolded.

Uncorrected CF IE CF-IE

LK RK LK RK LK RK LK RK

A
dEM 34.2 33.2 37.1 29.9 35.0 26.7 35.4 25.7

d2EM 30.1 28.4 29.9 29.9 27.0 25.7 26.8 25.5

B
dEM 28.4 30.3 35.3 23.8 30.3 19.2 30.2 15.1

d2EM 25.3 27.1 22.9 21.1 20.1 18.1 19.5 14.4

C
dEM 29.3 36.2 37.5 34.4 31.4 31.6 32.3 30.1

d2EM 26.2 30.7 28.6 33.9 25.5 28.5 25.4 29.8

D
dEM 35.7 30.0 41.1 22.0 38.1 17.4 38.4 15.0

d2EM 32.2 26.4 33.4 19.8 29.3 17.1 30.3 14.1

Avg.
dEM 31.9 32.4 37.7 27.5 33.7 23.7 34.1 21.5

d2EM 28.4 28.2 28.7 26.2 25.5 22.3 25.5 21.0

Table A.7: Error values̄σ before and after application of template correction for Phantoms

A-D. Probabilistic segmentation was used to create the template. The smallest error in each

row for either kidney is bolded.
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Uncorrected CF IE CF-IE

LK RK LK RK LK RK LK RK

A
dEM 19.1 18.8 13.7 14.3 8.6 10.3 8.1 9.5

d2EM 11.8 12.0 8.7 9.9 7.3 7.4 5.7 5.4

B
dEM 14.3 17.8 11.2 13.3 4.4 6.4 4.4 4.1

d2EM 10.6 13.3 8.0 8.1 4.2 5.8 2.6 2.8

C
dEM 14.8 20.0 10.8 14.5 3.9 10.6 4.3 9.8

d2EM 10.8 12.6 8.3 10.1 4.7 7.7 2.6 6.5

D
dEM 19.5 17.8 13.9 13.1 9.3 6.8 9.0 4.5

d2EM 12.6 12.6 9.7 7.6 8.1 5.7 7.1 2.8

Avg.
dEM 16.9 18.6 12.4 13.8 6.6 8.5 6.5 7.0

d2EM 11.5 12.6 8.7 8.9 6.1 6.6 4.5 4.4

Table A.8: Error valuesS before and after application of template correction for Phantoms

A-D. The smallest error in each row for either kidney is bolded.

Uncorrected CF IE CF-IE

LK RK LK RK LK RK LK RK

A
dEM 19.1 18.8 18.5 15.3 14.9 11.8 15.1 11.5

d2EM 11.8 12.0 11.4 10.8 10.4 8.2 9.2 7.6

B
dEM 14.3 17.8 15.5 15.8 11.0 10.9 12.4 9.1

d2EM 10.6 13.3 9.8 9.9 7.2 8.3 6.0 10.6

C
dEM 14.8 20.0 15.1 16.5 9.2 13.2 11.3 12.7

d2EM 10.8 12.6 10.4 11.0 8.0 8.9 7.2 8.4

D
dEM 19.5 17.8 19.0 14.9 15.9 10.6 16.1 9.1

d2EM 12.6 12.6 12.1 9.3 11.0 7.5 10.1 9.1

Avg.
dEM 16.9 18.6 17.1 15.7 12.8 11.6 13.7 10.6

d2EM 11.5 12.6 10.9 10.3 9.2 8.2 8.1 9.0

Table A.9: Error valuesS before and after application of template correction for Phantoms

A-D. Probabilistic segmentation was used to create the template. The smallest error in each

row for either kidney is bolded.
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Phantom E

Uncorrected CF IE CF-IE

LKu LKh RK LKu LKh RK LKu LKh RK LKu LKh RK

Corr. Seg.
dEM 18.4 22.7 15.1 2.6 3.8 6.2 2.1 3.3 5.9 1.7 3.4 4.9

d2EM 14.2 17.8 10.5 1.9 4.7 4.0 0.7 5.0 5.4 1.9 4.3 5.0

Incorr. Seg.
dEM 18.4 22.7 15.1 5.0 8.9 6.0 2.9 7.8 5.9 3.8 8.2 5.0

d2EM 14.2 17.8 10.5 3.3 8.3 4.2 4.8 9.3 5.4 4.8 8.1 4.9

Prob. Seg.
dEM 18.4 22.7 15.1 9.0 10.0 5.9 9.2 10.0 5.7 5.9 10.0 6.5

d2EM 14.2 17.8 10.5 9.5 10.6 4.9 9.4 10.4 3.6 11.1 11.2 6.4

Phantom F

Uncorrected CF IE CF-IE

LK RKu RKh LK RKu RKh LK RKu RKh LK RKu RKh

Corr. Seg.
dEM 19.3 18.8 21.7 3.8 4.7 8.3 4.3 4.2 8.3 3.2 3.6 7.6

d2EM 14.2 20.2 15.3 2.5 6.7 6.0 4.4 7.6 6.5 2.6 4.7 5.7

Incorr. Seg.
dEM 19.3 18.8 21.7 3.7 8.4 15.2 4.3 6.8 15.6 3.2 6.8 16.9

d2EM 14.2 20.2 15.3 2.5 7.7 14.9 4.4 10.9 15.9 2.5 8.1 16.8

Prob. Seg.
dEM 19.3 18.8 21.7 3.9 10.1 11.8 4.4 9.2 12.1 4.3 8.9 12.6

d2EM 14.2 20.2 15.3 3.6 9.6 8.4 3.1 10.1 9.0 3.8 8.5 10.9

Table A.10: Error valuesε before and after application of template-based corrections for Phantoms E and F. “LKu/RKu”

refer to the unhealthy portion of the left or right kidney (bottom 33%), while “LKh/RKh” refer to the healthy portion (the

remainder of that kidney). “Corr. Seg.” refers to the correctsegmentation using the true organ boundaries, where the

unhealthy region was segmented separately; “Incorr. Seg” to the incorrect segmentation using the true organ boundaries,

where the partially unhealthy kidney was assigned to a single segment; and “Prob. Seg” to the probabilistic segmentation,

which included a separate segment for the unhealthy portionof the kidney. The smallest error in each row for each ROI is

bolded.
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Phantom E

Uncorrected CF IE CF-IE

LKu LKh RK LKu LKh RK LKu LKh RK LKu LKh RK

Corr. Seg.
dEM 29.6 37.4 40.4 18.4 22.5 25.6 7.7 15.8 19.4 8.0 15.2 16.8

d2EM 25.8 34.4 34.9 15.5 22.4 23.2 10.1 15.8 16.4 11.0 13.8 13.2

Incorr. Seg.
dEM 29.6 37.4 40.4 19.1 29.6 25.6 11.2 24.5 19.4 11.9 25.1 16.8

d2EM 25.8 34.4 34.9 16.4 28.7 23.1 12.3 24.3 12.3 11.5 22.6 13.2

Prob. Seg.
dEM 29.6 37.4 40.4 29.1 25.1 31.3 24.5 19.9 27.3 24.8 19.8 26.1

d2EM 25.8 34.4 34.9 27.3 25.3 29.1 26.2 19.8 24.6 27.2 19.3 22.7

Phantom F

Uncorrected CF IE CF-IE

LK RKu RKh LK RKu RKh LK RKu RKh LK RKu RKh

Corr. Seg.
dEM 35.8 30.8 41.0 23.2 16.8 27.4 17.8 10.1 21.5 13.8 7.8 19.6

d2EM 32.4 26.5 35.6 21.5 13.5 30.7 15.8 9.8 19.6 11.5 7.5 15.6

Incorr. Seg.
dEM 35.8 30.8 41.0 23.2 18.3 38.5 17.8 15.6 33.9 13.9 14.4 34.6

d2EM 32.4 26.5 35.6 21.5 25.9 47.4 15.9 17.1 33.1 11.5 13.9 32.0

Prob. Seg.
dEM 35.8 30.8 41.0 37.9 24.7 37.7 36.6 21.6 33.3 38.1 21.4 33.0

d2EM 32.4 26.5 35.6 37.7 21.0 51.4 35.8 21.2 33.5 37.6 19.8 33.7

Table A.11: Error values̄σ before and after application of template-based corrections for Phantoms E and F. “LKu/RKu”

refer to the unhealthy portion of the left or right kidney (bottom 33%), while “LKh/RKh” refer to the healthy portion (the

remainder of that kidney). “Corr. Seg.” refers to the correctsegmentation using the true organ boundaries, where the

unhealthy region was segmented separately; “Incorr. Seg” to the incorrect segmentation using the true organ boundaries,

where the partially unhealthy kidney was assigned to a single segment; and “Prob. Seg” to the probabilistic segmentation,

which included a separate segment for the unhealthy portionof the kidney. The smallest error in each row for each ROI is

bolded.
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Phantom E

Uncorrected CF IE CF-IE

LKu LKh RK LKu LKh RK LKu LKh RK LKu LKh RK

Corr. Seg.
dEM 15.1 20.1 20.4 10.5 12.8 14.6 4.4 8.8 10.7 4.9 8.3 10.2

d2EM 11.7 13.7 13.0 8.2 9.3 10.0 6.0 7.9 7.4 5.1 5.3 5.9

Incorr. Seg.
dEM 15.1 20.1 20.4 13.8 16.3 14.9 7.6 12.1 10.8 7.6 12.2 10.2

d2EM 11.7 13.7 13.0 11.0 12.5 10.0 7.6 12.2 7.4 6.4 10.7 5.9

Prob. Seg.
dEM 15.1 20.1 20.4 11.6 14.1 17.0 5.9 10.0 13.4 7.2 9.4 13.2

d2EM 11.7 13.7 13.0 10.6 9.9 12.7 8.4 8.7 10.4 9.2 6.3 9.1

Phantom F

Uncorrected CF IE CF-IE

LK RKu RKh LK RKu RKh LK RKu RKh LK RKu RKh

Corr. Seg.
dEM 19.3 17.6 22.7 13.2 13.6 16.2 9.1 7.1 12.7 8.8 4.8 11.1

d2EM 12.4 12.3 14.9 9.0 7.4 11.4 7.5 7.5 9.8 5.3 4.7 7.5

Incorr. Seg.
dEM 19.3 17.6 22.7 13.2 16.0 22.0 9.2 11.7 18.5 8.8 10.1 19.1

d2EM 12.4 12.3 14.9 9.0 17.2 20.8 7.5 12.3 17.1 5.3 8.5 17.7

Prob. Seg.
dEM 19.3 17.6 22.7 16.7 16.3 19.3 14.0 10.8 17.0 14.3 9.3 17.9

d2EM 12.4 12.3 14.9 12.5 10.5 16.9 11.8 13.0 14.4 10.3 10.3 14.2

Table A.12: Error valuesS before and after application of template-based corrections for Phantoms E and F. “LKu/RKu”

refer to the unhealthy portion of the left or right kidney (bottom 33%), while “LKh/RKh” refer to the healthy portion (the

remainder of that kidney). “Corr. Seg.” refers to the correctsegmentation using the true organ boundaries, where the

unhealthy region was segmented separately; “Incorr. Seg” to the incorrect segmentation using the true organ boundaries,

where the partially unhealthy kidney was assigned to a single segment; and “Prob. Seg” to the probabilistic segmentation,

which included a separate segment for the unhealthy portionof the kidney. The smallest error in each row for each ROI is

bolded.
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Volunteer #1 Volunteer #2

Uncorr. CF IE CF-IE Uncorr. CF IE CF-IE

RK Inf.
dEM 16.1 20.7 20.7 21.8 12.6 12.7 11.6 13.5

d2EM 17.1 22.8 19.9 21.5 17.4 14.0 12.7 13.7

RK Sup.
dEM 12.3 9.0 9.4 9.8 12.9 13.9 10.7 11.6

d2EM 14.3 14.3 8.7 9.1 10.8 12.8 9.3 10.9

LK Inf.
dEM 13.5 18.5 17.1 16.0 12.0 17.4 14.8 15.1

d2EM 14.5 18.7 17.5 17.0 11.2 17.8 15.2 15.4

LK Sup.
dEM 14.0 12.3 11.1 10.8 10.4 20.3 17.8 19.5

d2EM 16.7 13.3 11.2 10.9 9.9 18.3 17.7 19.8

Average
dEM 14.0 15.1 14.6 14.6 12.0 16.1 13.7 14.9

d2EM 15.6 17.3 14.4 14.6 12.3 15.8 13.8 15.0

Table A.13: Relative weighted standard deviation valuesσ̄∗ before and after application of

template-based corrections. Row headings refer to the inferior and superior cube-shaped

ROIs in the left and right kidneys. Smallest value in each rowis bolded.

Volunteer #1 Volunteer #2

Uncorr. CF IE CF-IE Uncorr. CF IE CF-IE

RK Inf.
dEM 7.9 7.7 7.9 7.8 7.3 7.1 5.7 7.0

d2EM 5.6 10.0 5.1 5.5 9.6 7.5 5.0 5.0

RK Sup.
dEM 5.2 5.0 5.9 6.1 10.7 10.6 6.7 6.9

d2EM 5.8 6.3 3.9 3.9 7.2 8.1 4.4 4.5

LK Inf.
dEM 10.4 8.0 5.7 5.7 7.8 8.3 7.3 7.4

d2EM 8.4 7.4 5.5 5.2 4.2 4.7 4.2 4.5

LK Sup.
dEM 4.6 4.4 3.6 3.6 6.3 5.5 4.5 4.6

d2EM 4.0 4.3 2.7 2.7 3.5 4.0 2.7 2.8

Average
dEM 7.0 6.3 5.8 5.8 8.0 7.9 6.1 6.5

d2EM 6.0 7.0 4.3 4.3 6.1 6.1 4.1 4.2

Table A.14: Relative shape error valuesS∗ before and after application of template-based

corrections. Row headings refer to the inferior and superiorcube-shaped ROIs in the left

and right kidneys. Smallest value in each row is bolded.
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