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Abstract.
Objective: Unrolled algorithms are a promising approach for reconstruction

of CT images in challenging scenarios, such as low-dose, sparse-view and limited-
angle imaging. In an unrolled algorithm, a fixed number of iterations of a
reconstruction method are unrolled into multiple layers of a neural network, and
interspersed with trainable layers. The entire network is then trained end-to-end
in a supervised fashion, to learn an appropriate regularizer from training data. In
this paper we propose a novel unrolled algorithm, and compare its performance
with several other approaches on sparse-view and limited-angle CT.

Approach: The proposed algorithm is inspired by the superiorization
methodology, an optimization heuristic in which iterates of a feasibility-seeking
method are perturbed between iterations, typically using descent directions of
a model-based penalty function. Our algorithm instead uses a modified U-net
architecture to introduce the perturbations, allowing a network to learn beneficial
perturbations to the image at various stages of the reconstruction, based on the
training data.

Main Results: In several numerical experiments modeling sparse-view and
limited angle CT scenarios, the algorithm provides excellent results. In particular,
it outperforms several competing unrolled methods in limited-angle scenarios,
while providing comparable or better performance on sparse-view scenarios.

Significance: This work represents a first step towards exploiting the power
of deep learning within the superiorization methodology. Additionally, it studies
the effect of network architecture on the performance of unrolled methods, as well
as the effectiveness of the unrolled approach on both limited-angle CT, where
previous studies have primarily focused on the sparse-view and low-dose cases.

Keywords: computed tomography, deep learning, iterative reconstruction, sparse view,
limited angle
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Figure 1. Images reconstructed from simulated sinogram data showing
characteristic artifacts in sparse-view (centre) and limited-angle (right) scenarios.
Ground truth image shown on left. All three images were reconstructed using the
Simultaneous Algebraic Reconstruction Technique (SART)

1. Introduction

Computed Tomography (CT) is widely utilized in clinical, industrial and other
applications; for example, it is estimated that roughly 80 million CT scans were
performed in the United States in 2017 (OECD 2019). Despite the widespread use of
CT in clinics, several longstanding challenges remain in the field. One such scenario
is sparse-view CT (Sidky et al. 2006), which uses fewer projection views of the patient
than a conventional scan. This approach is motivated by the need to reduce dose
to the patient, stemming from rising concerns about the impact of the cumulative
dose associated with CT on lifetime risk of cancers (Power et al. 2016). Another
problem arising from incomplete data is the limited-angle scenario, wherein the scan
can only be performed over a restricted range of angles, due to limited scan flexibility,
inspection requirements, or object size (Frikel & Quinto 2013). While the incomplete
nature of the data leads to image artifacts in both scenarios, the characteristics of
sparse-view and limited-angle artifacts differ considerably, as shown in Figure 1.

Analytic reconstruction techniques such as filtered backprojection (FBP),
while computationally efficient, produce severe artifacts when presented with
incomplete data. Iterative algorithms, such as the algebraic reconstruction technique
(ART) (Gordon et al. 1970) and simultaneous algebraic reconstruction technique
(SART) (Andersen & Kak 1984), are more computationally intensive, but offer greater
flexibility for dealing with incomplete data. Over the past few decades, researchers
have made many efforts on developing regularized iterative reconstruction techniques
to solve ill-posed inverse problems and obtain better quality images; in particular, by
focusing on the use of prior knowledge of the reconstructed object.

Advances in compressive sensing (CS) showed that an underdetermined linear
system can be solved exactly if some prior information of sparsity is used (Foucart &
Rauhut 2013), subject to conditions on the measurement model, such as the restricted
isometry property. Researchers have proposed various forms of prior knowledge,
including dictionaries (Lu et al. 2011, Xu et al. 2012, Xu et al. 2015), wavelet tight
frames (Jia et al. 2011, Dong et al. 2013), edge information (Wang et al. 2009,
Charbonnier et al. 1997), and others (Zhang, Zeng, Lin, Zhang, Bian, Huang, Gao,
Zhang, Zhang, Feng et al. 2017, Zhang, Zeng, Zhang, Wang, Liang & Ma 2017, Zhang,
Hu, Yang, Chen, Coatrieux & Luo 2017, Kim et al. 2014). One popular underlying
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assumption is the sparsity of the image gradient. By minimizing the `1 norm of
the image gradient (total variation (TV)-based minimization), (Sidky et al. 2006)
showed promising results in several incomplete data scenarios. The piecewise-constant
assumption implied by gradient sparsity, however, is overly simplistic in many cases.
This may lead to blocky artifacts in images reconstructed using TV minimization (Yu
& Wang 2009). In addition, the blurred edge artifacts appearing in limited-angle
images (cf. Figure 1) suggest that isotropic TV minimization is less well suited for
this scenario (Chen et al. 2013). Variants of TV have therefore been proposed to better
preserve structural details (Wang et al. 2017, Yu et al. 2017, Shen et al. 2017, Mahmood
et al. 2018). In general, however, there is no universal prior knowledge that can fit all
types of incomplete data problem, and it is also difficult to adjust the parameters of
the regularization terms.

More recently, there has been an explosion in interest in the use of techniques
from deep learning (LeCun et al. 2015) to address challenging problems such as low-
dose, sparse-view and limited angle CT imaging, as well as other image reconstruction
problems. A recent review is provided in (Ongie et al. 2020). For example, (Zhang
et al. 2016) suggested a deep learning method to reduce artifacts in limited angle CT
images reconstructed with FBP. (Chen, Zhang, Zhang, Liao, Li, Zhou & Wang 2017)
developed a three-layer convolutional neural network (CNN) to reduce artifacts in
low-dose images. More complex networks were proposed in the same year, such as
the wavelet network (Kang et al. 2017) trained in the wavelet domain, and RED-
CNN (Chen, Zhang, Kalra, Lin, Chen, Liao, Zhou & Wang 2017), an algorithm using
the idea of encoder-decoder with residual learning to denoise low-dose images. (Han
et al. 2016) developed a residual learning method using the U-Net based architecture
for sparse view image reconstruction. Independently, (Jin et al. 2017) proposed
FBPConvNet, where the low-dose CT images are first reconstructed with FBP, and
then processed by a U-Net based CNN. (Ye et al. 2018) proposed a frame-based deep
learning denoising approach that employs an encoder-decoder network. Based on the
theory of deep convolutional framelets developed in this paper, (Han & Ye 2018)
proposed U-Net variants that meet the frame condition and give better results on
sparse-view CT image reconstructions.

The aforementioned approaches can be viewed as postprocessing methods, where
an initial reconstruction containing artifacts is fed into the pre-trained CNN. A second
type of approach is to use a CNN within an reconstruction algorithm to recover
an image from the original sinogram. (Pelt & Batenburg 2013) proposed a neural
network filtered backprojection method (NN-FBP), which can be viewed as a weighted
combination of FBP method with some learned filters. (Würfl et al. 2016) subsequently
expressed filtered back-projection-type algorithms as a deep neural network and
demonstrated that learning the weighting and additional filter layers efficiently reduce
the reconstruction error. (Adler & Öktem 2017) proposed an approach that partially
learns the gradient descent at each stage of iterative optimization by unrolling
the entire reconstruction pipeline into a deep CNN. Later, they proposed another
approach (Adler & Öktem 2018) that combines the deep learning network with a
proximal primal-dual optimization method in the same unrolling manner. (Chen
et al. 2018) constructed the LEARN network, which unfolds the iterative procedure
into a recurrent residual network with three convolutional layers in each iteration.
(Gupta et al. 2018) proposed a guaranteed-convergent iterative image reconstruction
algorithm that replace the projector in a projected gradient descent (PGD) with
a training of U-Net. Inspired by generative adversarial network (GAN), (Lunz
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et al. 2018) proposed a data-driven framework that trains a regularizer through
learning to discriminate between the distribution of label images and unregularized
reconstructions. (Zheng et al. 2018) proposed a penalized weighted least squares
(PWLS) reconstruction incorporating a union of learned transforms, which are pre-
learned from image patches extracted from low-dose CT scans.

Building off of these latter works, we propose an unrolled reconstruction algorithm
similar to the LEARN algorithm (Chen et al. 2018), which was investigated in the
context of sparse-view imaging. The contributions of our paper are the following:

(i) Rather than regularization, the algorithm is inspired by the superiorization
methodology (SM) (Herman et al. 2012), an optimization heuristic which provides
theoretical justification for introducing perturbations between iterations of a
certain class of algorithms. The simultaneous algebraic reconstruction technique
(SART), which we use, is one such algorithm. Given the recent interest in using
deep learning for both CT image reconstruction and to enhance optimization
algorithms more broadly, it is natural to consider to consider how deep learning
can be exploited in the context of the SM as well. This work represents a first
step towards doing so.

(ii) We compare the use of a modified U-net architecture (Ronneberger et al. 2015)
to regularize the reconstruction with a simpler 3-layer convolutional architecture
used in (Chen et al. 2018). The U-net is well known for its ability to preserve
high-resolution image features while also extracting global features of the image
using its contracting and expanding paths. We therefore wish to study whether
it is also able to improve the performance of an unrolled algorithm.

(iii) We apply the algorithm to both limited-angle and sparse-view CT. Previous
studies using unrolled algorithms (Chen et al. 2018, Adler & Öktem 2017, Adler
& Öktem 2018) have typically focused on the sparse-view and low-dose cases. As
shown in Figure 1, limited-angle imaging typically presents more severe artifacts
than sparse-view imaging, and thus represents a more challenging reconstruction
problem. While several papers have used techniques from deep learning to
reconstruct CT images from limited angle data, we are not aware of work that
has used unrolled algorithms for this purpose.

This paper substantially extends our work first presented in (Jia et al. 2020), by
including further experimentation (including the sparse-view scenario), comparison
with other approaches, and analysis of the results.

2. Methodology

2.1. Iterative reconstruction

In two dimensional imaging, the CT reconstruction problem is to recover an n×n pixel
transaxial slice of the object from sinogram data acquired from nv discrete angular
views surrounding it, each consisting of nb measurements (line integrals) through the
object. This can be modeled as a linear inverse problem,

Ax+ η = b (1)

where x ∈ RN is the unknown image to be recovered (N = n2), b ∈ RM is the sinogram
(M = nbnv), η is the measurement noise, and A ∈ RM×N is the CT system matrix
whose (i, j)th element represents the contribution of the jth image pixel to the ith
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measurement. To accurately recover x from b without any prior information, some
necessary criteria are:

(i) The magnitude of the noise, η, should not be too large compared to the data, b.
This is typically achieved by requiring that the X-ray beam be sufficiently intense.
Low-dose imaging (where beam intensity or exposure time is reduced, resulting in
much noisier measurements) is a problem that has attracted significant interest
in the CT imaging community, though we do not consider it in this paper.

(ii) The number of angular samples, nv, must be sufficient to recover the highest-
frequency components of the image. Sparse-view CT corresponds to the case
when nv is much smaller than required, resulting in streaking artifacts such as
those seen in Figure 1, due to undersampling. Sparse-view imaging is another
approach to reducing patient dose, versus low-dose imaging.

(iii) Data must be acquired over an angular extent that is sufficient to obtain edge
information about all structures within the object. In a parallel-beam geometry,
this is simply a 180◦ arc, while in fan-beam geometries the arc must be greater
than 180◦ to account for the fan angle (though a 360◦ arc is often used for
simplicity, as in this paper). Limited-angle CT corresponds to the case where
data is acquired over a smaller arc than is required, resulting in blurred edges
such as those seen in Figure 1.

The linear inverse problem (1) must be solved iteratively; the size of the problem
typically makes direct solution impossible, and the presence of noise in the data makes
an exact solution undesirable in any event. To reduce noise and sparse-view or limited
angle artifacts, one can incorporate a penalty function φ(x) : RN → R into the iterative
algorithm. The value of φ(x) should be large for undesirable images, and smaller for
ones with more desirable properties. The LEARN algorithm (Chen et al. 2018) is
motivated by gradient descent applied to the regularized least-squares problem:

min
x∈RN

1

2
‖Ax− b‖2 + µφ(x), (2)

which results in the iteration

xk+1 = xk − αk

[
AT
(
Axk − b

)
+ µ∇φ(xk)

]
. (3)

Here αk is the step size (based on a sufficient decrease condition, for example), and µ
is parameter that weights the penalty function versus the data fidelity term.

Our approach is inspired by the superiorization methodology (SM) (Herman
et al. 2012), whose key concepts we now describe. An iterative algorithm for solving
(1) (known as a basic algorithm in the context of the SM) can be expressed in the
form xk+1 = R(xk) for some function R : RN → RN . The superiorized version of this
basic algorithm R takes the form

xk+1 = R(xk + βkv
k), (4)

where vk is chosen to be a nonascending direction of the penalty function φ, and
βk is a step size chosen such that φ(xk + βkv

k) ≤ φ(xk). Using the residual of (1)
as a measure of proximity to an exact solution, a solution x∗ produced by the basic
algorithm is said to be ε-compatible if ‖Ax∗ − b‖ < ε.

The basic algorithmR is then said to be strongly perturbation resilient if, whenever
it produces an ε∗-compatible solution (for some ε∗ > 0) from the initial iterate x0,
the superiorized version (4) is also guaranteed to eventually converge to ε∗-compatible
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solution from the same starting point, provided that the directions vk are bounded
in size, and that

∑∞
k=0 βk < ∞. In other words, the iterate produced by the basic

algorithm can be perturbed in every iteration in a nonascending direction of φ – as long
as the perturbations are summable in size – without jeopardizing convergence to a ε-
compatible solution. This solution is also expected to be superior to that produced by
the basic algorithm with respect to the function φ (i.e., have a smaller function value).
Some sufficient conditions for an algorithm to be strongly perturbation resilient are
provided in (Herman et al. 2012).

For this work we choose the simultaneous algebraic reconstruction technique
(SART) (Andersen & Kak 1984), as the basic algorithm. This algorithm is known
to be perturbation resilient (Butnariu et al. 2007), and the superiorized version can
be expressed as an alternating iteration (see e.g. (Humphries et al. 2020):

xk+ = xk − λkDATM
(
Axk − b

)
(5)

xk+1 = xk+ − βk∇φ(xk+) / ‖∇φ(xk+)‖. (6)

Line (5) is the basic SART iteration‡, where D and M are diagonal scaling matrices
whose entries are obtained from column and row sums of A, respectively. The
relaxation parameter λk ∈ (0, 2) can vary with the iteration number, and is typically
chosen to be close to 2 in order to accelerate convergence (Elfving et al. 2012). Line (6)
is the superiorization step, where the perturbation vk is defined to be the normalized
negative gradient of φ, which is guaranteed to be a nonascending direction of the
function.

2.2. Unrolled iterative methods

The iterations (3) and (5),(6) can be run for as many iterations as desired. One way
to incorporate a neural network into iterative reconstruction is to fix the total number
of iterations at some value K and then “unroll” the sequence of K iterations into a
single pipeline. This pipeline may consist of some layers that are not trainable (for
example, multiplication by A and AT ) interspersed with layers that employ trainable
parameters. The LEARN algorithm (Chen et al. 2018), which inspired our work,
mirrors iteration (3), with ∇φ replaced by a convolutional neural network (CNN); i.e.

xk+1 = xk − αkA
T
(
Axk − b

)
−Ψ(xk; Θk). (7)

Here Ψ(xk; Θk) is a CNN with parameters Θk, which can be viewed as a trainable,
iteration dependent regularizer. The regularization weighting parameter µ is absorbed
into Ψ, and the step size αk is treated as another trainable parameter, instead of
performing a line search. The algorithm was applied to sparse-view imaging in (Chen
et al. 2018), where it was shown to outperform other state-of-the-art methods.

In a similar way, we propose modifying the superiorized SART algorithm (5), (6)
such that the perturbations are generated by a neural network. In this framework, (6)
is replaced by:

xk+1 = xk+ + Ψ(xk+; Θk), (8)

where Ψ(xk+; Θk) is again a CNN with parameters Θk. Equation (5) is essentially
unchanged, although the relaxation parameter λk is also made into a trainable
parameter. The idea is to exploit the power of deep neural networks to learn data-
driven perturbations, with the expectation that this will produce higher-quality images

‡ Some references call this algorithm SIRT (Simultaneous Iterative Reconstruction Technique).
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LEARN

SART

𝑥𝑘

Ψ(𝑥𝑘; Θ𝑘)

𝐴𝑇 (𝐴𝑥𝑘 − 𝑏)

𝑥𝑘+1

−𝛼𝑘

𝑥𝑘 𝑥+
𝑘𝐷𝐴𝑇𝑀 (𝐴𝑥𝑘 − 𝑏)−𝜆𝑘 Ψ(𝑥+

𝑘; Θ𝑘) 𝑥𝑘+1

Figure 2. Diagram showing one iteration of each unrolled algorithm. Learned
parameters and operations are shown in green, while untrained operations are
shown in yellow.

than perturbations derived from nonascending directions of a model-based penalty
function. This expectation is based on the flexibility that deep neural networks afford
to determine a function appropriate to the distribution of images in training data, as
well as the fact that the neural network parameters Θk can vary from iteration to
iteration, thus allowing for the perturbations to be tailored to the changing properties
of the image as it converges.

Visualizing the entire unrolled neural network, the main difference between these
two approaches is that the CNN is applied serially with the iterative step in the SART
algorithm, as opposed to in parallel as in the LEARN algorithm. We illustrate the
difference between the two unrolled architectures in figure 2

2.3. Network architecture

In (Chen et al. 2018), the term Ψ(xk; Θk) in (7) is implemented as a CNN consisting
of three convolutional layers with ReLU activation. We instead consider using a
model based on the U-net, a deep neural network originally designed for biomedical
segmentation (Ronneberger et al. 2015). We choose the U-net as the base architecture
for our CNN model for two reasons. First, the contracting path (left side) of the
U-net consists of a sequence of max pooling operations which halve the size of the
image, allowing the number of convolutional filters to double without increasing
computational cost. The increased number of filters allows for better recognition
of image features, while the effective field of view of each filter is also increased,
allowing for the extraction of global features of the artifacts. Secondly, the expanding
path (right side) of the U-net upsamples the feature map and concatenates with
the correspondingly cropped feature map from the contracting path, allowing high-
resolution features of the image to be preserved, despite the downsampling applied in
the contracting path.

For our algorithm, we made a number of modifications to the architecture
in (Ronneberger et al. 2015), as indicated in Figure 3. First, we reduced the size of
the four-layer contracting path and expanding path to two layers. This was necessary
because the full U-Net includes 31 million trainable parameters; since our approach
applies the network between each iteration of SART (with parameters dependent on
the iteration), the memory requirements for a full U-net would be prohibitive. Even
with the reduced size, we were only able to apply the U-Net based regularization
between every four iterations of SART. Second, we replaced the Rectified Linear Unit
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512 x 512 x 64

256 x 256 x 128

Figure 3. U-net-based CNN implemented in the proposed method. © 2020
IEEE. Reprinted, with permission, from (Jia et al. 2020).

(ReLU) activation functions with the Exponential Linear Unit (ELU) to avoid issues
with so-called dying ReLUs (Géron 2017). The dying ReLU issue sometimes occurs
due to the flat portion of the ReLU that occurs for negative inputs, which can cause
parts of the network to become inactive and impedes training(Lu et al. 2019); ELUs
are one way of alleviating this issue. Additionally, inspired by residual networks (He
et al. 2016), we added a skip connection across the convolutional layers at every
level of the U-Net, to allow the the signal to easily make its way across the whole
network within an iteration. We employed Squeeze-and-Excitation (SE) blocks (Hu
et al. 2018) for each of the residual units. A SE block analyzes the output of the unit
to which it is attached, and learns which features are usually most active together. It
then uses this information to recalibrate the feature maps. Finally, we replaced the
last convolutional and sigmoid layer with one convolutional layer which reduces the
64 channels to a single channel array with the same size as the initial input. The
He initialization method (He et al. 2015) was used to initialize all the convolutional
layers, to aid in convergence.

2.4. Connection to the superiorization methodology

While our unrolled algorithm is inspired by the SM, there are several ways in which
it does not meet the requirements for a conventionally superiorized algorithm, as
decribed in (Herman et al. 2012) and elsewhere. First, since the perturbations are
generated by a neural network, they are not descent directions of any prescribed
secondary criterion φ(x), as in the conventional case (6). This is a feature of the
approach, as it allows the network to learn a beneficial sequence of data-driven
perturbations without being constrained by a model-based secondary criterion such as
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TV. Nonetheless, in the absence of such a criterion, it is reasonable to ask in what sense
the images produced by the unrolled algorithm are “superior” to those produced by the
basic algorithm. In general, we expect that this will be dependent on the criteria used
to train the network; for example, the qualitative and quantitative results presented
in the next section show that these images are significantly improved versus those
obtained from the basic algorithm, as a consequence of training the unrolled network
to minimize the `2 loss between reconstructed and true images in the paired training
data.

Secondly, a main result in the SM is that the superiorized version of a bounded
perturbation resilient algorithm is guaranteed to eventually converge to an ε-
compatible solution to the linear inverse problem, provided that the perturbations are
summable. This guarantee requires that the algorithm can be iterated indefinitely,
however, while an unrolled algorithm requires specifying a finite number of iterations.
Thus, the solution produced by an unrolled algorithm is not guaranteed to be ε-
compatible, even if it superior in quality to the image produced by the basic algorithm.
We discuss a potential way to address this in Section 4.

Finally, in order to guarantee convergence to a ε-compatible solution, the
perturbations generated by the superiorized algorithm must be summable in the limit
as k → ∞ (k being the iteration number), which is typically achieved by forcing the
perturbation size to decrease geometrically. While it is possible to bound the size of
the perturbations generated by the U-Net in the same way, we have note done so in
our algorithm; since the unrolled algorithm includes only finitely many perturbations,
these perturbations will be summable in any event, provided that they are bounded
in size. We discuss this further together with the issue of ε-compatibility in Section 4.

We note as well that since the U-Net based perturbation is only applied every
fourth iteration of SART in our unrolled algorithm, there are two ways of interpreting
this in the context of the SM; either the basic algorithm is four iterations of SART,
with a perturbation applied between each iteration of the basic algorithm; or one
iteration of SART still represents the basic algorithm, and the perturbation size in
three out of four iterations is zero. Both are compatible with the SM as originally
described.

3. Numerical Experiments

3.1. Description

The training and test datasets were generated using 512 × 512 pixel slices from a
lung CT study obtained from the Cancer Imaging Archive (Clark et al. 2013, Goldgof
et al. 2015). A total of 3629 slices obtained from forty-two patients were used to
generate the training set, while 325 slices obtained from five different patients were
used to generate the validation set. The dataset included images ranging from the
lower abdomen to upper thorax.

Our algorithm is implemented in Python using Tensorflow and the recently
developed Pyro-NN library (Syben et al. 2019), which allows forward and backward
projection operations to be readily integrated within a neural network. Simulated
sinogram data of each image were generated using the forward projection operators
in Pyro-NN. All sinograms were generated assuming a fan-beam geometry and pixel
size of 0.65 mm. The source-isocenter and source-detector distance were 1000 mm
and 2000 mm, respectively, and the detector consisted of 729 pixels with width 1.73
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Table 1. Scan parameters for the five imaging scenarios that were considered.
∆θ refers to the spacing between consecutive views of the object.

Scenario Angular range (◦) Number of views ∆θ (◦)
sv180 360 180 2
sv90 360 90 4
sv60 360 60 6
la162 162 405 0.2
la144 144 360 0.2

mm, corresponding to a fan angle of 35◦. The Poisson noise was added subsequently,
proportional to an initial intensity of 106 counts per line. This represents a relatively
small amount of noise, but ensured that there was some inconsistency between the
forward projection of the ground truth and the measured image, as in a true scan.
Five different scenarios were simulated: three sparse-view scenarios with 180, 90, and
60 views (denoted as sv180, sv90, and sv60, respectively) and two limited-angle
scenarios with angular ranges of 162◦ and 144◦ (la162 and la144). The parameters
for these scenarios are summarized in Table 1.

To compare the effects of the different network architectures, we implemented a
total of six reconstruction approaches in Pyro-NN. These approaches fell into three
categories:

(i) Basic algorithms (learn basic and sart basic): in these approaches the
CNN component of the algorithm was omitted, resulting in an unregularized
reconstruction. Thus, learn basic essentially implements gradient descent of the
data fidelity term only, and sart basic implements a standard SART iteration.
For ease of comparison with the other approaches, however, the line search
parameter αk in (7) and relaxation parameter λk in (5) were still learned during
training.

(ii) LEARN algorithms (learn 3L and learn unet): these approaches implemented
the LEARN algorithm, as described in (7). learn 3L used the 3-layer CNN as
described in the original paper (Chen et al. 2018), while learn unet uses our
modified U-net architecture, as described in Section 2.3.

(iii) SART algorithms (sart 3L and sart unet): these approaches implemented the
SART algorithm with learned regularizer, again using either a 3-layer CNN
(sart 3L) or modified U-net (sart unet).

All algorithms were unrolled using a fixed number of K = 40 iterations. Due to the
much larger size of the modified U-Net versus the three-layer CNN, the regularization
term could only be included between every fourth iteration of the learn unet and
sart unet approaches, while learn 3L and sart 3L included regularization between
every iteration. All networks were trained to minimize the `2 loss between the ground
truth image and the images reconstructed from the sinograms. Training and testing
of the networks was performed on a dedicated server with two NVIDIA Quadro RTX
5000 GPUs, each having 16 GB of SDRAM.

For the sake of comparison, reconstructions using filtered back projection (FBP)
were also computed in all experiments; while FBP typically performs more poorly
than iterative methods for ill-posed problems, it is significantly less computationally
expensive, and can produce good results in a sufficiently well-posed setting. We also
considered two competing algorithms designed for ill-posed reconstruction problems.
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The first is a superiorized version of SART using total variation (TV):

φ(x) =
∑
m,n

√
(xm+1,n − xm,n)2 + (xm,n+1 − xm,n)2 + ε2. (9)

Here x is represented as a two-dimensional image, and ε = 10−6 is a small parameter
to ensure differentiability. TV-superiorized SART was used for sparse-view CT in
one of the earliest papers introducing the SM (Herman et al. 2012), as well as for
sparse-view and limited-angle CT in (Humphries et al. 2017). Typically, the basic
framework of (5),(6) is modified to allow for N ≥ 1 nonascending steps (6) of the
penalty function between every iteration of the basic algorithm, to allow for further
improvement with respect to φ; additionally, the parameter βk is chosen to decrease
geometrically by some factor 0 < γ < 1 to ensure that the steps are summable.
Finally, a sufficient decrease condition is included to ensure that φ(x) decreases in
each iteration; for more details, see (Herman et al. 2012). In our experiments, we
denoted the algorithm as sart TV and implemented it in Python using the ASTRA
toolbox (Palenstijn et al. 2011, Van Aarle et al. 2016); implementation in ASTRA was
more straightforward than PYRO-NN, as the approach does not include any learned
parameters. For the three sparse-view experiments, we used γ = 0.995 and N = 10,
while for the limited-angle experiments, we used γ = 0.9995 and N = 60, which
yielded better results. We also used ordered subsets and a relaxation parameter value
of λk = 1.9 to accelerate convergence of the algorithm.

The second competing approach was the learned gradient descent (LGD)
method (Adler & Öktem 2017). This is another unrolled method, whose basic iterative
formula is given by:

(sk+1,∆xk+1) = Ψ(sk, xk,∇D(xk),∇φ(xk); Θk) (10)

xk+1 = xk + ∆xk+1 (11)

As before, xk ∈ RN represents the kth iterate of the image being reconstructed,
φ is the penalty function (total variation, in our experiments), and Ψ represents a
CNN with parameters Θk. A discrepancy functional is specified by D : RN → R;
we used D(x) = 1

2‖Ax − b‖2, and so ∇D(x) = AT (Ax − b). Finally, sk ∈ RN×M

represents a persistent memory term that allows the algorithm to use information
from earlier iterates, inspired by quasi-Newton methods. This algorithm is a natural
point of comparison with LEARN (7) and our unrolled SART approach, as all are
based on a gradient descent-like iteration with a penalty term. The key difference is
that LGD freely chooses a search direction based on information about the gradients
of D and a suitable regularizer φ; LEARN and our approach fix the descent direction
with respect to D and choose the regularization freely.

We used the implementation of the LGD method provided by the authors§ and
modified it to allow for training on our dataset with the five described scenarios. The
network Ψ in this implementation is a simple three-layer CNN, similar to that used by
the standard LEARN algorithm, and the CT projection operations are implemented
using the Operator Discretization Library (ODL)‖. As with the other CNN-based
approaches, the LGD algorithm was trained to minimize the `2 loss between the ground
truth image and the images reconstructed from the sinograms. The sinogram data
for both the sart TV and LGD experiments were generated using the same parameters
as in Table 1, but with the CT system matrices native to the respective software

§ https://github.com/adler-j/learned_primal_dual

‖ https://github.com/odlgroup/odl

https://github.com/adler-j/learned_primal_dual
https://github.com/odlgroup/odl
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Table 2. Summary of different reconstruction approaches used in the numerical
experiments

Algorithm Type Implementation Regularization Parameters
FBP Analytic ASTRA None 0

learn basic Iterative Pyro-NN None 40
sart basic Iterative Pyro-NN None 40
sart TV Iterative ASTRA TV 3
LGD Unrolled ODL TV-guided 13,318

learn 3L Unrolled Pyro-NN Learned 1,525,800
learn unet Unrolled Pyro-NN Learned 18,627,890
sart 3L Unrolled Pyro-NN Learned 1,525,800

sart unet Unrolled Pyro-NN Learned 18,627,890

packages, rather than those used by Pyro-NN. This ensured a fair comparison across
all approaches, as there was no mismatch between the system matrices used to generate
the data, and those used during reconstruction.

A summary of all the reconstruction algorithms that were tested is provided in
Table 2. In addition to the basic type of algorithm, the library used to implement it,
and the type of regularization used (if any), we also specify the number of parameters
required or learned by each algorithm. For learn basic and sart basic, these are the
line search or relaxation parameter, respectively, in every iteration, while for SART TV,
these are the values of the relaxation parameter, N , and γ mentioned above. The
LGD method has relatively few network parameters to learn, compared with the
learn 3L and sart 3L approaches (38,145 trainable parameters per iteration, times 40
iterations) and especially the learn unet and sart unet approaches; each copy of our
reduced U-Net model consist of 1,862,789 trainable parameters, times 10 iterations.
The learn 3L algorithm is our own implementation in Pyro-NN of the algorithm
presented in (Chen et al. 2018), while the final three algorithms listed are our new
contributions.

The quality of the images reconstructed using the various approaches was
compared using two standard image quality metrics: peak signal-to-noise ratio
(PSNR) and Structural SIMilarity index (SSIM)(Wang et al. 2004). The PSNR of
a reconstructed image x ∈ RN , compared with the ground truth y, is calculated as

PSNR(x, y) = 10 log10

(
ymax

MSE(x, y)

)
,where (12)

MSE(x, y) =
1

N

∑
j

(xj − yj)2 , and ymax = max
j
{yj}. (13)

The better the agreement between the images, the higher the value of the PSNR;
identical images produce infinite PSNR.

The SSIM is calculated as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (14)

where µx, µy are the means of the two images, and σx, σy and σxy the variances
and covariance, respectively. The small constants C1 and C2 are included to avoid
instability when the denominator is near zero. The SSIM produces a score between 0
and 1, with 1 corresponding to identical images. Both metrics were computed for the
entire 512× 512 pixel images.



Unrolled SART with U-Net based penalty term 13

Table 3. Average PSNR and SSIM values for the five scenarios and eight
reconstruction methods. Best overall results are highlighted in bold. Multiple
results are bolded in cases where ANOVA indicated insignificant differences.

Method sv180 sv90 sv60 la162 la144

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
FBP 34.740 0.762 29.226 0.614 26.558 0.534 26.975 0.792 24.325 0.758
learn basic 36.093 0.867 32.052 0.785 29.872 0.723 31.547 0.886 28.179 0.829
sart basic 33.275 0.874 31.414 0.794 29.870 0.745 30.124 0.850 27.522 0.810
sart TV 41.687 0.973 37.042 0.937 33.777 0.891 36.098 0.953 32.720 0.932
LGD 43.807 0.972 41.066 0.964 38.030 0.943 37.933 0.960 34.880 0.945
learn 3L 43.773 0.978 42.856 0.973 40.068 0.956 40.772 0.967 38.019 0.954
learn unet 44.257 0.979 41.717 0.964 39.040 0.948 40.614 0.956 37.456 0.935
sart 3L 41.795 0.970 38.674 0.947 37.160 0.935 37.717 0.958 35.391 0.938
sart unet 44.265 0.979 41.236 0.966 39.734 0.957 42.841 0.979 38.956 0.967

3.2. Results

Table 3 shows the PSNR and SSIM values, averaged over the 325 test images, for every
scenario and reconstruction method. One-way analysis of variance (ANOVA) and a
multiple comparison test were run to determine if differences in image quality between
the reconstruction methods were statistically significant or not. It is clear that FBP
performs most poorly, followed by the two basic (unregularized) approaches, and that
all approaches incorporating regularization resulted in significant improvement. The
sart unet method gave the best results for both of the limited-angle scenarios (la162
and la144). For the sparse-view scenarios, it was was tied for best performance with
the learn 3L and learn unet methods for the sv180 and sv60 datasets, but gave
somewhat worse results than learn 3L for the sv90 dataset. The sart 3L method,
on the other hand, performed more poorly than these three approaches.

The LGD method was generally competitive with the LEARN and SART-based
methods for sparse-view reconstruction, though its performance tended to be slightly
worse than the best-performing methods. For the the limited-angle experiments, there
was a greater discrepancy in performance. Meanwhile, the sart TV approach was the
least competitive of all the regularized approaches, especially for more challenging
scenarios such as sv60 and la144.

Figure 4 shows two slices from the sv60 test set, reconstructed using all 9
methods shown in Table 3. The images reconstructed using FBP (b) and the two
basic approaches (c and d) exhibit the streaking artifacts characteristic of sparse-view
reconstruction, which are especially severe for FBP. While the sart TV method (e)
smooths these artifacts out to some extent, they are still visible, and the texture of the
resulting images is blocky. The LGD (f) and sart 3L (i) images are somewhat better,
but some blockiness is still apparent. Visually, the best results appear to be from the
learn unet (h)and sart unet (j) approaches, particularly with fine details such as
the tip of the shoulderblade in the top image, and the small air bubbles in the bottom
image (highlighted with the green arrows in Figure 4).

The same two slices reconstructed from the la162 dataset are shown in Figure 5.
As a result of the missing segment of views in this experiment, the edges of various
structures in the bottom right part of the images are severely blurred when using FBP
and the basic algorithms (b–d), and streaking is apparent in other parts of the images
as well. We observe that the sart TV (e) and LGD (f) methods offer some improvement,
but are less effective at recovering details, such as the edges of the ribs and shoulder
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(a) (b) (c) (d) (e)

(f)                      (g)                       (h)                      (i)                       (j)

(a) (b) (c) (d) (e)

(d) (e) (f) (g) (h)

(a) (b) (c) (d) (e)

(f)                       (g)                      (h)                       (i)                      (j)

Figure 4. Reconstructed images of thoracic (top three rows) and abdominal
(bottom three rows) CT slices from the test dataset for the sv60 experiment. The
labels are: (a) true image, (b) FBP (c) learn basic, (d) sart basic, (e) sart TV,
(f) LGD, (g) learn 3L, (h) learn unet, (i) sart 3L, (j) sart unet. Rightmost three
columns show the zoomed in 128× 128 pixel region indicated by the red box for
each slice.



Unrolled SART with U-Net based penalty term 15

blade in the top image, and some small soft tissue contrast on the right side of the
kidney in the bottom image. As in the sv60 case, the two methods using a U-net (h
and j) appear to give the best results visually.

4. Discussion

We can make several observations based on the results presented in Table 3 and the
representative images in Figures 4 and 5. First, it is clear that sart TV was the
worst-performing of any of the regularized approaches; the PSNR and SSIM scores
in Table 3 were significantly lower in almost every experiment, and the qualitative
appearance of the images is worse as well. This is not surprising, as total variation
minimization is entirely model-based (under the assumption that the image is roughly
piecewise constant) with no ability to adapt to the data, and is known to sometimes
result in blocky texture artifacts. There is some ability to improve the performance
of the method by fine-tuning the parameters γ and N described in section 3.1, but
this process is tedious, and the optimal choice of parameters may change depending
on the imaging scenario.

While the LGD method was more competitive – especially in the three sparse-view
test cases – its performance was still worse than the top-performing algorithms in all
five test cases. As mentioned earlier, a major difference between the LGD approach and
the other four unrolled methods that we considered is that LGD determine an overall,
holistic search direction by incorporating information about the gradients of the data
discrepancy functional and the regularizer. The LEARN and SART-based approaches
are prescribed the descent direction with respect to the data discrepancy, and only
focus on learning a regularization step. It is possible that this second problem is easier
to solve than the first, which would account for the somewhat better performance of
these approaches.

Additionally, while LGD picks the search direction freely, it seems plausible that
providing it with information about the gradient of a specific regularizer (TV, in this
case) may direct it towards providing TV-like regularization. This may be appropriate
in sparse-view imaging, but less so in limited-angle imaging, where TV regularization
is less appropriate. The LEARN and SART based approaches, on the other hand, are
not given any information about the TV or its gradient at any point, and determine
a regularization strategy based only on minimizing the error of the images in the
training set. This may also account for the improved performance of those methods
in the limited-angle experiments.

It is difficult to make any general claims on the merits of the U-Net versus
three-layer CNN for regularization, or of the SART algorithms versus the LEARN
algorithms. The most obvious result is that the SART 3L method gave significantly
poorer results than the three related approaches; this is apparent both from the
blurrier appearance of the images in Figure 4 and Figure 5, as well as the quantitative
metrics computed in Table 3. Despite some additional experimentation, we were not
able to determine what accounted for the poorer performance, which seems anomalous
given the success of the other three algorithms.

Aside from this, the quantitative performance of the other three approaches
(sart unet, learn 3L, learn unet) in most of the experiments is comparable, which
does not clearly support a claim that the U-net architecture we used is preferable to
the 3-layer CNN, or that the SART architecture is clearly to the LEARN architecture.
The most salient result is that the sart unet method did provide significantly better
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(a) (b) (c) (d) (e)

(f)                       (g)                      (h)                       (i)                       (j)

(a) (b) (c) (d) (e)

(f)                        (g)                      (h)                     (i)                       (j)

Figure 5. Reconstructed images of thoracic (top three rows) and abdominal
(bottom three rows) CT slices from the test dataset for the la162 experiment.
See Figure 4 caption for legend.
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PSNR and SSIM results (Table 3) than the other approaches in the two limited-
angle experiments. Given that the performance of learn 3L and learn unet was
quantitatively comparable in these experiments, however, it is difficult to attribute
this to the use of the U-net, or to the SART architecture, since sart 3L performed
poorly. That being said, qualitatively, the zoomed-in images in Figure 4 do appear to
have sharper contrast for the sart unet and learn unet reconstructions than for the
learn 3L reconstruction, especially in the regions highlighted with green arrows. We
note that both (Chen et al. 2018) and (Adler & Öktem 2018) mentioned some loss of
contrast in their sparse-view experiments, suggesting that the reason was the use of
the `2 loss function when training the network; since we also used this loss function, it
seems possible that the U-Net is more effective at preserving contrast than a simpler
CNN.

While the U-net does provide a more sophisticated network architecture than
the 3-layer CNN, its use in the unrolled algorithm is hampered by the fact that it
cannot be applied in every iteration of the algorithm, due to the prohibitive number
of parameters that must be trained. There is likely some tradeoff that can be explored
between reducing the complexity of the network and allowing it to be applied in
more iterations, but this is a computationally expensive problem to investigate. One
solution may be to adapt the SART component to use ordered subsets of the data (as
in (Humphries et al. 2017)), which would accelerate convergence, and therefore allow
for the use of fewer SART iterations.

It is also worth noting that the total number of learned parameters varies
dramatically across the unrolled algorithms that we studied, as indicated in table 2.
The LGD algorithm uses on the order of 104 network parameters, while the 3-layer
algorithms require use on the order of 106, and the U-net based algorithms on the
order of 107. Therefore it is reasonable to ask whether the difference in performance
noted above can simply be attributed to the number of parameters used in each model.
In (Adler & Öktem 2017) the authors of the LGD algorithm note that they deliberately
use a small number of parameters to reduce over-fitting; this refers to the phenomenon
wherein a network that is over-parameterized may learn to fit the training data too
well, resulting in poorer performance on the test data set. Indeed, in the original
LEARN paper, the authors tested their algorithm by varying the number of network
layers per iteration from two up to six (cf. Table VIII in (Chen et al. 2018)), and
settled on three layers because the performance of the algorithm did not improve
significantly after that point (and in fact, worsened when five or six layers were
used). So while the U-net based approaches do feature the most parameters, it is
not likely that this alone accounts for the observed improvement in performance of
the sart unet algorithm in the limited angle scenarios, and we do not see evidence
of overfitting, based on the performance on the test dataset. We note as well that
while the total number of parameters in the learn unet and sart unet algorithms is
large, it is not out of line with other deep learning architectures, such as the original
U-Net (Ronneberger et al. 2015), which has over 30 million parameters.

As mentioned in Section 2.4, the unrolled algorithm is not guaranteed to produce
an ε-compatible solution, since it requires specifying a finite number of iterations
to run. If a ε-compatible solution is desired, the output of the unrolled algorithm
could be used as the initial iterate in a second run of the basic (or conventionally
superiorized) algorithm, which could be run until ε-compatibility is attained. Ideally
this would only require a small number of additional iterations, due to the high
quality of the initial iterate, as running a large number of iterations could result
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in artifacts being reintroduced into the image. Such an approach could be viewed, on
the whole, as a superiorized version of the basic algorithm, in which a finite number
of perturbations are generated by the U-Net, followed by perturbations of size zero
(if the basic algorithm is run subsequently) or with geometrically decreasing size (if a
conventionally superiorized is run subsequently). In both cases, the perturbation size
as a whole would be summable, as required.

In this paper, all deep-learning methods we investigated are unrolled algorithms,
which are fully supervised methods where the forward operator (A) is known during
both training and testing (Ongie et al. 2020). A complementary class of methods are
“plug-and-play” type approaches, where a network is trained without knowledge of
the forward operator, using only ground truth images (i.e., not sinograms) to learn
the distribution of natural images; see (Chang et al. 2017) and (Ongie et al. 2020),
§4.2.1 and references therein. Such approaches have the advantage of not requiring
paired data, and of being more generalizable; for example, a single network trained
on a suitably large set of “natural” CT images could be plugged into an iterative
algorithm for reconstructing sparse-view or limited-angle images at various sampling
rates or geometries. An unrolled algorithm, on the other hand, is typically trained
for a specific problem, e.g. sparse-view reconstruction for a given acquisition and
sampling rate, and thus may not perform well if the acquisition parameters change.
So, while we expect unrolled algorithms to give better results on specific sparse-view or
limited-angle reconstruction tasks than a plug-and-play approach, it would be useful
to perform a comparison to assess the relative performances of the two methods. A
plug-and-play approach might also lend itself more naturally to an implementation
within the SM, as it allows the algorithm to be run indefinitely until ε-compatibility
is attained.

5. Conclusions

In this paper we present a novel unrolled iterative algorithm for reconstruction of
sparse-view and limited-angle CT data. The algorithm is inspired by the LEARN
algorithm (Chen et al. 2018) and the superiorization methodology, using a modified
U-net to introduce perturbations in each iteration, rather than descent directions of
a model-based penalty function. In numerical experiments, the approach is found
to provide significantly better results than a total variation superiorization approach,
as well as a competing unrolled iterative algorithm (Adler & Öktem 2017). It also
outperforms the original LEARN algorithm in limited-angle imaging scenarios, while
providing comparable performance in the sparse-view case.
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