
Superiorized method for metal artifact reduction

Thomas Humphries∗ and Boyang (Jessie) Wang
School of STEM, University of Washington Bothell,

Box 358538, 18115 Campus Way NE, Bothell, WA, 98011
(Dated: June 9, 2020)

Purpose: Metal artifact reduction (MAR) is a challenging problem in computed tomography
(CT) imaging. A popular class of MAR methods replace sinogram measurements that are corrupted
by metal with artificial data, typically generated from some combination of interpolation along with
other heuristics. While these “projection completion” approaches are successful in eliminating severe
artifacts, secondary artifacts may be introduced by the artificial data. In this paper, we propose an
approach which uses projection completion to generate a prior image, which is then incorporated
into an iterative reconstruction algorithm based on the superiorization framework. The rationale is
that the image produced by the iterative algorithm can inherit the desirable properties of the prior
image, while also reducing secondary artifacts.

Methods: The prior image is reconstructed using normalized metal artifact reduction (NMAR),
a popular projection completion approach. The iterative algorithm is a modified version of the
simultaneous algebraic reconstruction technique (SART), which reduces artifacts by incorporating
a polyenergetic forward model, least-squares weighting, and superiorization. The penalty function
used for superiorization is a weighted average between a total variation (TV) term and a term pro-
moting similarity with the prior image, similar to penalty functions used in prior image constrained
compressive sensing (PICCS). Because the prior is largely free of severe metal artifacts, these arti-
facts are discouraged from arising during iterative reconstruction; additionally, because the iterative
approach uses the original projection data, it is able to recover information that is lost during the
NMAR process.

Results: We perform numerical experiments modeling a simple geometric object, as well as
several more realistic scenarios such as metal pins, bilateral hip implants, and dental fillings placed
within an anatomical phantom. The proposed iterative algorithm is largely successful at eliminating
severe metal artifacts as well as secondary artifacts introduced by the NMAR process, especially
lost edges of bone structures in the neighborhood of the metal regions. In one case modeling severe
photon starvation, the NMAR algorithm is found to provide better results.

Conclusion: The proposed algorithm is effective in applying the superiorization methodology to
the problem of MAR, providing better results than both NMAR and a purely total variation-based
superiorization approach in nearly all cases.

I. INTRODUCTION

Artifacts caused by metal objects, such as prostheses,
rods, screws, and fillings, are a well-known source of im-
age artifacts in computed tomography (CT). These arti-
facts are caused by numerous physical factors, including
beam hardening, increased measurement noise, photon
starvation, partial volume and exponential edge gradient
effects, and scatter [1]. They typically appear as dark
streaks or bands between metal objects, as well as thin,
alternating dark and light streaks emanating from these
objects. These artifacts tend to be dramatic and may
obscure important features of the image.

Despite the long history of proposed metal artifact re-
duction (MAR) techniques (see Ref. [2] for a recent re-
view), it remains a challenging problem. Dual-energy
systems are able to significantly reduce metal artifacts [3],
but require special equipment. On conventional systems,
a common approach, often referred to as projection com-
pletion, regards measurements that have passed through
a metal object as unreliable, and replaces them with arti-
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ficially generated data. Typically, a preliminary, artifact
corrupted image is first reconstructed from the raw sino-
gram to identify metal regions in the image space, fol-
lowed by a simulated forward projection to identify the
so-called metal trace in the sinogram domain. Once data
inside the metal trace have been replaced, an image is
reconstructed from the modified data using a standard
technique such as filtered backprojection (FBP).

Early projection completion methods [4,5] used linear
interpolation (LI) to replace the metal trace within each
column of the sinogram. While the LI approach is effec-
tive in removing the most severe metal artifacts, it also
produces secondary artifacts, due mainly to the loss of
edge information about other structures (e.g. bone or
air pockets) where their traces intersect with the metal
trace [6]. A popular way to address this issue is to use the
preliminary image to not only identify the metal trace,
but also generate a prior image, which omits metal but
retains information about the other structures such as
bone. A number of authors [7–14] propose replacing the
metal trace with the corresponding measurements ob-
tained from simulated forward projection of the prior,
rather than LI data. Alternatively, in normalized metal
artifact reduction (NMAR) methods, the prior is used
to normalize the projections [6,15,16] before a sinogram
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correction using LI; the sinogram is subsequently “de-
normalized” to reintroduce lost edge information. The
prior image is typically generated using tissue classifica-
tion of an image reconstructed using FBP [7–9,15] or by
iterative reconstruction with regularization to suppress
artifacts [10–13,17]; one recent work [14] has also pro-
posed generating the prior using a convolutional neural
network.

Some approaches based on projection completion em-
ploy additional heuristics to reduce secondary artifacts.
Ref. [18] proposes segmenting bone from the preliminary
reconstruction (replacing bone pixels with smoothed soft
tissue values) and then reintroducing bone to the im-
age after an interpolation-based projection completion
is performed. Ref. [19] uses a distance-dependent spatial
weighting to combine the LI image with one processed us-
ing multi-dimensional adaptive filtering to reduce noise.
Ref. [20] begins with an LI reconstruction and then per-
forms several iterations in which the reconstruction is
forward projected, averaged with experimental data us-
ing spatial weighting, then reconstructed again. Other
methods retain edge information by performing projec-
tion completion in the Fourier [21] or wavelet [22–24] do-
mains, rather than on the original sinogram. Another
recent approach [25] uses a convolutional neural network
to combine information from an NMAR image and the
uncorrected image. Finally, projection completion can
also be performed directly in the sinogram domain with-
out reconstruction of a preliminary image [26], avoiding
issues of mismatch between the simulated forward pro-
jection and true system geometry.

An alternative to projection completion is to use the
original data and reconstruct the image using an iter-
ative algorithm. Iterative algorithms, while more com-
putationally expensive than FBP, have the advantage
of being able to accurately model physical effects con-
tributing to metal artifacts, such as beam hardening
and noise. They also may be able to solve the exte-
rior problem (where the metal-corrupted data are ignored
rather than replaced) with the inclusion of regulariza-
tion terms to mitigate the ill-posedness of the problem.
Ref. [27] applied both the algebraic reconstruction tech-
nique (ART) and expectation maximization (EM), find-
ing that both outperformed FBP reconstruction. Later
work has incorporated polyenergetic modeling into the
EM framework [28,29], applied EM to projection com-
pleted data [30], used ART in conjunction with total
variation (TV) penalties [31,32] and used optimization-
based reconstruction with machine-learned regulariza-
tion [24]. In Ref. [33], the authors simultanously estimate
the image and the mismatch between polyenergetic and
(idealized) monoenergetic data, using a regularized least
squares approach incorporating a prior image and several
different regularizers.

Projection completion approaches and iterative meth-
ods each have advantages and disadvantages. Projec-
tion completion is especially effective in removing severe
streaking artifacts from images, but the use of artificially

generated data carries an inherent risk of creating new
artifacts. Iterative methods can make use of the original
projection data, but the poor quality of the metal con-
taminated measurements make obtaining a high quality
image difficult. In this paper we combine projection com-
pletion with an iterative method to attempt to mitigate
these issues. We use the NMAR method to construct a
prior image which is free of severe artifacts, but may con-
tain some secondary artifacts. This image is then used
both as the initial estimate and as a prior in an iterative
method which reconstructs an image from the original
projection data. The iterative method incorporates the
superiorization methodology [34] with a secondary objec-
tive guided by the prior image as well as a total variation
(TV) minimization term. Numerical experiments indi-
cate that the proposed algorithm is successful in elimi-
nating both severe artifacts due to streaking, as well as
secondary artifacts introduced during the NMAR pro-
cess.

II. MATERIALS AND METHODS

A. Mathematical model

We consider a two-dimensional attenuation distribu-
tion, µ(y,E) : R2 × R → R, which depends on position,
y, and the energy of the incident X-ray beam, E. If the
X-ray beam is monoenergetic with energy E0, the ideal-
ized measurement along a line j is modeled as

Îj = I0 exp

(
−
∫
j

µ(y,E0) dy

)
, (1)

where I0 is the initial intensity of the beam and Îj is the
(idealized) intensity measured by the detector, in counts
per second. The line integral,

∫
j
µ(y,E0) dy, which is

a sample from the Radon transform of µ(y,E0), can be
obtained by log-transforming the data,

ln
(
I0/Îj

)
=

∫
j

µ(y,E0) dy. (2)

Discretizing µ as an image with K pixels, and taking
measurements along J lines, then yields a system of linear
equations

Ax = b, (3)

where x ∈ RK is the discretized image of µ, b ∈ RJ is the
line integral data, and A ∈ RJ×K is the system matrix
whose (j, k)th element is the length of intersection of the
jth line with the kth pixel of x.

Clinical CT systems, however, generate polyenergetic
X-ray beams, with a spectrum of energies typically rang-
ing from zero up to roughly 150 keV (see, e.g., Fig. 1).
In this instance, the measurement model is expressed as

Îj =

∫
S(E) exp

(
−
∫
j

µ(y,E) dy

)
dE, (4)
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where S(E) is the beam spectrum. Log-transforming the
data and applying the mean value theorem for integrals
then gives

ln
(
I0/Îj

)
=

∫
j

µ(y,Ej) dy, (5)

where I0 =
∫
S(E) dE, and Ej is an unknown energy in

the range of the spectrum, depending on the path j. The
inconsistency with the monoenergetic model (2) leads to
so-called beam hardening artifacts [35], including cup-
ping and streaking. From the physical perspective, as
the polyenergetic beam passes through the object, pho-
tons with lower energy are attenuated at a higher rate
than photons with greater energy, causing the spectrum
of the beam to “harden” as it becomes skewed towards
higher energies. Metal objects induce particularly se-
vere beam hardening artifacts due to their high attenua-
tion coefficients, particularly at the low end of the energy
spectrum.

Another contributing factor to metal artifacts is in-
creased image noise. Due to the stochastic nature of X-
ray interactions with matter, the measurement along line
j is typically modeled as a Poisson random variable Ij ,

with mean equal to Îj . The measurement therefore has a

signal-to-noise ratio (SNR) of
√
Îj ; i.e., the SNR deterio-

riates as Îj becomes small. This situation occurs if the
initial beam intensity

∫
S(E) dE is small, or if the line

integral through µ(y,E) is large. Measurements passing
through metal objects thus tend to be very noisy, de-

grading image quality. In the extreme case Îj may be
so small that Ij = 0 (no counts are detected along the
line), resulting in an effective attenuation measurement
of infinity.

B. Beam hardening and metal artifact reduction

A standard approach to reduce beam hardening arti-
facts is to perform water correction (sometimes known
as soft tissue correction) on the measured data [36]. Wa-
ter correction (Algorithm 1) simulates a monoenergetic
measurement mj from the corresponding polyenergetic
measurement Ij via a two step process. First, the effec-
tive length, Tj , of water through which the polyenergetic
beam would have to pass to generate Ij is estimated.
This can be accomplished by solving a nonlinear equa-
tion (Line 3 of Algorithm 1, with µw(E) denoting the
attenuation coefficient of water) or, more commonly, by
interpolating from a table of measured values based on
known thicknesses of water. Once Tj is known, the corre-
sponding measurement mj at some reference energy E0

can be obtained straightforwardly.
Water correction essentially assumes that the object

consists only of water or water-like materials. This as-
sumption breaks down if the object contains dense ma-
terial like bone, contrast agents, or metal, whose atten-
uation curves do not behave like scaled versions of the

Algorithm 1: Water correction.

1 Given: Polyenergetic measurements Ij , j ∈ [1, J ].

2 for j = 1 to J do
3 Solve Ij =

∫
S(E) exp(−µw(E)Tj) dE for Tj ;

4 Set mj = I0 exp(−µw(E0)Tj);

5 end
6 return mj , j ∈ [1, J ].

attenuation curve of water. Water correction is there-
fore effective in reducing cupping artifacts, but not the
so-called second-order artifacts caused by those materi-
als. Correcting for these artifacts typically requires more
advanced data corrections [36–38] or iterative methods
which directly model polyenergetic X-rays [28,39–41].

As discussed in the Introduction, a standard method
of metal artifact reduction (MAR) is to replace metal-
contaminated measurements with linearly interpolated
data [4,5]. Pseudocode for this method, which we de-
note as MAR, is provided in Algorithm 2. A prelimi-
nary image xuncorr is reconstructed from the water cor-
rected sinogram, and the image is segmented into non-
metal and metal parts using thresholding. The metal
index 1m is forward projected to obtain the metal trace
in the sinogram domain. The sinogram is then processed
columnwise (i.e. with respect to each projection angle) to
replace measurements corresponding to the metal trace
with their interpolated values. An image can then be re-
constructed from the corrected sinogram, and the metal
objects can be re-inserted if desired.

Algorithm 2: MAR method

1 Given: Water-corrected sinogram, bmono, and system
matrix, A.

2 Reconstruct image xuncorr from bmono;
3 Segment xuncorr to obtain metal index 1m;
4 Set trace = A 1m (forward projection);
5 Set bmono = 0 wherever trace > 0 ;
6 for every column of bmono do
7 Fill in zero values by linear interpolation to obtain

corresponding column of bMAR;

8 end
9 return bMAR

The MAR method reduces severe artifacts caused by
metal, but produces secondary artifacts, as the inter-
polation results in the loss of edge information about
other structures. The normalized metal artifact reduc-
tion (NMAR) method [15] (Algorithm 3) addresses this
issue through the use of a prior image. Following the
preliminary reconstruction, xuncorr is segmented into air,
soft tissue, bone, and metal. The prior image is created
by setting regions containing air and soft tissue to their
respective attenuation values at the reference energy. Re-
gions containing bone are assigned the corresponding at-
tenuation coefficients from xuncorr, to accurately capture
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the varying attenuation of bone. The values assigned
to the metal regions are unimportant [15]; we use soft
tissue for simplicity. The prior image is then forward
projected, and the resulting sinogram bprior is divided
elementwise (�) into the original sinogram to normalize
it. The MAR algorithm is then applied to the normal-
ized sinogram, followed by an elementwise multiplication
(⊗) with bprior to “de-normalize” the sinogram. The de-
normalization step effectively recovers edge information
about bone and other structures that may be lost during
the MAR step [6,15].

Fig. 1 highlights the differences between MAR and
NMAR. In the sinogram profiles (top right) we can ob-
serve that the interpolated profile used by MAR (red line)
does not accurately capture the traces of the bone and air
pocket, while the NMAR method does. While the MAR
correction (bottom center) removes the large streak be-
tween the two metal objects that appears in the water
corrected (bottom left) image, secondary streaking arti-
facts are created between the metal objects and the bone
and air pockets. NMAR is able to remove virtually all ar-
tifacts in this simple experiment, though a mild artifact
persists surrounding the bone region.

Algorithm 3: NMAR method

1 Given: Water-corrected sinogram, bmono, system
matrix, A, reference energy E0.

2 Reconstruct image xuncorr from bmono;
3 Segment xuncorr to obtain indices 1a,1s,1b and 1m

(air, soft tissue, bone, metal);
4 Set xprior = µa(E0) wherever 1a = 1;
5 Set xprior = µs(E0) wherever 1s ∪ 1m = 1;
6 Set xprior = xuncorr wherever 1b = 1;
7 bprior = Axprior ;
8 bnorm = bmono � bprior ;
9 bMAR = MAR(bnorm, A) ;

10 bNMAR = bMAR ⊗ bprior;
11 return bNMAR

C. Iterative reconstruction

Standard iterative reconstruction methods are based
on solving the linear system Ax = b as described in
(3). Our approach is based on a block-iterative variant
of the simulataneous algebraic reconstruction technique
(SART) [42], as described in Ref. [43]. We first define
diagonal matrices D and M as:

D ∈ RK×K , Dkk = 1

/ J∑
i=1

|aik|

M ∈ RJ×J , Mjj = 1

/ K∑
i=1

|aji|

To implement block iteration, the columns of the sino-
gram are evenly partitioned into Nw subsets, indexed by

w; for example, if Nw = 5, then w = 1 would correspond
to the first, sixth, eleventh, etc. columns, w = 2 to the
second, seventh, twelfth, and so on.This accelerates the
convergence of the algorithm. One iteration of the block
iterative SART (BI-SART) algorithm is then given by

x(i+1) = QBNw . . .B2B1(x(i)),where (6)

Bw(x) = x−Dw(Aw)TMw [Awx− bw] , (7)

(Qx)k = max{0, xk}, k ∈ [1,K].

The subscript w indicates that only rows of A and b cor-
responding to the measurements in w are used, including
when forming the matrices Dw and Mw. The operator
Q ensures non-negativity of the solution after every iter-
ation.

The BI-SART algorithm accounts for neither the sta-
tistical uncertainty in the measured data, nor the polyen-
ergetic nature of the X-ray measurements. Additionally,
images reconstructed by BI-SART may be of poor qual-
ity when the data are noisy. In Ref. [44], we introduced
three enhancements to the BI-SART algorithm to ad-
dress these issues, which are especially important in the
context of metal artifact reduction. We summarize these
enhancements below:

1. Polyenergetic forward model

To account for the polyenergetic measurements, we
adopt the polyenergetic SART (pSART) method [45].
pSART defines a polyenergetic forward projection op-
eration P using linear interpolation between tabulated
attenuation curves for known basis materials such as soft
tissue, bone, and metal. Specifically, letting x denote the
attenuation image at the reference energy E0, we define

µ(xk, E) =
[µm+1(E0)− xk]µm(E) + [xk − µm(E0)]µm+1(E)

µm+1(E0)− µm(E0)
,

(8)

where µm(E) and µm+1(E) are the linear attenuation
coefficient (LAC) curves of the two basis materials whose
LACs at E0 bracket the pixel value xk. For example, if
xk has an LAC halfway between that of soft tissue and
bone at E0, its LAC is assumed to be halfway between
that of soft tissue and bone at all other energies as well.
The polyenergetic forward projection operation is then
defined as

[P(x)]j = ln

[
Nh∑
h=1

Sh

/ Nh∑
h=1

Sh exp (−ajµ(x,Eh))

]
, (9)

where Sh is a discretization of the continuous beam
spectrum S(E) into Nh energy levels, and aj is the jth
row of A (cf. (4) and (5)). The pSART iteration is
achieved by simply replacing the monoenergetic forward
projection Ax in SART with P(x) in (7).:

Bw(x) = x−Dw(Aw)TMw [Pw(x)− bw] . (10)
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While pSART has not been proven to converge in gen-
eral, it has been shown to be effective in reducing beam
hardening artifacts in numerical experiments [45–47].

2. Weighted least squares

To model measurement uncertainty, a weighted least
squares approach (WLS) [48] can be employed. We define
the diagonal weighting matrix as

W ∈ RJ×J , Wjj = Ij , (11)

We can then apply BI-SART to the system W
1
2Ax =

W
1
2 b, which assigns proportionally higher weight to the

less noisy measurements. Incorporating the polyenergetic
forward projection as well, the modified iteration is given
by

Bw(x) = x−D′w(Aw)TMw

[
W

1
2
w (Pw(x)− bw)

]
, (12)

where D′kk = 1

/ J∑
i=1

∣∣∣(W 1
2A)ik

∣∣∣. Matrix M does not

need to be modified, as the factor of W
1
2 is cancelled

during multiplication with (W
1
2A)T .

3. Superiorization

Superiorization [34] is an optimization heuristic in
which solutions generated by an iterative algorithm are
perturbed in every iteration, to improve the quality of
the solution in some respect. For example, if (6) is taken
to be the basic iterative algorithm with Bw defined in
(12), then the superiorized version is of the form

x(i+1) = QBNw
. . .B2B1(x(i),+β(i)v(i)), (13)

where β(i) > 0,
∑

i β
(i) <∞, and the v(i) are a sequence

of bounded perturbation vectors. The key result under-
lying superiorization is that if the basic algorithm is per-
turbation resilient, the superiorized version is able to find
a solution that is equally satisfactory with respect to sat-
isfying the constraints of the problem (P(x) = b in our
case), though typically this requires more iterations. The
perturbation vectors are usually chosen to be nonascend-
ing directions of some penalty function φ(x) at the cur-
rent iterate, for example, v(i) = −∇φ(x(i))/‖∇φ(x(i))‖.
Thus, the solution found by the superiorized algorithm
can be expected to be superior with respect to φ, while
equally compatible with the constraints. The method-
ology has been featured in a special edition of Inverse
Problems [49], and a continously updated online bibli-
ography is maintained at http://math.haifa.ac.il/
YAIR/bib-superiorization-censor.html.

All three of the proposed enhancements (polyenergetic
forward projection, weighted least squares, and superi-
orization) can be implemented independently of one an-
other. In [47] we found that polyenergetic forward pro-
jection and TV superiorization could be used to elim-
inate beam hardening artifacts as well as artifacts due
to sparse-view and limited-angle data. In [44], we found
that including all three enhancements in the reconstruc-
tion algorithm provided the best results when metal ar-
tifacts were present. Pseudocode for this algorithm is
presented in Algorithm 4. In the implementation of the
algorithm, we allow for a total of N perturbations to
be applied in every iteration, to further improve the so-
lution with respect to the penalty function. (This is of
course equivalent to a single perturbation, albeit one that
cannot be determined a priori). The step sizes decrease
geometrically with rate 0 < γ < 1 to ensure that the
perturbations are summable.

In [44], total variation (TV) was used as the penalty
function employed by superiorization:

φTV (x) =
∑
m,n

√
(xm+1,n − xm,n)2 + (xm,n+1 − xm,n)2 + ε2,

(14)

where xm,n denotes the pixel in the mth row and nth col-
umn of the image x. The small parameter ε is introduced
to avoid singularity of ∇φTV at points where the image
is piecewise constant. While the algorithm, which we
denoted as wPSART-TV (weighted polyenergetic SART
with TV superiorization) was effective in reducing metal
artifacts, we found that it was difficult to remove strong
streaking artifacts between metal objects; for example,
in the case of a bilateral hip implant. This was especially
true at low count rates, where photon starvation was a
significant factor. This motivates the development of the
hybrid algorithm, discussed in the next section.

D. Prior image constrained superiorized algorithm

Our prior image constrained superiorized algorithm
(Algorithm 5), which we denote as wPSART-PICS, con-
sists of several steps, highlighted in Fig. 2. First, the
water corrected sinogram is corrected using NMAR to
obtain a metal corrected sinogram. A modified version
of Algorithm 4 is then applied to this sinogram to re-
construct a prior image, xprior. In the modified version
of the algorithm, monoenergetic forward projection (i.e.
multiplication by A) is used instead of P, and the weight-
ing matrix W is omitted, since the data have been water
corrected and the noisy metal trace removed by NMAR.
Total varation (14) is used as the penalty function for su-
periorization, in order to generate a smooth prior image.

The prior image is then incorporated into a second
penalty function:

φPI(x) = αφTV (x) + (1− α)φTV (x− xprior), (15)

http://math.haifa.ac.il/YAIR/bib-superiorization-censor.html
http://math.haifa.ac.il/YAIR/bib-superiorization-censor.html
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Algorithm 4: Block-iterative, weighted,
polyenergetic SART with superiorization

1 Given: Log-transformed polyenergetic sinogram bpoly,
system matrix A, number of subsets Nw, reference
energy E0, spectrum S, tabulated attenuation curves
µm(E), initial image x0, stopping criteria ε and/or
imax, superiorization parameters γ, N .

2 ` = −1;
3 i = 0;

4 while ‖P
(
x(i)
)
− bpoly‖2 ≥ ε and i < imax do

5 n = 0 ;

6 x(i,n) = xi;
7 while n < N do

8 v(i,n) = −∇φ(x(i,n)) / ‖∇φ(x(i,n))‖2;
9 while true do

10 ` = `+ 1;

11 β(i,n) = γ`;

12 z = x(i,n) + β(i,n)v(i,n);

13 if z ∈ Ω and φ(z) ≤ φ(x(i)) then

14 x(i,n+1) = z;
15 break;

16 end

17 end
18 n = n+ 1;

19 end

20 x(i+1) = QBNw . . .B2B1(x(i,N)), where Bw(x) =

x−D′w(Aw)TMw

[
W

1
2
w (Pw(x)− bpoly,w)

]
;

21 i = i+ 1;

22 end

23 return x(i)

where α ∈ [0, 1] controls the weighting of the two terms.
This type of penalty is used in the prior image con-
strained compressed sensing (PICCS) approach described
in [50,51]; we use the term “superiorization” instead of
“compressed sensing” as it more accurately describes our
method. Algorithm 4 is then applied with the original
polyenergetic projection data and φPI(x) as the penalty
function. The prior image is also used as the initial es-
timate, as it is expected to be a good approximation to
the true image.

Algorithm 5: wPSART-PICS algorithm

1 Given: Water corrected sinogram bmono, all inputs
needed for Algorithm 4.

2 Apply NMAR to bmono to obtain bNMAR;
3 Use Algorithm 4 (modified) with bNMAR as sinogram

to reconstruct prior image xprior;
4 Set φPI(x) = αφTV (x) + (1− α)φTV (x− xprior);
5 Use Algorithm 4 with bpoly as sinogram, x0 = xprior,

and φPI(x) as penalty function to reconstruct xfinal;
6 return xfinal

By penalizing the TV of the difference between the re-

constructed image and the prior, φPI(x) effectively pro-
motes similar edge structure between the two images.
Our motivation for using φPI(x) in this application is
that if the NMAR-based prior is largely free of severe
streaking artifacts, these artifacts will also be penalized
in the image being reconstructed. Since the final step of
Algorithm 5 uses the original polyenergetic data, how-
ever, it should be possible to recover image details that
are lost due to the interpolation performed by NMAR.

III. RESULTS

We validated our approach using several numerical ex-
periments. The wPSART-PICS algorithm was imple-
mented in Matlab using the Michigan Image Reconstruc-
tion Toolbox (MIRT) [52] to simulate the CT spectrum,
material attenuation curves, and generate the system ma-
trix A for iterative reconstruction. We implemented our
own version of NMAR in Matlab as well, using the built-
in Image Processing Toolbox methods to segment the CT
image.

A. Simple phantom experiments

We first generated the simple mathematical phantom
shown in Fig. 1 to fine tune the algorithm parameters,
before studying more realistic data. The phantom is
400× 400 pixels with a pixel size of 0.75 mm. It consists
of a background region of soft tissue, two small circular
regions containing titanium, and a larger oblong region
containing bone. The linear attenuation coefficients of
soft tissue, bone and titanium at the reference energy E0

of 70 keV are 0.203, 0.494, and 2.44 cm−1, respectively.
The phantom also consists of an air pocket and several
low contrast features (modeled after the Shepp-Logan
phantom) in the center of the object. The low-constrast
features have attenuation values of ±5% relative to the
background, and are heavily obscured by metal streaking
artifacts if no metal artifact correction is performed (see
Fig. 1).

We analytically computed 720 parallel-beam views
over a 180◦ arc around the phantom. A 130 kVp spec-
trum was simulated to generate polyenergetic data. Pois-
son noise was subsequently added to the data, propor-
tionally to initial count rates of I0 = 1.0× 105, 2.0× 105,
5.0 × 105, and 1.0 × 106. To reconstruct the data using
Algorithm 5, we ran 24 iterations of the modified algo-
rithm (Line 3) to generate xprior. Algorithm 4 was then
run for 32 iterations to produce a final image. In both
instances, Nw = 12 subsets of projection data were used.
The parameters controlling the gradient descent steps
within the superiorized algorithm were set to γ = 0.9995,
N = 40. To test the sensitivity of the resulting image
to the choice of α in (15), we performed reconstructions
with α = 1.0, 0.8, 0.5, 0.2, and 0.0; the first value corre-
sponding to the case of ordinary TV regularization. For
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comparison, we also reconstructed an image using the
wPSART-TV approach of Ref. [44]; this is equivalent to
applying Algorithm 4 with x0 = 0 and φ = φTV .

For quantitative comparisons, we defined an n × n
pixel region of interest (ROI) in the center of the object
(n=51), surrounding the six small low-contrast features.
Pixel values within the ROI were rescaled to the interval
[0, 1] using the formula

xnew,k =
xold,k − xmin

xmax − xmin
, (16)

where xmin and xmax were set to ±10% of the back-
ground soft tissue value. The peak signal-to-noise ratio
(PSNR) of the region was then calculated as

PSNR = 10 log10

(
1

MSE

)
,where (17)

MSE =
1

n2

∑
k

(xtrue,k − xnew,k)
2
. (18)

The rescaling was performed so that the PSNR values
were better able to capture differences between the re-
constructed values within the ROI.

Fig. 3 shows the images reconstructed using all ap-
proaches at the noise level of I0 = 5.0 × 105. While the
prior image reconstructed from the NMAR data (B) is
free of metal streaking artifacts, there is a small artifact
around the oblong bone region in the bottom right due
to inaccuracy in the segmentation applied during NMAR.
This artifact is absent from images C–H, which are recon-
structed from the original data. Image C, reconstructed
using the wPSART-TV algorithm, retains a mild streak-
ing artifact between the two metal objects. This is likely
due to the fact that the image is reconstructed with-
out any prior knowledge from the NMAR correction,
which removes the streak entirely. Image D begins from
x0 = xprior, but uses only TV as the penalty func-
tion during superiorized reconstruction (since α = 1.0),
resulting in blurred edges around the low-contrast fea-
tures. Images E–H, reconstructed using pSART-PICS
with α < 1, demonstrate better definition about the fea-
tures. Images D–H do include a small dark shadow sur-
rounding the two metal objects; this appears to arise as
a result of a slight mismatch between metal trace of the
forward projection of the prior with the actual sinogram,
resulting in large discrepancies in the data domain in a
small number of pixels. This results in an overcorrection
in the pixels surrounding the metal regions.

The PSNR values given in Table I corroborate these
observations. At all four noise levels, the best PSNR val-
ues are obtained using wPSART-PICS with an α value of
0.0 (column H). This indicates that (for this experiment,
in any event), there is no benefit to including the TV
of the image in the penalty function (15). This is per-
haps not surprising, since the prior image itself is recon-
structed using TV superiorization and is therefore quite
smooth itself. That being said, the difference in PSNR
values between columns E–H is only on the order of 1–2%,

indicating that the algorithm is not particularly sensitive
to the choice of α, as long as α < 1.0. Comparatively,
the difference in PSNR values between columns D and E
(α = 1.0 versus α = 0.8) ranges from 2 – 10%.

B. Anatomical phantom experiments

To test the performance of the algorithm on more
realistic data, slices of clinical CT images were down-
loaded from the Cancer Imaging Archive (https://www.
cancerimagingarchive.net/). Four 512 × 512 pixel
slices were selected from the dataset, representing the
abdominal, shoulder, pelvic and head regions. Metal ob-
jects representing pins, dental fillings, and a bilateral hip
implant were subsequently manually inserted into the im-
age slices; the pins and hip implants were modeled as
titanium, while the fillings were modeled as gold. The
objects were modeled after those appearing in Ref. [14].
Fan beam data corresponding to 900 views over 360◦ were
simulated using the MIRT toolbox, using the same 130
kVp spectrum and reference energy of 70 keV as for the
simple phantom experiment. Soft thresholding [14] with
base materials of fat, soft tissue, and bone were used
to generate attenuation coefficients for nonmetal regions
at every energy level when simulating the polyenergetic
data. Noise was then added to the data proportional to
count rate of I0 = 2.0 × 105. The four true images and
their reconstructions using FBP are shown in the first
two rows of Fig. 4, illustrating the severity of the metal
artifacts when no correction is performed.

Images were reconstructed using the same algorithms
as in the previous section. In light of the results from
the simple phantom experiment, we only used values of
α = 1.0, 0.5 and 0.0 for the pSART-PICS algorithm.
All superiorized algorithms were run with γ = 0.995 and
N = 10; while the choice of γ = 0.9995, N = 40 gave
good results for the simple phantom used in the previ-
ous section, we found that it tended to oversmooth the
images based on real CT data. By reducing both γ and
N , we smooth the images less because we perform fewer
gradient descent iterations in Algorithm 4, while also re-
ducing the step size more quickly.

For the purposes of comparison, two other reconstruc-
tion approches were used. The first is a modified version
of Algorithm 5 which uses water corrected data bmono

instead of bpoly on line 5 of the algorithm, together with
the monoenergetic version of Algorithm 4. This approach
gives an indication of how the proposed algorithm could
be adapted in the case that the beam spectrum is diffi-
cult to approximate accurately, as water correction can
be performed without knowledge of the spectrum. The
second approach is frequency split MAR (FSMAR) [16],
a modified version of NMAR that we implemented in
MATLAB. FSMAR combines the image reconstructed
using NMAR with one reconstructed from the original
data by convolving both images with low and high-pass
Gaussian filters. The final image is obtained from com-

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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bining the low-pass filtered NMAR image with a spa-
tially weighted average of the high-pass filtered NMAR
and original images; the original image is weighted more
heavily in the neighborhood of the metal regions. As
the goal of FSMAR is similar to that of wPSART-PICS
(to restore details lost from the NMAR process), it is a
natural point of comparison.

In addition to a qualitative assessment of the images,
we computed PSNR values over the entire images simi-
larly to the previous experiment, using the following pro-
cedure. First, the pixel values in all images were clipped
using the formula

xk = min(max(xk, xmin)xmax) (19)

for all k, with xmin = 0.15 cm−1, xmax = 0.4 cm−1.
PSNR was then calculated as in (16) and (18). The
rationale is that when assessing image quality, we are
primarily interested in how well the different algorithms
reconstruct values for soft tissue and bone; clipping the
images avoids discrepancies in the reconstructed values
for metal from having a disproportionate effect on the
PSNR calculation.

Reconstructed images of the four phantoms are shown
in Fig. 4 and Fig. 5. We focus on the first three images
here, and discuss the fourth (head phantom) at end of
the section. Row C of the figures shows the prior images
reconstructed from the NMAR data. It is apparent in
Fig. 5 that some information has been lost due to the in-
terpolation performed by NMAR; for example, the area
around the spine and backmost ribs in the abdomen im-
age, the scapula on the right side of the shoulder image,
and the edges of the hip bones in the pelvis image. While
the wPSART-TV algorithm (Row D) does a better job
of recovering these features, streaking artifacts caused by
metal persist in every image, most noticeably between
the two implants in the hip image. The three images
reconstructed using wPSART-PICS (rows F–H) are able
to eliminate streaks caused by metal while also recov-
ering features which were occluded in the prior image.
The PSNR values in Table II confirm these observations;
the highest values for the abdomen, shoulder and pelvis
phantoms all occur in column F, with columns G and H
being only slightly worse. As in the simple phantom ex-
periment, there is little apparent difference in the images
reconstructed using α < 1.0 (rows G and H), while the
image using α = 1.0 (i.e., TV as the penalty function)
is noticeably smoother. In the abdomen and shoulder
images, including the prior in the penalty function has
actually introduced some mild streaking into the image
along the horizontal direction, since these streaks are also
present in the prior image. We also observe some small
dark shadows surrounding the metal regions, similar to
the simple phantom experiment.

The results using water corrected data (image E) in-
dicate that the proposed method can still give improved
results when the spectrum is not known. In particular,
the abdomen and shoulder images in Row E are quite
similar to the corresponding images in Rows F – G which

were obtained using the polyenergetic version of the al-
gorithm, although the PSNR values in Table II suggest
that they are somewhat less accurate. For the pelvis
image, a noticeable streaking artifact persists between
the two hip implants. The results using FSMAR (image
I) indicate that it is effective in recovering some details
which are lost in the NMAR image, such as the ribs in the
abdomen image and the scapula in the shoulder image.
Those features appear blurrier, however, than in the im-
ages reconstructed using wPSART-PICS. Curiously, the
PSNR values for FSMAR (Table II) are the worst of any
algorithm for the abdomen, shoulder and pelvis phan-
toms, despite the fact that the images appear visually
superior to those in rows C – E, in most cases. Examining
the difference images between reconstructed images and
the ground truth, it appears that this is because FSMAR
has created some halo-like regions of elevated attenuation
surrounding the metal objects, which are larger than in
the other images. It is possible that fine-tuning the choice
of frequency cutoff and weighting functions used in the
method could reduce this effect.

It is apparent that the wPSART-PICS algorithm does
not give an acceptable reconstructed image in the case
of the head phantom (last column of Fig. 4). The reason
for this is that the metal simulated in the head phantom
experiment (gold) has such a high µ value that the three
objects modeling dental fillings block all X-rays passing
through them at the simulated count rate of 2.0 × 105

counts per ray. This results in a measured intensity of
Ij = 0, translating to infinite attenuation along the line.
Due to the projection weighting employed by the algo-
rithm (11), these measurements are ignored during recon-
struction; however, the lack of information about pixel
intensities along those lines produce artifacts in the fi-
nal image. The artifacts are actually more severe in the
images which begin with the prior as an initial estimate
(Rows F–H); this is because there is a slight mismatch
between the metal trace in the forward projection of the
prior image and that of the measured sinogram, which
creates severe streaking in the reconstructed image after
just one iteration of the algorithm. Based on the quanti-
tative results in Table II, the wPSART-TV (column D)
produces the best reconstruction for this image, though
it includes some streaking which is less severe or absent
in the images reconstructed using NMAR and FSMAR.

IV. DISCUSSION

While the wPSART-PICS algorithm was effective in
removing metal artifacts in most cases, the numerical
experiments do highlight some limitations. In the ex-
periment simulating gold dental fillings (fourth column
of Fig. 4), the algorithm failed to produce acceptable
results, due to the total photon starvation induced by
the dense metal objects. In a separate experiment (not
shown), we simulated titanium fillings rather than gold;
this eliminated the artifacts as the titanium fillings no
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longer blocked all X-rays. Additionally, we note that
the simulated sinogram data for the pelvis phantom also
included measurements along which no photons were de-
tected; nonetheless, the wPSART-PICS algorithm was
successfully able to reconstruct this image. As indi-
cated in Fig. 6, the key difference appears to be that
not all measurements through the metal objects in the
pelvis phantom are totally attenuated; only those pass-
ing through both objects. Thus, the algorithm is able to
reconstruct the object accurately based on the remain-
ing information. We conclude that while the wPSART-
PICS algorithm is able to perform well in challenging
scenarios including some photon starvation, the NMAR
or FSMAR algorithms may be preferable in cases where
extreme photon starvation occurs. It should be noted
that our simulations do not include scatter, which would
potentially have an impact as the measured intensity Ij
would no longer be zero in cases of photon starvation.

Additional limitations include the need to tune param-
eters such as N , γ, imax and/or ε in Algorithm 4 to ob-
tain good results, and the use of spectral knowledge in
the forward projection step (9), which may not always
be available. Our experiments indicate that in the event
that the beam spectrum is unknown, it may be possible
to use water corrected data with a monoenergetic ver-
sion of the algorithm and still obtain qualitatively sim-
ilar images. Alternatively, one may consider applying
more advanced corrections to the data which attempt
to compensate for second-order beam hardening artifacts
(e.g. [37,38]). These approaches often require segmenting
the image, which is not a significant obstacle since this
is already required for NMAR.

Our numerical experiments have included a compari-
son with our own implementation of FSMAR, which also
aims to recover details lost during the NMAR process.
The experiments indicate that FSMAR is able to recover
many such details, though they appeared somewhat blur-
rier than those obtained using wPSART-PICS. The per-
formance of FSMAR does depend on the choice of fre-
quency cutoff used for the low-pass filtering, as well as
the weighting method used, so it is likely that our results
could be improved upon. FSMAR has the advantage of
using conventional analytical techniques for reconstruc-
tion, which are faster than iterative approaches, and it
has been successfully applied in clinical practice [53]. The
wPSART-PICS algorithm as currently implemented is
somewhat time consuming as it uses an explicitly formed
system matrix from the MIRT toolbox to perform for-
ward and back projection on the CPU; the algorithm
could be accelerated significantly through the use of GPU
based forward projection. It is also possible that a prior
reconstructed using FSMAR could be used in our algo-
rithm, instead of the NMAR image.

The presented algorithm is similar to one used in a
clinical study [17], which was also based on combining
NMAR with a PICCS-like approach. Some differences
in our approach include the use of a polyenergetic for-

ward model and the incorporation of the superiorization
methodology, which provides some theoretical benefits.
For example, if one wishes to obtain an image satisfying
a certain measure of data fidelity, superiorization guaran-
tees that this is possible if the algorithm is perturbation
resilient. Our previous work with the polyenergetic ver-
sion of SART [47] indicates that the algorithm seems to
satisfy this property.

In recent years there has been considerable interest in
applying techniques from deep learning to many areas of
CT imaging, including MAR (e.g. [14]). One challenge of
deep learning approaches is the need for large amounts of
data on which to train the network. For MAR in clinical
CT, this may be a particular challenge as it is not gener-
ally possible to obtain (real) paired training data of metal
and non-metal corrupted images for supervised learning,
thus requiring either simulated data, or an unsupervised
approach. It may also be advantageous for deep learning-
based MAR approaches to incorporate existing analytic
or iterative methods for MAR, as in [14].

V. CONCLUSION

In this paper we present an iterative reconstruction al-
gorithm for CT imaging which uses the superiorization
methodology to perform metal artifact reduction (MAR).
The algorithm uses a prior image reconstructed using the
normalized metal artifact reduction (NMAR) method of
Meyer et al. [15], which eliminates most severe streak-
ing artifacts caused by metal, but may introduce sec-
ondary artifacts in the vicinity of the metal regions. The
NMAR-based prior is then incorporated into a penalty
function akin to that used in prior image constrained
compressive sensing (PICCS) algorithms [50], which is
used within a superiorized iterative algorithm based on
our previous work (wPSART-TV) [44]. Numerical ex-
periments modeling several different anatomical scenar-
ios were perfomed, and indicate that the proposed algo-
rithm (wPSART-PICS) is able improve on both NMAR
and wPSART-TV. In particular, it is able to recover de-
tails that are lost during the NMAR process (particularly
with respect to the structure of bone around the metal
regions) while also removing streaking artifacts that per-
sist in images reconstructed using wPSART-TV.
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FIG. 1. Illustration of MAR and NMAR methods. Top row:
Left: Spectrum (130 kVp) used to generate polyenergetic
data. Center: polyenergetic sinogram of a simple mathemat-
ical phantom including metal objects (small circular regions)
as well as bone (oblong region in bottom right) and air pocket
(top right). Right: Profile along white dashed line in sino-
gram, showing water corrected sinogram (black line), MAR
correction (red line) and NMAR correction (blue line). Pro-
files have been vertically offset to highlight differences. Bot-
tom: Images reconstructed from water corrected (left), MAR
corrected (center) and NMAR corrected (right) sinograms us-
ing filtered backprojection. Phantom specifications are given
in Section III.

FIG. 2. Scheme of the wPSART-PICS algorithm as described
in Algorithm 5. Raw data bpoly are water corrected, then
passed into NMAR (Algorithm 3) to generate a metal cor-
rected sinogram bNMAR. This sinogram is used to generate
the prior image xprior, which is then incorporated into the
penalty function in Algorithm 4 to produce the final output
xfinal.
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FIG. 3. Images reconstructed at noise level of I0 = 5.0 ×
105. A: True image. B: Prior image xprior reconstructed
from NMAR data. C: Image reconstructed using wPSART-
TV. D – H: Images reconstructed using wPSART-PICS with
α = 1.0, 0.8, 0.5, 0.2 and 0.0, respectively. Top two rows: full
image; bottom two rows: zoomed in on ROI highlighted in red
box. Grayscale window is ±10% the value of the soft tissue
background.

TABLE I. PSNR values of reconstructed images within the
ROI shown in Fig. 3. Column headings refer to images shown
in Fig. 3.

Counts B C D E F G H

1.0e5 21.36 21.41 21.24 21.73 21.92 21.97 21.97

2.0e5 21.96 22.00 21.30 22.35 22.49 22.58 22.62

5.0e5 23.28 22.24 21.37 23.56 23.82 23.93 23.97

1.0e6 23.95 20.46 21.67 24.20 24.52 24.62 24.66

TABLE II. PSNR values of reconstructed images shown in
Fig. 4. Column headings refer to images shown in Fig. 4.

Phantom C D E F G H I

Abdomen 27.06 26.47 29.18 30.79 30.69 30.58 25.65

Shoulders 28.21 28.16 30.34 32.65 32.45 32.35 27.78

Pelvis 27.35 26.69 28.36 29.67 29.63 29.59 25.20

Head 23.87 25.81 18.84 18.82 18.79 18.80 22.38
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FIG. 4. Phantoms and reconstructions based on clinical CT
image slices. Row A: True phantoms at reference energy of 70
keV with metal inserts indicated in pink. Row B: reconstruc-
tions generated using FBP and water corrected data. Row C:
Prior images reconstructed from NMAR data. Row D: Im-
ages reconstructed using wPSART-TV. Row E: Image recon-
structed using modified wPSART-PICS and water corrected
data. Rows F–H: Images reconstructed using wPSART-PICS
with α = 1.0, 0.5 and 0.0, respectively. Row I: Images re-
constructed using FSMAR. Grayscale window is [0.15, 0.25]
cm−1. Images were reconstructed at 512×512 pixels, but have
been cropped to eliminate black space. Green boxes indicate
zoomed-in regions shown in Fig. 5.
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FIG. 5. Zoomed-in regions indicated in Fig. 4.

Pelvis Head

FIG. 6. Fan-beam sinograms corresponding to pelvis and
head phantoms with initial count rate of I0 = 2.0×105. Mea-
surements corresponding to infinite attenuation are shown in
pink.
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