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Abstract—Dynamic SPECT reconstruction using a single slow
camera rotation is a highly underdetermined problem, which
requires the use of regularization techniques to obtain useful
results. The dSPECT algorithm (Farncombe et al. 1999) provides
temporal but not spatial regularization, resulting in poor contrast
and low activity levels in organs of interest, due mostly to blur-
ring. In this paper we incorporate a user-assisted segmentation
algorithm (Saad et al. 2008) into the reconstruction process to
improve the results. Following an initial reconstruction using the
existing dSPECT technique, a user places seeds in the image
to indicate regions of interest (ROIs). A random-walk based
automatic segmentation algorithm then assigns every voxel in
the image to one of the ROIs, based on its proximity to the seeds
as well as the similarity between time activity curves (TACs). The
user is then able to visualize the segmentation and improve it
if necessary. Average TACs are extracted from each ROI and
assigned to every voxel in the ROI, giving an image with a
spatially uniform TAC in each ROI. This image is then used
as initial input to a second run of dSPECT, in order to adjust
the dynamic image to better fit the projection data.

We test this approach with a digital phantom simulating the
kinetics of Tc99m-DTPA in the renal system, including healthy
and unhealthy behaviour. Summed TACs for each kidney and the
bladder were calculated for the spatially regularized and non-
regularized reconstructions, and compared to the true values.
The TACs for the two kidneys were noticeably improved in every
case, while TACs for the smaller bladder region were unchanged.
Furthermore, in two cases where the segmentation was intention-
ally done incorrectly, the spatially regularized reconstructions
were still as good as the non-regularized ones. In general, the
segmentation-based regularization improves TAC quality within
ROIs, as well as image contrast.

Index Terms—dynamic SPECT, dSPECT, image reconstruc-
tion, segmentation, random walk

I. INTRODUCTION

The goal of dynamic single photon emission computed
tomography (SPECT) is to reconstruct a time series of three-
dimensional images from a SPECT scan. From these images
one can extract information about the temporal behaviour
of the radiotracer in order to assess bodily function; for
instance, the metabolism of 99mTc-DTPA by the renal sys-
tem. A dynamic SPECT reconstruction can provide better
quantitative information than current planar dynamic nuclear
medicine techniques, which are not able to accurately correct
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for effects due to attenuation and organ overlap, due to their
two-dimensional nature.

A reconstruction method using a conventional single slow
camera rotation is desirable, as it is easily implemented with
current technology. A drawback of this approach, in which
each projection corresponds to one timeframe of the 4D recon-
structed image, is that it results in a highly underdetermined
reconstruction problem. In such a problem there are many
more unknown values to be solved for than there are equations
that constrain them, meaning that ther are infinitely many
possible solutions. As a result, one must apply regularization
techniques to obtain a physiologically realistic solution. The
dSPECT method of Farncombe et al. [1], [2] imposes temporal
regularization by forcing the time-activity curve (TAC) in
each voxel to obey a simple constraint. In this paper, we
incorporate a user-assisted image segmentation method [3]
into the dSPECT reconstruction process to provide additional
spatial regularization. This segmentation-based regularization
improves TAC accuracy and image contrast.

II. METHODOLOGY

A digital phantom was used to model tracer kinetics in
the renal system, including kidneys, ureters, bladder and
background activity. Time-dependent activity concentrations
were generated using a compartmental model (Fig. 1, Ta-
ble I), and then assigned to anatomical regions obtained from
the NCAT [4] digital phantom. A 370 MBq injection was
simulated, with 20% going to the renal system and the rest
distributed evenly as background. Six different test cases were
simulated: (A) healthy behaviour in both kidneys, (B) un-
healthy behaviour in both kidneys, (C) unhealthy behaviour in
the left kidney, (D) unhealthy behaviour in the right kidney,
(E) unhealthy behaviour in only the bottom third of the left
kidney, and (F) unhealthy behaviour in the bottom third of the
right kidney.

Healthy renal behaviour was defined as wash-in and wash-
out with peak activity occurring 100s post-injection and T 1

2
(half-maximum of activity, during washout) at 290s. Unhealthy
behaviour had peak activity at 200s and T 1

2
at 2135s. A set

of projections was generated from the phantom, including the
effects of Poisson noise, attenuation and collimator blurring.
The acquisition protocol was a dual-head rotation over 270◦

per head, with the two heads at 90◦ to one another. The
simulated rotation started with one head behind the supine
patient and the other next to the right kidney, with the
heads rotating clockwise. This protocol was chosen because
it provides spatial information for each time frame from two



Fig. 1. Generalized compartmental model used to generate TACs for
the different anatomical regions in the dynamic digital phantom. Transfer
coefficients k were altered to model healthy or unhealthy behaviour (See
Table I). Depending on the situation, some compartments were not used; for
instance, phantoms A, C and E did not include the compartment for unhealthy
right kidney.

k12R,k12L k12BG k23R, k23L k34R, k34L

Healthy (h) 0.2 1.6 0.3 1.0
Unhealthy (u) 0.2 1.6 0.03 0.1

TABLE I
KINETIC COEFFICIENT VALUES USED IN THE COMPARTMENTAL MODEL

(FIG. 1) TO GENERATE THE HEALTHY AND UNHEALTHY TIME-DEPENDENT
ACTIVITY IN EACH ORGAN. THESE VALUES WERE CHOSEN BECAUSE THEY

PROVIDED CURVES THAT AGREED WELL WITH PLANAR CLINICAL DATA.
UNHEALTHY BEHAVIOUR WAS SIMULATED BY KIDNEY-TO-URETER AND

URETER-TO-BLADDER COEFFICIENTS THAT WERE 10% THE VALUE OF THE
HEALTHY COEFFICIENTS.

different angles, and because it acquires less attenuated data
from behind the patient early in the scan, when tracer kinetics
are changing more rapidly. Forty-eight 20s projections were
simulated.

The projections and attenuation map generated from the
phantom were used as input to the dSPECT [1] reconstruction
algorithm. dSPECT is an iterative expectation-maximization
(EM) algorithm which enforces a simple constraint on the
TAC for each image voxel – the activity must only increase,
only decrease, or increase to a peak and then decrease over
the whole time interval. This constraint is enforced through
the inclusion of a difference tensor, A, into the standard
maximum-likelihood expectation maximization (MLEM) [5]
algorithm. Rather than optimizing over image intensities x,
the algorithm optimizes over the temporal differences between
neighbouring time frames, denoted by x̃ = Ax. Since all the
differences in x̃ are positive, the desired temporal behaviour
is enforced. Thus, the acquisition is modelled by

CA−1x̃ = p (1)

where C is the projection system matrix including patient-
specific attenuation and depth-dependent collimator resolution
modelling, A−1 is the inverse of A, and p is the acquired
projection data, including Poisson noise. A−1 is guaranteed
to exist since the mapping from x to x̃ is one-to-one. The

dSPECT update formula is then given by

x̃new
ik =

1∑
j CijkA−1

ijk

x̃old
ik

∑
j

CijkA−1
ijk

pjk∑
i CijkA−1

ijkx̃old
ik

(2)

where i and j are matrix/vector (spatial) indices, and k is the
temporal index (time frame).

The number of time frames k corresponds to the number
of projection views acquired – forty-eight in this study. Since
the time frame in which the maximum TAC value occurs is
not known a priori, the algorithm also allows the assumed
peak location for each voxel (encoded in A) to shift after
every iteration, based on the projection data [2]. For instance,
if it is initially assumed that activity in a voxel peaks in the
16th time frame, but the projection data suggest that it should
peak earlier, then the assumed peak location will shift to an
earlier time frame. Due to the necessity of locating the peak
location for each voxel, the algorithm must be run with more
iterations than are conventionally used for static MLEM to
obtain a satisfactory reconstruction.

dSPECT was run with sixty iterations to generate a spatially
non-regularized (NR) reconstruction for each test case. These
reconstructions were computed beginning with a generic initial
condition where activity was assumed to be increasing in the
lower 24 slices of the volume (containing only background
and bladder) and assumed to peak at the 24th time frame
in the upper 40 frames (which contained the kidneys). This
initial condition and number of iterations were chosen based
on earlier experiments where they gave good results. The
(NR) reconstructions gave a reasonable approximation to the
true activity, but suffered from poor contrast between the
organs of interest and background activity, as well as a lack
of uniformity within each region of interest (ROI). The poor
contrast resulted in lowered activity levels in the organs of
interest, as their boundaries blurred with the background. To
address this problem, we incorporated segmentation into the
reconstruction algorithm.

Segmentation was achieved by a user-assisted method [3],
as follows. Each (NR) reconstruction was loaded into an
interactive segmentation program and a single coronal slice
that showed all ROIs (the two kidneys and the bladder) was
examined. A user placed seeds for five segments (zero activity,
background activity, right kidney, left kidney and bladder)
and then ran an automatic 4D probabalistic segmentation
algorithm. Fig. 2 shows an example of the seeding procedure.
In cases E and F a sixth segment was also seeded in the
unhealthy part of one kidney. The algorithm generated a
probabilistic field using a random walk approach [6] that
took into account both the proximity of each voxel to the
user-defined seeds, as well as similarity between TACs in
each voxel within a segment. Each voxel was thus assigned a
probability of belonging to each of the segments, and made
part of the segment corresponding to the highest probability.

Once the automatic segmentation was completed, the user
was able to visualize the probabilistic segmentation result
using volume rendering [7]. Then, the user could interact in
real-time with the probabilistic field through intuitive graphical
user interface widgets to improve the final segmentation.
For example, if voxels that were clearly part of the left
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Fig. 2. Screenshot of the interactive segmentation program that was used in
the proposed reconstruction method, illustrating typical user seeds (indicated
by coloured ‘+’ signs in the right panel) that were placed before running
the probabilistic segmentation. The five segments are zero activity (black),
background (cyan), right kidney (blue), left kidney (red) and bladder (yellow).

kidney were assigned to the right kidney segment due to the
similarity between TACs, they could be re-assigned to the left
kidney segment. Fig. 3 gives an example of a volume-rendered
segmentation obtained after this step. The segmentation was
obtained from the (NR) reconstruction only, with no additional
knowledge about organ locations (e.g. from a CT map), aside
from the seeds provided by the user.

Average TACs for each segment were computed, and then
assigned to every voxel in that segment, creating an averaged
image where the TAC was spatially uniform in every segment.
This image was used as the initial input for another run of
dSPECT, this time over 50 iterations. The purpose of the
second run was to adjust the segmented image to better fit the
projection data. This is necessary since in a realistic situation
one would not expect the activity within each segment to be
perfectly uniform; furthermore, this step corrects for errors
made during the segmentation process, such as assigning
regions with different behaviour to the same segment and then
averaging them. The final result of this calculation was our

Fig. 3. 3D volume rendering of segmentation obtained for case C, showing
right kidney (blue), left kidney (red), bladder (cyan) and background (grey
boundary).

Fig. 4. Flowchart of calculations performed in the study. (1) Creation
of projections from phantom volumes, (2) Creation of (NR) reconstruction
using dSPECT, (3) Segmentation of (NR) reconstruction using 4D dynamic
segmentation algorithm, (4) Creation of averaged image, and (5) Creation of
(REG) reconstruction using the averaged image.

proposed regularized (REG) reconstruction. The flowchart of
calculations done to provide the (NR) and (REG) reconstruc-
tions is illustrated in Fig. 4.

To evaluate the performance of the new proposed algorithm,
we defined three ROIs in the reconstruction: left kidney (LK),
right kidney (RK) and bladder (BD), whose boundaries were
known exactly from the phantom. For cases E and F, an extra
ROI was included in the partially unhealthy kidney. For each
ROI we measured the relative error of the summed TAC by

∆A% =
‖TACrecon − TACtrue‖2

‖TACtrue‖2
× 100% (3)

where ‖·‖2 is the l2-norm, TACrecon was obtained by sum-
ming the TACs in every voxel of that ROI in the recon-
structed image, and TACtrue was obtained similarly from
the phantom. We calculated ∆A% for both the (NR) and
(REG) reconstructions. Two additional cases with incorrect
segmentations were also tested – case C with two segments
defined in the uniformly unhealthy left kidney, and case E
with only one segment defined in the left kidney (which had
healthy and unhealthy parts). In these cases, we wished to
examine whether the algorithm produced poor results if the
user made an incorrect assumption during segmentation; i.e.,
defining more or fewer segments than required. These two
cases are referred to by (REG-W).

III. RESULTS

Results are summarized in Table II. For the kidney ROIs,
the segmentation-based regularization reduced the error ∆A%
in every case. The improvement was especially noticeable in
regions with healthy behaviour; the (REG) image had ∆A%
values more than five times smaller than those found in the
(NR) image in 3 cases. The error for unhealthy TACs was
reduced by 1.5 to 2.5 times, in general. The summed TAC for
the bladder was not generally improved by the regularization;
one possible explanation is that the bladder region in the
phantom is about half the size of either of the kidneys, making
it more difficult to obtain an accurate segmentation. Finally, in
the two cases with incorrect segmentations (REG-W), the error
was not appreciably reduced in the poorly segmented ROIs,
illustrating the importance of using a good segmentation. It
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Fig. 5. Summed TACS generated for case E, showing typical improvements.
The (REG) TAC is noticeably better for all ROIs except the bladder, where
performance is the same as the (NR) case.

is worth noting, however, that accuracy was not diminished,
even in case (E - REG-W) where the non-uniform left kidney
was made uniform in the regularization step, prior to the
second dSPECT run. Thus, the second dSPECT run was able
to correct for this error.

Visually, the (REG) reconstructions are also an improve-
ment on the (NR) reconstructions. The boundaries between the
kidneys and background activity are generally more sharply
delineated, with less blurring evident. Figure 6 shows an
example of a coronal slice illustrating this improved image
contrast.

ROI RK(H) RK (U) LK (H) LK (U) BD
Simulation
A - NR 24.0 × 19.8 × 14.0
A - REG 4.5 × 5.5 × 15.2
B - NR × 19.3 × 14.8 18.8
B - REG × 5.6 × 5.3 7.1
C - NR 25.4 × × 14.6 14.9
C - REG 6.9 × × 8.3 13.1
C - REG-W 5.3 × × 13.6 15.4
D - NR × 18.8 19.7 × 14.7
D - REG × 7.8 3.7 × 15.6
E - NR 23.2 × 20.4 16.3 14.4
E - REG 4.5 × 11.5 7.8 15.2
E - REG-W 4.3 × 8.5 15.2 15.3
F - NR 29.5 23.3 19.0 × 14.7
F - REG 12.5 14.7 13.4 × 13.9

TABLE II
RELATIVE ERROR ∆A% FOR THE THREE ROIS FOR EACH SIMULATION.
THE BEST RESULT FOR EACH CASE IS HIGHLIGHTED IN BOLD. (H) AND

(U) DENOTE REGIONS OF HEALTHY AND UNHEALTHY BEHAVIOUR,
WHERE APPLICABLE. FOR INSTANCE, IN (D) THE ENTIRE RIGHT KIDNEY

WAS UNHEALTHY AND THE ENTIRE LEFT KIDNEY WAS HEALTHY, SO
RK(H) AND LK(U) DO NOT APPLY (DENOTED BY ×).
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Fig. 6. Profiles drawn through kidneys in a single coronal slice for Case A,
at a frame in the third minute. The (REG) reconstruction is less blurred and
the profile agrees much better with the true profile at the organ edges than
the (NR) reconstruction.

IV. CONCLUSIONS

In this paper we incorporate a user-assisted segmentation
method into the dSPECT reconstruction algorithm. The seg-
mentation is applied between two runs of the reconstruction
algorithm in order to provide more spatial information to the
reconstruction. We find that using segmentation as a means of
spatial regularization can significantly improve the accuracy
of the summed TACs within ROIs in the reconstruction, as
well as image contrast. Furthermore, the algorithm is robust,
in the sense that errors made during the segmentation step do
not worsen the quality of the reconstruction.
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