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Abstract Determining optimal well placement and con-

trol is essential to maximize production from an oil
field. Most academic literature to date has treated op-
timal placement and control as two separate problems;

well placement problems, in particular, are often solved
assuming some fixed flow rate or bottom-hole pressure
(BHP) at injection and production wells. Optimal place-

ment of wells, however, also depends on the control
strategy being employed. Determining a truly optimal
configuration of wells thus requires that the control pa-

rameters be allowed to vary as well. This presents a
challenging problem since it features two distinct types
of parameters.

In this paper we address the placement and control
optimization problem simultaneously using approaches
that combine a global search strategy (particle swarm

optimization, or PSO) with a local generalized pattern
search (GPS) strategy. These approaches promote a
full, semi-random exploration of the search space with

PSO, while the GPS technique allows us to optimize
parameters in a systematic way. We focus primarily on
two approaches combining these two algorithms. The

first is to hybridize them into a single algorithm that
acts on all variables simultaneously, and the second is
to apply them sequentially to decoupled well placement

and well control problems. We find that decoupling the
problem generally provides more reliable solutions than
a fully simultaneous approach, although the best me-

thod for a given problem may be context-specific.

Address(es) of author(s) should be given

1 Introduction

Maximizing production from an oil field is a crucial
task, given the enormous financial investment at stake
in any large-scale field development. Careful planning

with respect to the placement of new wells and control
of injection and production rates at existing wells is es-
sential, as these decisions have a significant impact on

production. Poor placement and/or control of wells may
result in premature water breakthrough at the produc-
tion wells, or make it difficult to achieve high flow rates
while maintaining reservoir pressure. The vast number

of potential development scenarios drives the need for
efficient, computerized optimization approaches to as-
sist in making these decisions.

The problems of finding optimal well locations and

determining optimal well control parameters are often
treated separately [11]. Well placement problems in-
volve optimizing over parameters corresponding to the

positions and orientations of the injection and produc-
tion wells. We limit ourselves in this paper to consid-
ering vertical wells, where each well’s position is pa-

rameterized simply by its (x, y) co-ordinates. A sim-
ple control scheme is typically assumed in these prob-
lems; for instance, injection wells are held at a fixed

bottom hole pressure (BHP), while producers are held
at a lower BHP in order to generate flow. Well con-
trol problems, on the other hand, focus on managing

the injection and production rates at wells that are al-
ready in place. The optimization variables in this case
are usually either the BHP or the flow rate for each

well, which can be changed at specified time intervals.
The objective function that one attempts to maximize
in these problems is typically either the total amount

of oil extracted, or the net present value (NPV) of the
extracted oil. The NPV function is correlated with the
total amount of oil extracted, but emphasizes producing

more oil early in the reservoir’s lifetime (due to the time
value of money), and also typically includes the costs
of water injection and disposal of any water produced.

Heterogeneous properties of the reservoir, such as the
permeability field, tend to have a significant impact on
optimal well placement; as a result, the objective func-

tion surface tends to be much rougher in well placement
problems than in well control problems. This difference
in the objective function surface typically leads to using

different optimization approaches to address these two
problems. Optimization studies on well placement have
often focused on global algorithms with some stochastic

element in order to avoid converging prematurely to lo-
cal optima; well control problems have tended to make
use of deterministic algorithms, based on local search

techniques [11].
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A unified approach to optimizing well placement

and well control at the same time has the potential to
provide benefits over the treatment of these problems
separately. In particular, the best well configuration

when producers are held at some fixed BHP is not nec-
essarily the same as the best configuration if the control
can vary with time [39]. Additionally, determining the

optimal placement of new wells may also require adjust-
ing the control parameters at wells already in place. The
problem of simultaneous optimization of well placement

and control has been largely unexplored in the litera-
ture until recently. Here, we investigate approaches to
addressing this problem using a two optimization algo-

rithms: particle swarm optimization (PSO) and gener-
alized pattern search (GPS). These approaches include
hybridizing the algorithms to simultaneously optimize

over both placement and control parameters, as well as
applying them in sequential steps in a decoupled ap-
proach to the problem.

2 Existing research

Well placement studies have tended to use stochastic

optimization approaches aimed at exploring the solu-
tion space globally. Genetic algorithms (GAs) have re-
ceived the widest use [5,37,15,1,29,25,12,8]. Other op-

timization algorithms that have been applied to the
problem include simultaneous perturbation stochastic
approximation (SPSA) [3], covariance matrix adapta-

tion [6], and particle swarm optimization (PSO) [27,
28]. In addition to determining suitable algorithms, well
placement papers have included discussions of other is-

sues such as parametrization and optimal placement of
nonconventional wells [37,8], consideration of geologi-
cal uncertainty when determining optimal positions [15,

1], placement of well patterns rather than individual
wells [29,28], and inclusion of nonlinear constraints as
part of the optimization [39,12].

A popular optimization algorithm for well control

problems, on the other hand, has been the adjoint me-
thod [7,31,38,19,13]. This method, which is based on
approximating the gradient of the objective function, is

well-suited to the optimal control problem due to the
objective function’s smoothly varying nature. Imple-
menting the adjoint method may be challenging, how-

ever, since it requires in-depth knowledge of the work-
ings of the reservoir simulator. An alternative is to use
“black box” optimization algorithms, which use only

the inputs and outputs to the simulator. Examples of
black-box algorithms that have been applied to the
well control problem include stochastic methods like

SPSA [35] and GAs [36], as well as deterministic meth-

ods such as generalized pattern search (GPS) and Hooke-

Jeeves directed search [10,11].
Some recent papers have considered optimization of

well placement and well control in a more unified man-

ner. One proposed approach [14] essentially treats the
problem as one of optimizing well control rates, with
a large number of injection and production wells be-

ing placed in the reservoir initially. As the optimization
proceeds, flow rates at some wells are driven to zero,
resulting in their removal from the simulation. Thus,

the procedure determines the optimal number of injec-
tors and producers, as well as their locations and opti-
mal flow rates. This approach uses a modified version

of the adjoint method, which incorporates a number of
inequality and equality constraints to allow for the re-
moval of wells after every iteration. A second approach
uses a combination of GPS and adjoint methods in a

nested optimization procedure [4]. The outer iteration
of this procedure consists of using GPS to determine
optimal well positions; for each configuration of wells,

an inner optimization routine uses the adjoint method
to determine the best control strategy. The SPSA algo-
rithm has also been applied to problems involving both

well placement and well control in [23,22], where it was
found that optimizing over all variables simultaneously
was preferable to applying it sequentially to subprob-

lems involving placement or control only.
The use of PSO and GPS in tandem to address the

well placement and control problem has also been in-

vestigated in [18]. There it was found that hybridizing
PSO and GPS provided better results than the inde-
pendent application of those algorithms, and that opti-

mizing over all variables simultaneously was preferable
to sequential optimizations. The approach we use in
this paper is similar to theirs, but in preliminary ex-

periments presented in [17], we found that sequential
optimization was sometimes preferable to a fully simul-
taneous approach. In this paper we refine the technique

and perform further experiments, to determine whether
the optimal approach may vary depending on the con-
text.

3 Optimization approach

Combining global and local optimization techniques should
be advantageous when addressing well control and well

placement simultaneously. We use PSO as a global op-
timizer in this study, and GPS for the local search. Our
choice of these algorithms is motivated by the fact that

both have performed well in previous production opti-
mization studies [27,10]; both are black-box methods
that do not require in-depth knowledge of the simula-

tor; and both are easily parallelized to help mitigate the



Simultaneous and sequential approaches to joint optimization of well placement and control 3

expensive cost of function evaluations. We now give an

overview of PSO and GPS, as well as of the specific
optimization approaches used in this paper.

3.1 Particle swarm optimization

Particle swarm optimization [20,9] is an optimization

algorithm based on modeling the behaviour of a group
of animals acting collectively. PSO utilizes a number of
particles (typically 20 to 40) to explore solution space

in a semi-random way. The position of particle i at it-
eration k, denoted x

(k)
i , is a vector of size N , where N

is the number of variables in the optimization problem.

Every position is associated with the corresponding ob-
jective function value, and every particle remembers the
best position it has found so far. Particles in the swarm

also communicate with one another to share the best
positions that have been found overall. Each iteration
of PSO consists of determining a new position for every

particle in the swarm, and then evaluating the objective
function at that position. Since the objective function
evaluations can be performed independently of one an-

other, the algorithm is highly parallelizable.
Given x

(k)
i , the position of the particle at iteration

k + 1 is:

x
(k+1)
i = x

(k)
i + v

(k+1)
i ,

where the particle’s velocity vector v
(k+1)
i is given by

v
(k+1)
i = ιv

(k)
i + µr

(k)
1 ⊗

(
p
(k)
i − x

(k)
i

)
+

νr
(k)
2 ⊗

(
g
(k)
i − x

(k)
i

)
.

The velocity is a combination of three terms. The

first term models the tendency of the particle to con-
tinue traveling in the direction given by its current ve-
locity. The second term represents the tendency of the

particle to move toward the best position it has found
so far, denoted by p

(k)
i . Finally, the third term repre-

sents the tendency of the particle to move toward the

best position found by any other particle with which
it communicates, denoted by g

(k)
i . The constants ι, µ

and ν are parameters whose values are chosen to weight

these three terms appropriately. To inject randomness
into the particle movement, the N -vectors r

(k)
1 and r

(k)
2

are generated from the uniform distribution on (0, 1)

at every iteration, then multiplied componentwise with
the terms in brackets by the ⊗ operator. The PSO it-
eration continues until some convergence criterion is

met; for example, until the velocities of the particles
have become sufficiently small, until the particles are
sufficiently close to one another, or simply until some

maximum number of iterations have been performed.

If every particle communicates with every other par-

ticle in the swarm, PSO may quickly converge to a lo-
cal optimum before the solution space is fully explored.
Thus, it is usually recommended that each particle com-

municate only with two to four other particles at any
one time [9]. At every iteration of the algorithm, the
neighbourhood of particles with which each particle

communicates can be chosen randomly. This random
neighbourhood topology was used for this study, as well
as a swarm size of 40 particles, and parameter values of

ι = 0.721, and µ = ν = 1.193. These parameter values
have been found to provide good convergence results
in many numerical experiments [9]. It should be noted

that in general, one can not guarantee that PSO con-
verges to a global or even a local optimum; however, in
practice it has proved to be effective for a wide variety

of optimization problems.

3.2 Generalized Pattern Search

Generalized Pattern Search [21,2] is an optimization al-
gorithm that begins from a single incumbent point and
consists of a series of search and poll steps. At every

iteration k, a discrete mesh, centred at the current in-
cumbent x(k), is defined by:

M (k) =
{
x(k) +∆(k)Dz : z ∈ NnD

}
,

where ∆(k) is the resolution of the mesh at iteration
k, D is a matrix whose columns form the search direc-

tions, N is the set of natural numbers, and nD is the
number of search directions. The search directions must
form a positive spanning set in solution space; i.e., one
must be able to specify any point in solution space by

adding together only positive scalar multiples of these
directions. A common choice of search directions is:

D = {e1, e2, . . . , eN ,−e1,−e2, . . . ,−eN} (1)

where the en are the canonical basis vectors (1, 0, 0, . . . , 0)T ,
(0, 1, 0, . . . , 0)T , etc. Here D refers to the set of search

directions, which form the columns of the matrix D.

The search step consists of selecting a finite number
of points on M (k) and evaluating the objective func-
tion at each one. If any of those points improves the

objective function value, the point with the best value
becomes the new incumbent. The search step can em-
ploy any strategy in selecting points, and may even be

omitted, if desired. If none of the points selected in
the search step are better than the incumbent, then
the algorithm proceeds to the poll step. The poll step

consists of evaluating the objective function at all the
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points that are immediate neighbours of the incumbent

point on the mesh M (k). These points are given by:{
y
(k)
j

}
=

{
x(k) +∆(k)dj | ∀ dj ∈ D

}
.

If the poll step finds one or more points with a bet-
ter objective function value than the incumbent, then

the point with the best value becomes the new incum-
bent. Optionally, ∆(k) may be increased for the next
iteration. If the poll step is unsuccessful, then ∆(k) is

reduced and another iteration begins, using the same in-
cumbent point as before. The algorithm is considered to
have converged once ∆(k) is reduced beyond a specified

threshold, which indicates that the current point is at
least close to a local optimum. In fact, provided that the
objective function is continuously differentiable, GPS is

guaranteed to converge to a local optimum, at least to
mesh precision [21]. Like PSO, GPS is highly paralleliz-
able because the function evaluations required by the

search and poll steps can be performed independently
of one another.

3.3 Handling of bound and general constraints

Broadly speaking, there can exist two types of con-
straints on the optimization vector x: bound and general
constraints. Bound constraints are simple component-

wise inequality constraints of the form

xl ≤ x ≤ xu,

where xl and xu are the lower and upper bounds on x,
respectively. In the context of a reservoir optimization
problem, these could be the minimum and maximum

grid indices (for well placement) or upper and lower
limits on the control parameters.

Both PSO and GPS can easily incorporate bound

constraints. In PSO, any particles that travel outside
of the bounds are projected back onto the boundary of
search space. For instance, if component d of particle

i’s position exceeds the maximum value xu
d after being

updated, then the particle’s position and velocity are
modified as follows:

xi,d = xu
d , vi,d = 0

The velocity component is set to zero to ensure that the

particle does not continue to travel in the direction that
led it out of bounds. Bound constraints are treated sim-
ilarly in GPS; namely, points which lie outside of search

space are projected back onto the boundary during the
poll step [21].

General constraints refer to any constraints on the

input parameters other than simple bound constraints.

Input that violates general constraints (which we refer

to as infeasible input) can sometimes be identified prior
to evaluating the objective function; for instance, if the
input specifies placing two wells at the same location.

Other constraints, such as an upper limit on well flow
rates, require running the reservoir simulator to deter-
mine if they are satisfied.

A simple mechanism for PSO to handle general con-

straints is to allow particles to move to infeasible po-
sitions, but not store these positions in the particle’s
memory [16]. Thus, particles can explore search space

freely, but are only attracted to positions that are fea-
sible, in addition to providing good objective function
values. This strategy requires that every particle be ini-

tialized to a feasible position, so that the particle always
has at least one feasible position stored in its history. To
handle general constraints in GPS, one can simply ig-

nore any infeasible points during polling, and thus only
accept feasible points which also reduce the objective
function value. This approach is not ideal for general-

purpose optimization, as it may prevent the algorithm
from traveling through the infeasible region to find the
true optimum; alternative approaches such as filtering

are recommended instead [2,10]. We found that the first
approach was sufficient for this study, however, possi-
bly because GPS was used in conjunction with PSO,

rather than as a stand-alone optimizer.

3.4 Hybrid algorithm

An optimization algorithm that hybridizes PSO and
GPS has previously been proposed in [34,33]. This al-
gorithm, denoted PSwarm, is essentially a GPS algo-

rithm that uses PSO as the search step. Thus, the algo-
rithm behaves exactly like PSO for as long as the search
step continues to find points that improve the objec-

tive function value. When this step fails to improve the
solution, polling takes place around the current best
position found. If the poll step finds a better solution,

the current best position is updated and a new itera-
tion of PSO begins; otherwise, the polling stencil size is
reduced. The algorithm proceeds until the convergence

criteria for both PSO and GPS are met; i.e., the veloc-
ity of the particles is sufficiently small, and the polling
stencil size is reduced beyond a specified threshold.

In this paper we have made the following modifica-

tions to PSwarm in order to adapt it to the simultane-
ous well placement and control problem:

1. We have extended the PSO and GPS components of
the algorithm to handle general constraints, as de-
scribed in the previous section. The PSwarm algo-

rithm as described in [33] handles linear constraints,
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but not general constraints of the types seen in this

problem.
2. We have replaced the global communication topol-

ogy used by the search step of PSwarm with the ran-

dom variable neighbourhood topology. Each parti-
cle’s communication neighbourhood consists of itself
and two other particles, which are selected randomly

at each iteration.
3. We have chosen to skew the sampling of control pa-

rameters when initializing the swarm. PSO is typi-

cally initialized by assigning a position sampled uni-
formly within the search space to each particle in the
swarm. In the context of this problem, however, we

can be reasonably certain that for production wells,
BHP values towards the low end of the range will
tend to increase oil production, while BHP values

towards the high end of the range will do the same
for injection wells. We take advantage of this a pri-
ori knowledge in order to accelerate the convergence
of the algorithm.

4. We have investigated the effect of allowing the search
step (PSO) to fail several times consecutively be-
fore a poll step is performed. As a result of the

high cost of function evaluations in our problem, the
poll step is more computationally expensive than in
many other optimization problems. Performing the

poll step less frequently may allow us to reduce the
computational cost of the algorithm.

5. We have investigated the use of specifically selected

direction vectors D to use during the poll step. The
standard choice of GPS search directions Eq. (1)
are fairly incremental, particularly with respect to

control parameters, since each variable corresponds
only to the BHP value at a single well for a single
time interval. We may be able to achieve a larger

improvement in a single step by choosing search di-
rections that raise or lower BHP in multiple years.
The specific choice of search directions is discussed

in the next section.

4 Experiments

We now describe several experiments that were used
to test the performance of the different optimization
approaches. All experiments were performed using the

Matlab Reservoir Simulation Toolbox (MRST) [24,32]
as the reservoir simulator. MRST is an open-source sim-
ulator implemented in Matlab, which includes routines

for processing and visualizing unstructured grids, as
well as several solvers for single and two-phase flow.
The flow and transport equations are solved in alter-

nating steps in order to determine the phase pressures,

Table 1 Economic parameters used in all experiments.

Parameter Value

co $80/bbl
cw,disp $12/bbl
cw,inj $8/bbl

r 10% or 0%
Max water cut 78%

flow rates and saturations at every time point. Model-
ing of simple vertical and horizontal wells is provided
using the Peaceman model [30].

The objective function we used in these experiments

was the net present value (NPV) over the entire pro-
duction period [0, T ]. The NPV was computed as in [3],
with

NPV (x) =

∫ T

0

{ ∑
n∈prod

[
coq

−
n,o(t)− cw,dispq

−
n,w(t)

]
−

∑
n∈inj

cw,injq
+
n,w(t)

}
(1 + r)−t dt.

(2)

The parameters co, cw,disp and cw,inj represent the price
per barrel of produced oil, disposal cost per barrel of
produced water, and cost per barrel of injected water,

respectively. The functions q−n,o(t) and q−n,w(t) are the
production rates (barrels/day) of oil and water, respec-
tively, at well n, while q+n,w(t) is the water injection rate

at well n. These rates are implicitly functions of the
optimization vector x, since they depend on the pre-
scribed BHPs. The yearly interest rate is specified by

r. We used the parameter values provided in Table 1
for all experiments. This choice of values meant that
production became unprofitable once the water cut at

a well reached roughly 78%. This threshold value is of-
ten as high as 90 or 95% in practice; we chose a lower
value to ensure that shutting in a well was the optimal

choice in some experiments.

Experiment 1

The first experiment used a simple 2D reservoir model,
consisting of 50×60 grid cells measuring 32×32×10 m
(total field size: 1600×1920×10m). The permeability

and porosity fields (Fig. 1) were taken from the third
layer of the SPE10 Benchmark model. The reservoir was
initially saturated uniformly with an 80/20 mix of oil to

water. The optimization problem was to place two in-
jection and two production wells in the reservoir, all of
which were subject to control via BHP. The production

period was 10 years, and the BHP at each well could
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Fig. 1 Permeability and porosity fields used in first experi-
ment. Permeability values are shown on a logarithmic scale.

Table 2 Parameters (top) and constraints (bottom) used in
Experiment 1.

Parameter Value

Grid cell dimensions 32 × 32 × 10 m
Fluid viscosities µo and µw 2.4 and 1.0 cp
Fluid densities ρo and ρw 835 and 1000 kg/m3

Initial reservoir pressure 260 bars
Injector BHP range 275–450 bars

Producer BHP range 100–250 bars
Production period 10 years

Control interval 2 years

Maximum water injection rate 1000 m3/day
Maximum fluid production rate 1000 m3/day

Minimum distance between wells 250 m

be altered every 2 years. Thus, there were 28 variables

being considered in total (2 positional variables and 5
control variables per well). The experimental parame-
ters are summarized in Table 2.

We considered three variations of the well placement

and control problem:

– Case 1A: no constraints on injection and production
rates; discounting rate r of 10%.

– Case 1B: no constraints on injection and production

rates; no discounting.
– Case 1C: maximum flow constraints on the injection

and liquid production rates as described in Table 2;

discounting rate r of 10%.

The goal of considering these three subproblems was
to see how the different conditions affected the optimal

solutions to the problem, as well as the effectiveness
of different optimization approaches. Three main op-
timization approaches were applied to each problem.

The fact that every optimization approach that we con-
sidered included a stochastic component necessitated
performing multiple runs of each approach, in order

to assess the average performance. Each approach was,
therefore, applied 20 times to the appropriate problems.

The first approach was to apply PSO to the vector
of all decision variables (well locations and control pa-
rameters) simultaneously. PSO was run for up to 250

iterations, or until the average velocity of the particle

swarm decreased below a certain threshold. We subse-

quently used GPS to poll repeatedly around the best
solution found by each run of PSO, in order to see if
it could be improved further. This second step was not

considered to be part of the optimization approach, but
rather as a test to see how close the solutions found by
PSO were to being locally optimal.

The second approach was to apply 200 iterations of

the hybrid algorithm described in the previous section.
The following three variations of the hybrid algorithm
were applied:

– hybrid-1: Polling was performed every time the

PSO step failed to improve the solution. We used
the standard search directions (see Eq. (1)).

– hybrid-5: Polling was performed only after PSO

failed five times consecutively. We used the standard
search directions.

– hybrid-5S: Polling was performed only after PSO

failed five times consecutively. We used special search
directions.

The special search directions used by the hybrid-5S
approach for this problem are illustrated in Fig. 2. Ev-

ery row of the matrix shown corresponds to one of the
28 variables, and every column represents one search
direction. Consider the first 14 directions shown, which

act on the first seven variables only. These variables
correspond to the two positional parameters (x and y
co-ordinates) and 5 control parameters for the first in-

jector. The key difference from the standard search di-
rections is that we allow the BHP of the injector to be
raised for more than one time period simultaneously.

The BHP of the injector can only be lowered, however,
for one time period at a time. The rationale is that
raising the BHP in an injector increases flow, and is

thus more likely to raise oil production than lowering
the BHP. For producers, the opposite is true, and so in
that case we allow the BHP to be lowered for multiple

time periods simultaneously.

In all the hybrid approaches, we scaled the direc-
tions corresponding to positional parameters indepen-
dently of the control variables, so that the x or y co-

ordinates of a well were only ever perturbed by one grid
space during polling. The idea is that the optimization
of the well positions is primarily achieved by the PSO

step. Well positions should only need to be perturbed
slightly during the poll step, which is aimed mainly at
optimizing the controls.

The third approach we considered was to decouple

the placement and control components of the problem.
The first step of this approach consisted of treating the
problem strictly as a well placement problem, by as-

suming that the producers were held at some fixed BHP
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Fig. 2 Specialized search directions used by the hybrid-5S

approach for Experiment 1. A red entry corresponds to a
value of -1, and a black entry to +1. Dashed horizontal lines
separate variables corresponding to each of the the four wells.

throughout the production period. We used up to 200
iterations of PSO to determine the optimal well po-
sitions under this assumption. Once optimal positions

were found, we allowed the controls to vary year-by-
year and optimized the control using GPS with stan-
dard search directions. The positions could also be in-

crementally adjusted in this second step. This second
step ensured that the solutions found by the decoupled
approach were locally optimal. The advantage of the

decoupled approach is that it splits the problem into
two smaller problems which are easier to solve than
the full problem. A potential disadvantage is that we

may find suboptimal solutions by not optimizing over
all variables at the same time.

Using the decoupled approach requires defining fixed

BHP values to assign to the injection and production
wells during the first (well placement) phase of the ap-
proach. Our default choice was to use the maximum

BHP value (450 bars) for injectors, and the minimum
BHP value (100 bars) for producers. For Case 1C, where
there were maximum constraints on the injection and

production rates, we also tried a second variant where
a BHP value of 425 bars was used for injectors, and
125 bars for producers. The rationale for this modifi-

cation, which we denote by decoupled-M, is that using
the maximum and minimum BHP values when placing
wells will produce the highest flow rates possible for a

given configuration as wells. If these flow rates exceed
the constraints, then these configurations will be con-
sidered as infeasible during the first stage of optimiza-

tion, even if they could be made feasible by adjusting
the BHP values. The net effect is that the well positions
found in the first phase may tend to place wells farther

apart than necessary, in order to satisfy the flow con-
straints. Thus, by choosing BHP values that are slightly
below or above the maximum and minimum values, re-

spectively, we may be able to find better positions.

Fig. 3 Left side: reservoir geometry of the Norne field. Log
of permeability (mD) in the x− y directions is shown. Right
side: Projection of invalid vertical well locations in the (x, y)
plane onto the nearest valid co-ordinates.

Experiment 2

The second experiment used a reservoir model provided
by the Norwegian University of Science and Technol-
ogy (NTNU) as part of the Norne benchmark case [26].

The full model of the Norne field is a 46×112×22 grid
consisting of 44,927 active cells. The reservoir model is
subdivided into four different formations from top to

base, denoted Garn, Ile, Tofte and Tilje. In order to
reduce simulation time, we extracted the seven layers
corresponding to the Ile formation to provide a smaller

reservoir model, consisting of 15,004 active cells. The
porosity of the reservoir ranged between 25–30% and
the permeability from 20 to 2500 mD. The reservoir

geometry is shown in Fig. 3 (left image). The initial
saturation was assumed to be 80% oil and 20% water,
as in Experiment 1.

The reservoir’s irregular shape meant that wells whose
positional co-ordinates fell within the bounds prescribed

by the grid might not correspond to valid locations in
the reservoir. Thus, any positional co-ordinates in the
(x, y) plane which did not correspond to a valid reser-

voir location were projected onto the nearest active cell
during the optimization. This process is illustrated in
Fig. 3 (right image). Black cells indicate grid locations
which pass through at least one active cell in the z-

direction. The three red × symbols indicate positions
that are invalid, which were projected onto the nearest
valid location (indicated by the green × symbols).

The goal of Experiment 2 was to test the optimiza-
tion approach on a more complex simulation with a

larger number of variables. The experiment consisted
of placing eleven wells (four injectors, seven producers)
in this field, and optimizing production over a 15-year

time period. The experimental parameters are summa-
rized in Table 3. As in Experiment 1, there were 2 po-
sitional and 5 control parameters associated with each

well, meaning that there were 77 variables in total for
this experiment. The same economic parameters were
used as in Experiment 1 (see Table 1). For this experi-

ment, only two cases were considered; Case 2A, where



8 T.D. Humphries, R.D. Haynes and L.A. James

Table 3 Parameters (top) and constraints (bottom) used in
Experiment 2.

Parameter Value

Fluid viscosities µo and µw 2.4 and 1.0 cp
Fluid densities ρo and ρw 835 and 1000 kg/m3

Initial reservoir pressure 340 bars
Injector BHP range 350–500 bars

Producer BHP range 150–325 bars
Production period 15 years

Control interval 3 years

Maximum water injection rate 5000 m3/day
Maximum fluid production rate 3000 m3/day

there were no constraints on production, and Case 2B,
which used the constraints given at the bottom of Ta-
ble 3. A discounting rate of 10% was used for both

cases.

Based on the results of Experiment 1, we limited

the number of optimization approaches that we inves-
tigated to the two that were found to be most effective:
hybrid-5S and one of the two decoupled approaches.

For Case 2A, we used the decoupled approach where
the well BHPs were held at their max and min values,
while for Case 2B, we used the decoupled-M modifi-

cation with injectors held at a BHP of 450 bars and
producers held at 200 bars. Owing to the high compu-
tational cost of this experiment, we performed only five

runs of each optimization approach. The hybrid algo-
rithm was run for up to 300 iterations per run, while
the decoupled approach involved up to 250 iterations

of PSO during the well placement phase, followed by
running GPS until convergence.

5 Results

The results of both experiments are shown in Table 4.

The section entitled “NPV” shows the average, best
and worst NPV values over the multiple runs of each
approach that were performed for each test case (twenty

runs for Experiment 1, and five runs for Experiment 2).
The section entitled “reliability” quantifies the reliabil-
ity of each approach by indicating how often the solu-

tions found were within 10% and 5% of the best solu-
tion found overall. A reliability value of 0.55 in the 10%
column, for instance, indicates that 11 out of the 20 so-

lutions found by that method had an NPV within 10%
of the best overall. The section entitled “after GPS”
shows the average NPV after the GPS algorithm was

applied to each solution found by PSO and the hy-
brid algorithm, as well as the percentage improvement
(∆%) compared to the original average. These values

indicate how close, on average, the solutions found by

each algorithm were to being locally optimal. These

values were not calculated for any of the decoupled ap-
proaches, since the solutions found by those approaches
were guaranteed to be locally optimal. Plots of the

mean convergence of the respective algorithms versus
the number of function evaluations (fevals) for both ex-
periments are shown in Fig. 4.

6 Discussion

Experiment 1

Some general observations can be drawn from the re-
sults shown in Table 4. First, the decoupled approach
was more reliable than the simultaneous approaches

(i.e. the PSO and hybrid algorithms). Every solution
found by the decoupled method in all three test cases
was within 10% of the best overall, while the hybrid

approaches typically scored between 0.8 and 0.95, and
PSO’s reliability was as low as 0.55 in two out of the
three test cases. The decoupled approach also gave the

most results within 5% of the best overall for test cases
1B and 1C. On average, the NPV of solutions found
by the decoupled approach was better than the other

methods for Cases 1B and 1C. This result indicates
that reducing the size of the problem by focusing on
well placement first, while assuming that wells are held

at or near the extreme BHP values, may help to ensure
that one obtains a “good” solution. The reason may be
that this approach allows us to explore a number of well

placement possibilities while holding the controls at a
configuration that is generally likely to result in higher
production. In the simultaneous approaches, good well

positions may be missed by the algorithm if the well
controls are poorly configured. It is worth noting, how-
ever, that for Case 1A, the decoupled approach had the

poorest performance of any of the methods, in terms of
the best solution found.

Applying standard PSO to the problem gave the

worst results of any of the methods; it had by far the
lowest reliability ratings and average NPV for Cases 1A
and 1C. For Case 1B, its performance was comparable

to that of the hybrid approaches, but worse than the
decoupled approach. This would seem to indicate that a
purely stochastic approach is insufficient in addressing

the combined well placement and well control problem.
The “After GPS” column of Table 4 indicates that the
solutions found by PSO were usually not even locally

optimal and could be improved significantly (from be-
tween 2 to 5%, on average) by applying GPS subse-
quently. The solutions found by the hybrid algorithms,

on the other hand, tended to be nearly locally optimal
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Table 4 Results of first and second experiments. The best results for each experiment are highlighted in bold font. Columns
headed “Field”, “Constr.” and “Discount.” are included to differentiate the experiments with respect to the field used, presence
or absence of maximum constraints on flow, and discounting rate used to calculate NPV, respectively. The constraints for Cases
1C and 2B are described in Tables 2 and 3, respectively.

NPV Reliability After GPS
Case Field Constr. Discount. Algorithm Avg. Best Worst 10% 5% Avg. ∆%

($×108) ($×108) ($×108) ($×108)

PSO 5.93 6.38 5.55 0.55 0.20 6.19 4.45
hybrid-1 6.17 6.51 5.77 0.90 0.50 6.18 0.07

1A SPE10 no 10% hybrid-5 6.15 6.44 5.76 0.85 0.50 6.18 0.56
hybrid-5S 6.12 6.46 5.79 0.85 0.30 6.15 0.40
decoupled 6.15 6.30 5.97 1.00 0.20 — —

PSO 8.18 8.57 7.50 0.90 0.50 8.35 2.22
hybrid-1 8.23 8.63 7.49 0.80 0.60 8.25 0.21

1B SPE10 no 0% hybrid-5 8.15 8.59 7.69 0.90 0.45 8.20 0.56
hybrid-5S 8.23 8.59 7.66 0.95 0.60 8.25 0.27
decoupled 8.35 8.64 8.04 1.00 0.65 — —

PSO 5.58 6.06 5.05 0.50 0.15 5.87 5.41
hybrid-1 5.74 6.02 5.35 0.85 0.25 5.75 0.11
hybrid-5 5.73 6.00 5.51 0.95 0.25 5.76 0.45

1C SPE10 yes 10% hybrid-5S 5.78 6.15 5.44 0.80 0.35 5.88 1.70
decoupled 5.89 6.05 5.63 1.00 0.50 — —
decoupled-M 5.99 6.14 5.80 1.00 0.80 — —

2A Norne no 10% hybrid-5S 112 117 109 1.00 0.40 113 0.22
decoupled 113 117 110 1.00 0.80 — —

2B Norne yes 10% hybrid-5S 97.2 98.4 95.9 0.00 0.00 97.6 0.35
decoupled-M 106 112 102 1.00 0.60 — —

and were typically only improved slightly by this sub-
sequent application of GPS.

Case 1C was the only test case of Experiment 1
to feature constraints on the injection and production
rates. In this case we found that the decoupled-M ap-

proach outperformed the decoupled approach in every
measure of performance. This would seem to validate
our hypothesis that for constrained problems, choos-

ing BHP values that are slightly below or above the
maximum and minimum values when placing wells is
preferable to using the maximum and minimum values

during the well placement phase. The convergence plot
(Fig. 4, rightmost plot) shows that the NPVs of the
solutions found by decoupled-M are much lower than

those found by decoupled during the well placement
phase. During the control optimization phase, however,
the GPS algorithm was able to significantly improve the

solutions, to the point that they surpass those found
by decoupled. Examining the best solutions found by
either approach for this test case found that the place-

ment of wells was similar, but that the decoupled-M

approach was able to place wells in regions of higher
permeability, which improved production by reaching

the maximum flow rate more quickly. This placement

of wells was not found by the decoupled approach since

it caused a constraint violation when BHPs were held
fixed at the extreme values.

In terms of the solutions found by each method,

the three variants of the hybrid approach (hybrid-1,
hybrid-5 and hybrid-5S) were fairly comparable. Across
the three test cases, none of the three were markedly

more reliable or provided better NPVs, on average.
The convergence plots shown in Fig. 4 do indicate that
generally speaking, hybrid-1 required more function

evaluations to arrive at a comparable solution to the
other two approaches. This indicates that the increased
polling frequency of this method increased the com-

putational cost of the method without significantly im-
proving its performance. Between hybrid-5 and hybrid-5S,
we observed the greatest difference in Case 1C, where

the hybrid-5Smethod tended to converge more rapidly.
This method also had somewhat better performance for
Case 1B, while the performance of these two approaches

for Case 1A was essentially the same. Allowing the pat-
tern search to raise or lower BHPs over multiple years
at a time did therefore accelerate the convergence of

the algorithm in two out of the three test cases.
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1A (No constraint, r = 10%) 1B (No constraint, r = 0%) 1C (Max flow 1000 m3/day, r = 10%)
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Fig. 4 Plots showing the convergence of different optimization approaches for the three problems of Experiment 1 and the
two problems considered in Experiment 2. The best NPV found as a function of the number of reservoir simulations (fevals)
is shown, averaged over all runs for each approach. Note that the scale of the y-axis differs between plots.

Case 1A (no constraint, r = 10%)

Best NPV = $6.51×108

Fig. 5 Best solution found for Case 1A. The top left plot
shows positions of the four wells overlaid on the log-perm
field, with ◦ denoting a producer, and × denoting an injec-
tor. The two plots on the bottom show the control parameters
(BHPs) for injectors and producers. The production curves
for the two producers are shown in the top right plot, with
solid lines indicating oil production and dashed lines indicat-
ing water production.

Case 1B (no constraint, r = 0%)

Best NPV = $8.64×108

Fig. 6 Best solution found for Case 1B. Symbols used are the
same as for Fig. 5.

The best solutions found overall for each test case
are shown in Figures 5 to 7. Qualitatively, we can see

that the best solution found for Case 1A is quite differ-
ent from those found for Cases 1B and 1C, which are
fairly similar to one another. In Case 1A, since there

is cash discounting of 10% and no limit on flow rate,
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Case 1C (Max flow 1000 m3/day, r = 10%)

Best NPV = $6.15×108

Fig. 7 Best solution found for Case 1C. Symbols used are
the same as for Fig. 5.

there is a heavy incentive to produce large amounts
of oil quickly. Furthermore, increased water production
in later years is not strongly penalized. Hence, we ob-

tain an optimal solution in which wells are placed more
closely together than in the other two cases, and where
water production rates are quite high at later produc-

tion times. We note as well that the BHP in one of the
injectors is lowered to the minimum level after 2 years
and held there for much of the production cycle; this is

because the water front from this injector arrives at the
two producers quickly, and so the BHP is subsequently
lowered to allow the front from the other injector to

arrive before the producers are flooded. One producer
is eventually shut in after only 8 years, once the water
cut reaches the 78% threshhold.

Since Case 1B does not include any cash discount-
ing, the objective is now to maximize the total amount

of oil produced over the time period of 10 years, while
minimizing the amount of water produced. As a result,
the injectors are placed farther away from the produc-

ers, and the production rates are slower and steadier
than in Case 1A. The optimal controls in this case are
essentially to hold the injector and producer BHPs at

their maximum and minimum values, respectively. For
Case 1C, the positioning of the wells is similar, although
the first injector is placed in a region of somewhat

higher permeability. This allows for a slightly higher
overall initial production rate, which is important since
Case 1C involves discounting. Since there is an upper

limit of 1000 m3/day on the flow rate at each well, the
BHP at the first injector must be eventually lowered in
order to maintain a flow rate below the maximum. The

flow constraint is also why the wells are placed farther

apart than they are in Case 1A. Although both Cases

1A and 1C have the same discounting rate, the flow
constraint means that we cannot produce as much oil
early on in Case 1C compared to Case 1A. Therefore

it is advantageous to place the wells farther apart to
delay water production.

The differences between these solutions give some
insight into the relative performances of our optimiza-
tion approaches. For Case 1A, we found that although

it was more reliable, the decoupled approach was not
able to find solutions that were as good as the best ones
found by the hybrid and PSO algorithms. This may be

attributable to the fact that the optimal solutions for
this test case typically involved placing the wells close
together and in regions of high permeability, which re-

quired varying the BHPs of injectors and producers in
order to prevent premature water flooding. Thus, the
positions found during the placement phase of the de-

coupled algorithm, which assumes that wells are held at
the extreme BHP values during the entire production
period, were not the best positions for this particular

problem. In Cases 1B and 1C, where the optimal solu-
tions did not require varying the control parameters to
such a great degree, the performance of the decoupled

approach was better.

Experiment 2

The results presented in Table 4 indicate that for the

unconstrained problem (Case 2A), the performance of
the hybrid-5S and decoupled algorithms was compa-
rable in terms of the solutions to which they converged.

The decoupled algorithm did score slightly better in
terms of reliability, however, and the convergence plot
for this test case (Fig. 4) indicates that its convergence

was quicker as well. The overall best solution found is
shown in Fig. 8. We see again that when a discounting
rate of 10% is imposed and there are no constraints on

production, the best solution favours producing large
amounts of oil early on, at the cost of increased water
production in later years.

The results for Case 2B, which featured a maxi-

mum flow constraint of 5000 m3/day on the four injec-
tors and 3000 m3/day on the seven producers, clearly
indicate that the decoupled-M approach used for this

test case outperformed the hybrid-5S algorithm. The
convergence plot for this test case indicates that dur-
ing the well placement phase of the decoupled-M al-

gorithm, its performance lags slightly behind that of
hybrid-5S, because the BHP values for injectors and
producers are held fixed at 450 and 200 bars, respec-

tively. The hybrid-5S algorithm is able to explore the
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full range of BHP values. During the control optimiza-

tion phase, however, the decoupled-M algorithm is able
to explore the full range of BHP values as well, and
finds significantly better solutions than those found by

hybrid-5S.
The overall best solution found for Case 2B is shown

in Fig. 9. In this case, the incentive to produce more

oil early on is counterbalanced by the fact that one
can only produce a certain amount of oil per day, due
to the maximum flow contraints. Thus we see that in

the best solution for Case 2B, the producers tend to
be placed farther away from injectors than in the best
solution for Case 2A. It is also apparent that the op-

timal control scheme in the best solution for Case 2B
involves holding injectors fairly close to the maximum
BHP value, and producers close to the minimum BHP

value. This indicates why the decoupled-M approach
was more successful for this test case; since the optimal
control scheme is fairly simple, maximizing production
for this test case is driven primarily by finding good

well locations. Thus, the decoupled-M approach bene-
fits by reducing the size of the problem initially (from
77 to 22 variables) and focusing on well placement. For

Case 2A, we see that the optimal solution involves hold-
ing several producers at BHP values more towards the
middle and even upper values of the permitted range.

Thus, well control plays more of an impact in this test
case, and the benefit that the decoupled approach gains
by focusing on well placement is offset somewhat by the

fact that the best solutions may not have simple control
schemes.

7 Conclusions

We have examined several approaches to simultaneous
optimization of well placement and control, which com-
bine particle swarm optimization (PSO) with pattern

search (GPS). We focused on two general approaches:
a hybrid algorithm combining PSO and GPS (based on
the previously proposed PSwarm algorithm [33]), which

acted on all variables simultanously, and a decoupled
method where PSO is applied initially to a well place-
ment problem (assuming a fixed control scheme), and

GPS is applied to the controls afterwards. These ap-
proaches were applied to a total of five test cases, with
some variations of the different approaches being tested

as well.
Overall, we find that there may be benefits to de-

coupling the well placement and control aspects of the

problem. In three out of five experiments, the decou-
pled algorithm found better solutions on average than
any of the approaches that attempted to optimize over

all variables simultaneously. In one case (denoted Case

Case 2A (no constraints, r = 10%)
Best NPV = $1.18×1010

Fig. 8 Best solution found for Case 2A. Plot meanings are
the same as for Fig. 5. Note that several lines overlap in the
plots of the BHP values.

Case 2B (max flow 5000/3000 m3/day, r = 10%)
Best NPV = $1.12×1010

Fig. 9 Best solution found for Case 2B. Plot meanings are
the same as for Fig. 5. Note that several lines overlap in the
plots of the BHP values.

2B), every one of the five solutions found by the de-

coupled algorithm was better than any found by the
hybrid algorithm. We hypothesize that this is due to
the fact that during the well placement phase, the fixed

control scheme assumed by the decoupled approach is
one that is conducive to finding good solutions. Thus,
by reducing the size of the problem and focusing on

well placement, the size of the solution space is re-
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duced, and a more thorough exploration of the space

is possible. Although the solution space of the problem
when all variables are considered simultaneously con-
tains any solution that our decoupled approach could

possibly find, it is harder to find such solutions in the
larger space. This finding is similar to results published
in some papers on optimal placement of large numbers

of wells, where it was possible to find better solutions
by initially placing wells according to some pattern [29,
28].

One caveat is that the decoupled approach is sensi-
tive to the control scheme that is assumed during the
initial well placement phase. In our experiments, we

found in one case (1A) that best solution found by the
decoupled approach was not as good as those found by
any of the simultaneous approaches; the optimal solu-

tions found for this case tended to require raising and
lowering BHPs significantly in order to avoid premature
water flooding. In another test case (1C), we compared
two variants of the decoupled approach and found that

the performance of the algorithm could be improved by
holding BHP values closer to the middle of the permit-
ted range, rather than at the extremes. Thus, if one

employs a decoupled approach, some thought should
be given to the assumed control scheme during the well
placement phase. It is also likely that the effectiveness

of the decoupled approach will suffer for cases where
the control scheme is expected to require varying the
control parameters significantly.

There are many avenues for further exploration of
this problem. These include modeling more complicated
well types such as horizontal, deviated or multilateral

wells; incorporating other decision variables in addition
to well location and control, such as the number and
type of wells to drill, and scheduling of drilling oper-

ations; and finally, modeling of geological uncertainty.
Taking this considerations into account will also likely
require investigating new optimization techniques to ac-

count for the increasing complexity of the problem.
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