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Superiorized polyenergetic reconstruction algorithm
for reduction of metal artifacts in CT images

T. Humphries1 and A. Gibali2

Abstract—Artifacts caused by metal objects such as dental
fillings, hip implants, and coronary stents are a significant
source of error in many CT scans. These artifacts are caused
by numerous factors, including beam hardening, noise, photon
starvation, partial volume and exponential edge gradient effects,
and scatter. We propose an iterative algorithm for CT image
reconstruction which reduces these artifacts. The algorithm does
so by (1) accurately modeling polyenergetic X-ray data, (2)
statistically weighting the X-ray data to reduce the effect of
noisy measurements, and (3) incorporating total variation (TV)
as a secondary objective. The recently proposed superiorization
methodology provides a solid mathematical foundation for our
approach. Our numerical experiments indicate that all three of
these features of the algorithm play an important role in reducing
metal artifacts.

I. INTRODUCTION

Metal artifacts are caused by numerous factors, including
beam hardening, noise, photon starvation, partial volume and
exponential edge gradient effects (EEGE), and scatter [1].
Typical artifacts include dark streaking between regions con-
taining metal, as well as thin, alternating dark and light streaks
emanating from the metal regions. The former are caused
primarily by beam hardening and photon starvation, while the
latter are due mainly to noise and EEGE.

Fig. 1 illustrates these different artifacts in a numerical
phantom experiment. The upper right image was reconstructed
from noiseless, monoenergetic data using the simultaneous
algebraic reconstruction technique (SART). We see that even
in this ideal case there are streaking artifacts around the
metal objects caused by geometric inconsistency between the
data and the forward model used by SART. There are also
some dark shadows around the metal objects, although these
artifacts are diminished by further iterations of the algorithm.
The bottom left image shows that when the X-ray data are
polyenergetic, there are severe streaking artifacts between
high-attenuation materials (bone and metal) due to beam
hardening. The addition of noise to the data (bottom right
image) produces even more severe streaking, which makes it
impossible to see the central features of the object.

To address these different sources of error, we propose an
iterative algorithm for CT image reconstruction which reduces
metal artifacts. The algorithm does so by (1) accurately
modeling polyenergetic X-ray data, (2) statistically weighting
the X-ray data to reduce the effect of noisy measurements,
and (3) incorporating total variation (TV) as a secondary
objective. Our numerical experiments indicate that all three
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Fig. 1. Images of phantom containing metal objects, reconstructed using 32
iterations of SART with 12 subsets. Top left: True phantom at reference energy
of 70 keV. Top right: Image reconstructed from noiseless monoenergetic data.
Bottom left: Image reconstructed from noiseless polyenergetic data that has
been soft tissue corrected. Bottom right: Image reconstructed from noisy
polyenergetic soft tissue corrected data. All images are displayed on greyscale
window [0.18, 0.23] cm−1 to show low-contrast features.

of these features of the algorithm play an important role in
reducing metal artifacts. The recently proposed superiorization
methodology [2] provides a solid mathematical foundation for
our approach.

II. METHODOLOGY

A. Mathematical model

We let µ(y, E) represent the distribution of attenuation as a
function of position y and energy, E. A polyenergetic X-ray
measurement along the line j is modeled as:

Îj =

∫
S(E) exp

(
−
∫
j

µ(y, E) dy

)
dE, (1)

where S(E) is the spectrum of the beam as a function of
energy. For monoenergetic data, we have S(E) = I0δ(E−E0)
for some energy E0 and total intensity I0, and (1) can be
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linearized as

− ln
(
Îj/I0

)
=

∫
j

µ(y, E0) dy (2)

To reconstruct µ iteratively, we discretize it as an n×n pixel
image. Assuming we collect a total of J measurements, and
letting K = n2, Eq. (2) can be represented as

b = Ax, (3)

where x ∈ RK represents the image of µ, b ∈ RJ is the
log-transformed projection data, and A ∈ RJ×K is the system
matrix.

Iterative methods such as the simultaneous algebraic recon-
struction technique (SART) can be applied to solve (3). In the
polyenergetic case, SART can be applied to log-transformed
data in the same way, but the inconsistency of (1) with the
linear model produces beam hardening artifacts. Soft tissue
correction may be applied in this case, but this is only effective
in reducing cupping artifacts.

Noise is modeled by drawing each polyenergetic measure-
ment Ij from a Poisson distribution with mean equal to Îj . The
signal-to-noise ratio (SNR) of measurement Ij decreases with
Îj , i.e. if the beam experiences more attenuation along the line
j. Photon starvation arises when Îj is so small that Ij may be
zero. This corresponds to “infinite” attenuation along the line
j, which cannot be modeled in Eq. (3). In our experiments
we set Ij = 1 in such cases, i.e., a single photon count. This
avoids the issue of singularity, but the altered data do not
accurately reflect the object attenuation along that line.

B. Numerical methods

BI-SART: We first introduce a block-iterative variant of
SART, denoted BI-SART, as the basic algorithm. Follow-
ing [3], we define the following two diagonal matrices D and
M :

D ∈ RK×K , Dkk =
1

ζk
, ζk =

m∑
i=1

|aik| , k = 1 . . .K

M ∈ RJ×J , Mjj =
1

ηj
, ηj =

n∑
i=1

|aji| , j = 1 . . . J

That is, the entries of D are formed by reciprocals of the
column sums of A, while the entries of M are formed by row
sums. We also partition the measurements corresponding to
each angular view into Nw subsets, indexed by w. This block-
iterative approach (also known as ordered subsets) accelerates
the convergence of the algorithm. We then define BI-SART as

x(i+1) = QBNw
. . .B2B1(x

(i)),where (4)

Bw(x) = x−Dw(Aw)
TMw [Awx− bw] , (5)

and (Qx)k = max{0, xj}, k ∈ [1,K].

The subscript w indicates that only rows of A and b corre-
sponding to the measurements in w are used, including when
forming the matrices Dw and Mw. The operator Q ensures
non-negativity of the entries of x. We now consider three
potential enhancements to this basic algorithm.

1) Polyenergetic forward model: A polyenergetic forward
projection is achieved using linear interpolation between tabu-
lated attenuation curves for known basis materials such as soft
tissue, bone, and metal [4]. This algorithm, which we denote
as BI-pSART, has the same form as BI-SART (4), but with

Bw(x) = x−Dw(Aw)
TMw [Pw(x)− bw] , where (6)

[P(x)]j = − ln

[
Nh∑
h=1

Sh exp (−ajµ(x, Eh))

]/Nh∑
h=1

Sh, and

(7)

µ(xk, E) =
[µm+1(E0)− xk]µm(E) + [xk − µm(E0)]µm+1(E)

µm+1(E0)− µm(E0)
.

(8)

Here Sh represents a discretization of the beam spectrum
S(E) into Nh energy levels, and aj is the jth row of A. The
vector x now represents the attenuation map at the reference
energy E0, while µm(E) and µm+1(E) are the tabulated
linear attenuation coefficient (LAC) functions of the two basis
materials whose LACs at E0 bracket the value of xk. Thus if
xk has a value between the LAC of soft tissue and bone at E0,
then the energy-dependent LAC of pixel k is determined by
linear interpolation according to (8). BI-pSART is a nonlinear
fixed-point iteration whose convergence properties have been
studied in [5].

2) Weighted least squares: As noise is a significant con-
tributor to metal artifacts, we employ a weighted least squares
(WLS) technique [6] to more strongly weight measurements
with higher SNR. We define a J×J diagonal weighting matrix
by {W 1

2 }jj =
√
Ij . We then replace (5) with

Bw(x) = x−D′w(Aw)
TMw

[
W

1
2 (Aw(x)− bw)

]
, (9)

where D′jj =
1

ζ′j
, ζ′j =

m∑
i=1

∣∣∣(W 1
2A)ik

∣∣∣ , j = 1 . . . J

This equates to applying BI-SART to the system W
1
2Ax =

W
1
2b. It is not necessary to modify the matrix M in (9), as

multiplying A by W
1
2 has the effect of multiplying M by

W− 1
2 , the effect of which is then cancelled by multiplication

with (W
1
2A)T

3) TV-superiorization: Superiorization [2] is an optimiza-
tion heuristic in which an iterative algorithm is superiorized
by perturbing the solution within each iteration, in order to
improve it with respect to some objective function, φ(x). In
this instance, we superiorize BI-SART by replacing (4) with

x(i+1) = QBNw
. . .B2B1(x

(i) + βivi). (10)

The step sizes, βi, are required to be a summable sequence
(e.g. βi = γi, 0� γ < 1) , and the vi are chosen to be non-
ascending directions of the secondary objective, e.g. −∇φ(xi).
The principle of superiorization is that if the basic algorithm
is perturbation resilient, then the superiorized algorithm will
eventually find a solution that is as satisfactory as that found
by the basic algorithm with respect to solving the inverse
problem. Due to the perturbations introduced at each iteration,
it is also expected that this solution will be superior with
respect to the secondary objective.
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In this work we choose this objective to be the total variation
(TV) of the image:

φTV (x) =
∑
m,n

√
(xm+1,n − xm,n)2 + (xm,n+1 − xm,n)2 + ε2,

where xm,n denotes the pixel in the mth row and nth column
of the image x, and ε is a small parameter introduced to
avoid singularity of ∇φTV . The negative gradient is used as
the direction vi at each iteration.TV-superiorized pSART was
previously investigated in [7] for sparse-view and limited-
angle CT; it has previously been used for metal artifact
reduction or in conjuction with a WLS approach.

III. NUMERICAL EXPERIMENTS

A. Simple phantom

We first present the results of a numerical phantom exper-
iment using a 400×400 pixel phantom (pixel size .75 mm).
The phantom consists of a large disc modeling soft tissue,
two oblong discs modeling bone, and two small circular discs
modeling titanium, as well as several low contrast features
in the centre of the object. Noisy polyenergetic parallel beam
data (720 views over 180◦) were generated analytically using a
simulated 130 kVp spectrum, at several different initial beam
intensities I0 =

∫
S(E) dE. The spectrum and attenuation

coefficients, as well as the system matrices used for iterative
reconstruction, were generated from the Michigan Image Re-
construction Toolbox [8].

Taking BI-SART as the base algorithm, any of the three
features described previously (WLS, polyenergetic modeling,
and TV-superiorization) can be included or omitted, giving
eight possible reconstruction approaches. In Fig. 2 we use
the prefix p to denote polyenergetic modeling, W to denote
WLS, and the suffix -TV to denote TV superiorization. Data
for the images reconstructed without polyenergetic modeling
were soft tissue corrected to reduce beam hardening artifacts.
The unsuperiorized algorithms were run for 32 iterations with
12 subsets of projection data; the corresponding superiorized
algorithms were run until an equally constraints-compatible
solution was found (in the sense of minimizing the least-
squares error between the measurements and forward projec-
tion of the image).

From Fig. 2 it is apparent that all of the images recon-
structed without polyenergetic modeling (top row and third
row) suffer from severe dark streaking artifacts between bone
and metal objects. Noise is also an issue in all of these images,
even when TV minimization is included. Only the pSART-
TV and WpSART-TV algorithms (second row and fourth
row, second and fourth columns) are effective in reducing
both beam hardening artifacts and image noise. We observe,
however, that the WpSART-TV algorithm is more effective
in preserving the resolution of the low-contrast features in
the centre of the image. The different in quality is more
apparent at the higher noise level (I0 = 2× 105, second row)
than at the lower noise level (fourth row). This is intuitively
sensible as the data along lines passing through both metal
objects become extremely noisy as the initial beam intensity
diminishes, so the weighting is effective in reducing the effect

of those measurements. Reducing the initial beam intensity
beyond I0 = 2×105 produced images with significant artifacts
for all the reconstruction techniques.

We note that the inclusion of weighting also introduces
a dark streak between the metal objects even when using
polyenergetic modeling (second and bottom row, third col-
umn), which is not present when the weighting is excluded
(second and bottom row, first column). This dark streak is
not due to beam hardening, but rather occurs as an artifact of
the low weight assigned to the measurements passing through
both metal objects (in essence, we are missing data along
those lines). This artifact is effectively removed by the TV
superiorization (bottom row, fourth column), which penalizes
the false edges introduced by this streak while having minimal
effect on the data consistency.

B. XCAT phantom

To test the approach on a more anatomically realistic phan-
tom, we ran a series of simulations on the XCAT phantom [9].
A 512×512 pixel slice of the phantom (pixel size 0.75mm)
was used, with two large titanium objects inserted to simulate
a bilateral hip implant. Polyenergetic fan beam data were
generated using the analytic XCAT CT projection tool [10]
with 1800 views acquired over 360◦, and a 140 kVp spectrum.
As before, data were generated at several initial count levels.
The unsuperiorized algorithms were run for 8 iterations with
60 subsets of projection data; the corresponding superiorized
algorithms were run until an equally constraints-compatible
solution was found.

The results of this experiment, as shown in Fig. 3, are
largely consistent with the simple phantom experiment. The
algorithm incorporating all three enhancements (polyenergetic
forward projection, weighted least squares, and TV superi-
orization) is most effective in reducing the artifacts caused
by metal. The dark streak between the two metal objects
was challenging to remove in this experiment; this was only
possible at a high initial intensity of I0 = 1× 107. The large
size of the metal implants caused significant photon starvation
at lower beam intensities.

IV. CONCLUSIONS

In this work we present an iterative algorithm for CT
reconstruction which aims to reduce artifacts caused by metal
objects. Our approach incorporates polyenergetic forward pro-
jection, statistical weighting of the X-ray data, and superior-
ization of the basic algorithm with respect to TV. Numerical
phantom experiments indicate that all three of these features
play a role in reducing both high and low-frequency streak
artifacts caused by metal objects. Further validation of the
method will require comparing it to existing techniques for
metal artifact reduction, as well as investigating its robustness
under additional sources of error such as spectrum mismatch.
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Fig. 2. Images reconstructed of simple phantom at two different noise levels. All figures shown on a greyscale window of [0.18, 0.23] cm−1 at a reference
energy of 70 keV.
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Fig. 3. Images reconstructed of XCAT phantom at two different noise levels. All figures shown on a greyscale window of [0.1, 0.2] cm−1 at a reference
energy of 80 keV.
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