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Segmentation-Free Quasi-Newton Method for
Polyenergetic CT Reconstruction

T. Humphries and A. Faridani

Abstract—X-ray polychromaticity is a well-known source of
artifacts in clinical CT imaging. As a polyenergetic X-ray
beam passes through an object, rays with lower energy are
preferentially attenuated, and thus the spectrum of the beam
becomes increasingly skewed towards high-energy rays. This
beam hardening phenomenon results in inconsistent projection
data, and produces artifacts in images reconstructed using filtered
backprojection (FBP). Methods for reducing or eliminating
beam hardening artifacts can be broadly categorized into post-
reconstruction approaches, which attempt to eliminate artifacts
from an image reconstructed using FBP, or iterative recon-
struction approaches, which attempt to reconstruct an artifact-
free image from the projection data, by incorporating X-ray
polychromaticity directly into the system model.

In this paper we compare a well-known post-reconstruction
approach with an iterative approach that uses a quasi-Newton
minimization algorithm. The post-reconstruction approach is a
two-step process consisting of a soft-tissue correction and bone
correction, while our iterative approach is based on modeling
energy-dependent attenuation coefficients as a sum of photo-
electric and Compton scattering components. Two numerical
phantom experiments are used to demonstrate that the post-
reconstruction approach does not compensate for artifacts caused
by more than one different type of high attenuation material,
while the iterative approach is able to reconstruct artifact-free
images in both experiments. The presented iterative approach
does not require any segmentation and can readily incorporate
attenuation models other than the one used in this paper.

I. INTRODUCTION

X-ray polychromaticity is a well-known source of artifacts
in clinical CT imaging. As a polyenergetic X-ray beam
passes through an object, rays with lower energy are pref-
erentially attenuated, and thus the spectrum of the beam
becomes increasingly skewed towards high-energy rays. The
attenuation experienced by the beam is path-dependent as a
result, since the beam’s spectrum is altered by the material
it passes through. This beam hardening phenomenon results
in inconsistent projection data, and produces artifacts in im-
ages reconstructed using conventional means such as filtered
backprojection (FBP). These artifacts typically appear in the
form of cupping (underestimation of attenuation coefficients,
particularly towards the centre of the object), as well as dark
streaking between regions of high attenuation (e.g. bone) [1].

Beam hardening (BH) artifacts reduce the qualitative and
quantitative accuracy of CT images, and in some cases can
impede diagnosis. Streak artifacts induced by bony structures,
particularly the petrous bone in the skull [2], can be especially
prominent and were identified in early scans of human pa-
tients. More recent clinical work has indicated that BH artifacts
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due to iodinated agents used in contrast-enhanced CT may also
produce artificial perfusion defects in cardiac scans [3], [4] and
“pseudoenhancement” of renal cysts [5], [6].

There is no exact analytical inversion formula for data
produced from polyenergetic X-rays. Thus, methods for BH
correction of images produced by analytical reconstruction
methods (such as FBP) are usually based on simulating
monoenergetic data as a function of the acquired polyener-
getic data. The simulated monoenergetic data is then used
to reconstruct the image. The monoenergetic data may be
generated from some empirical fitting (e.g. [7]–[9]), or by
reconstructing a preliminary image and then segmenting it
into different materials such as soft tissue, bone or contrast
agent [10]–[12]. We refer to this class of methods as post-
reconstruction approaches.

A second approach is to use iterative reconstruction meth-
ods, which attempt to reconstruct an image that is mostly
free of BH artifacts directly from polychromatic data. This is
achieved by including beam polychromaticity within the sys-
tem model used for the reconstruction. The early 2000’s saw
the development of several iterative reconstruction approaches
for polyenergetic data [13]–[16], and there has continued to be
interest in developing these algorithms in more recent years
as well [17]–[19]. Two key components of a polyenergetic
iterative reconstruction method are the model used for the
energy dependence of the attenuation coefficients, and the
mathematical iteration used to solve the resulting nonlinear
inverse problem. The model for the energy-dependent attenu-
ation coefficients is required since it is generally not possible
to independently reconstruct an attenuation map of the object
for many different energies from a single set of measurements.

In this paper we develop an iterative approach which is
based the attenuation model presented by De Man et al. [14],
but uses a different iterative method to solve the minimiza-
tion problem. The chosen iterative method is limited-memory
bounded BFGS (L-BFGS-B) [20]–[22] a quasi-Newton ap-
proach. This well-known method is ideally suited to the
problem because is designed for problems with high dimen-
sionality, and allows us to impose a non-negativity constraint
on the image to be reconstructed. Polyenergetic reconstruc-
tion can be implemented straightforwardly by providing an
appropriate objective function and its gradient to L-BFGS-B.
We present the results of numerical phantom experiments in
which we compare the iterative method with a well-known
post-reconstruction approach. Unlike the post-reconstruction
approach, the iterative approach is able to accurately recon-
struct images consisting of an arbitrary number of materials.
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II. METHODOLOGY

A. Polyenergetic model

For polyenergetic X-ray beams, the projection measurement
recorded by the ith detector can be modeled as

Pi(µ) =

∫
P0(ε) exp (−Ri [µ (x, ε)]) dε. (1)

Here, ε represents beam energy, P0(ε) is the blank scan
intensity as a function of energy (i.e. the spectrum of the
beam), µ : R2 × R → R is the compactly supported, energy-
dependent attenuation function corresponding to the object
being imaged, x is position, and Ri represents the Radon
transform of the object along the line normal to detector i,
with 1 ≤ i ≤ Nproj .

To reconstruct an image, we first discretize the spectrum
into Nε energy levels, indexed by h. To approximate the
integral in Eq. 1 with a sum, we choose appropriate quadrature
weights ωh for each energy level. The image itself is also
discretized into Npix pixels, indexed by j. As the attenuation
map of the object is energy-dependent, in principle we have Nε

attenuation images of size Npix to reconstruct. We let µ denote
the vector consisting of all these images, and µh denote only
the image of size Npix corresponding to energy level h. We
then have a discrete model for the projection measurements:

Pi(µ) =

Nε∑
i=1

ωhP0(εh) exp (−Riµh) , (2)

where Ri is the ith row of the Nproj × Npix matrix R
representing a discrete approximation to the Radon transform.
Independently reconstructing an image corresponding to each
energy level from a single set of projection measurements is a
highly underdetermined reconstruction problem, which is not
amenable to solution. Thus we require a model for how µ
varies with respect to energy.

B. Iterative method

Our model for the energy dependence of µ follows that of
De Man et al. [14], where the energy dependent values µ(ε) for
different materials are modeled as the sum of a photoelectric
component and a Compton scattering component. The energy
dependencies of the photoelectric effect Φ(ε) and Compton
scattering Θ(ε) are given by known functions:

Φ(ε) =
1/ε3

1/ε30
, Θ(ε) =

fKN (ε)

fKN (ε0)
, (3)

where fKN is the Klein-Nishina function, and ε0 is some
reference energy, chosen to be 70 keV in this work. We then
have

µ(ε) = ϕ · Φ(ε) + θ ·Θ(ε), (4)

where ϕ and θ are coefficients which depend on the specific
material and ε0. It follows from this definition that ϕ+θ gives
the attenuation value of the material at ε0.

Reconstructing an image based on this parameterization
would require estimating twice as many parameters as in a
typical reconstruction problem; namely, values of ϕ and θ for
each pixel of the image. To reduce the number of variables
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Fig. 1. Piecewise linear interpolating functions for ϕ(µ) and θ(µ). Values of
ϕ and θ for air, water, bone and iron (not shown, µ value of 7.075 at 70 keV)
are obtained from least squares fitting to the model given in Eq. 4. These are
used as nodes for the piecewise linear interpolant.

further, De Man et al. suggest modeling θ and ϕ as functions
of µ at the reference energy ε0, rather than as independent
quantities. This is achieved by taking tabulated values [23] of
µ(ε) for several materials (in this case, air, water, bone and
iron) and performing a least-squares fit to obtain values of ϕ
and θ. It is then assumed that the values of ϕ and θ for other
materials can be determined by piecewise linear interpolation.
This process is illustrated in Fig. 1.

Under this assumption, the problem is now simply to
estimate the attenuation map of the object at the reference
energy. From this point forward we refer to this map as µ.
The forward model from Eq. 2 becomes:

P̂i(µ) =

Nε∑
h=1

ωhP0 (εh) exp [−Ri (ϕ(µ) · Φ(εh) + θ(µ) ·Θ(εh))] .

(5)
While De Man et al. incorporate this model into a

maximum-likelihood algorithm, we consider the reconstruc-
tion problem as one of minimizing the discrepancy between
the measured data Pi and the forward projection of the esti-
mate, P̂i (Eq. 5), for all i. Since the parameters to be estimated
are exponentiated, we compare the log of the projection data
and minimize the function

G(µ) = ∥F(µ)∥22 , where Fi(µ) = ln P̂i(µ)− lnPi. (6)

From Equations 5 and 6 it follows that the gradient of G is

∂G(µ)

∂µj

= 2

Nproj∑
i=1

Fi(µ)
∂Fi(µ)

∂µj

, (7)

where

∂Fi(µ)

∂µj

=
−Ri,j

P̂i(µ)

Nε∑
h=1

P0(εh)

[
Φ(εh)

dϕ

dµj

+Θ(εh)
dθ

dµj

]
×

exp [−Ri (ϕ(µ) · Φ(εh) + θ(µ) ·Θ(εh))] .
(8)

We note that the objective function and its gradient can be
readily vectorized. Eq. 5 can be evaluated for all i simultane-
ously using multiplication by R instead of Ri. Meanwhile,
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computation of the gradient (Eq. 7) requires summing the
Jacobian matrix elements (Eq. 8) over i. Since each Jacobian
element contains a factor of Ri,j , this can be implemented as
a multiplication by RT , i.e. a backprojection operation. Thus
the computation does not require access to individual elements
of R. In our experiments we implement the computation of
G and its gradient in Matlab, using the radon and iradon
commands for forward and back projection, respectively. (The
iradon command in Matlab is usually used for filtered back
projection, but can also be called with no filter to backproject
data).

To solve the minimization problem, we use limited-memory
bounded BFGS (L-BFGS-B) [20]–[22], a well-known quasi-
Newton method. Unlike Newton’s method, quasi-Newton
methods require only the gradient of the objective function
to be minimized, as they construct a series of approximations
to the Hessian of the function as the iteration proceeds.
BFGS (Broyden-Fletcher-Goldfarb-Shanno) is the most widely
used quasi-Newton method, and refers to a particular way
of constructing the Hessian approximations. L-BFGS-B is a
variant of BFGS in which a low-rank approximation to the
Hessian matrix is used rather than a full-rank approximation.
This is necessary for problems with a large number of variables
(such as the one we are considering here), as a full-rank
Hessian approximation is too expensive to compute and store.
Furthermore, L-BFGS-B is a bounded optimization algorithm,
which allows us to impose a non-negativity constraint on µ.
Essentially, we are able to view L-BFGS-B as a black box,
and solve the reconstruction problem by providing it with a
method for computing G and its gradient.

C. Post-reconstruction correction

For the purposes of comparison, we have also implemented
a well-known post-reconstruction correction approach, first
presented by Joseph & Spital [10] and later by Trivedi and
Herman [11]. This approach is a two-step procedure. The
first step is a soft tissue correction where one simulates
monoenergetic data, based on the assumption that the object
consists only of soft tissue. One first determines the equivalent
length of soft tissue, T s

i , that the beam would pass through
to generate each measurement Pi, by solving the nonlinear
equation

Pi =

Nε∑
h=0

ωhP0(εh) exp (−µsoft(εh) · T s
i ) ,

for all i. One then simulates monoenergetic projection data,
Mi, at the reference energy by

Mi = µsoft(ε0)T
s
i ,

and reconstructs an image from this data using FBP. This
step tends to produce an image where cupping artifacts are
reduced, but streaks caused by bone or other high-density
materials still exist. In the second step of the method, one
segments this image into regions containing bone and regions
containing soft tissue. In our implementation we have used a
simple thresholding approach for the segmentation. From this
segmentation, one estimates the length of intersection of each

TABLE I
MATERIALS USED IN PHANTOM EXPERIMENTS ALONG WITH THEIR

ATTENUATION COEFFICIENTS AT 70 KEV (IN CM−1).

1. Soft 2. Fat 3. Bone 4. Dense

µ(70 keV) 0.1935 0.1717 0.4974 0.2780

ray with bone, T b
i . Finally, a new estimate of T s

i is generated
from solving a second set of nonlinear equations:

Pi =

Nε∑
h=0

P0(εh) exp
(
−µsoft(εh) · T s

i − µbone(εh) · T b
i

)
.

The updated monoenergetic approximation is then

Mi = µsoft(ε0)T
s
i + µbone(ε0)T

b
i ,

which is used to reconstruct a second image with FBP.
This approach is generally successful at removing beam

hardening artifacts, provided that the object does not contain
tissues whose attenuation properties significantly from soft
tissue and bone. It should be noted that the method can
be extended to include additional materials, such as contrast
agents [12]. This extension requires knowing the attenuation
characteristics of every one of the constituent materials of the
object, however, and may also require a more sophisticated
segmentation approach to distinguish between multiple mate-
rials.

III. RESULTS AND CONCLUSIONS

We validate the method using two 200×200 pixel numerical
phantoms. The first is a circular phantom consisting of soft
tissue, four small regions containing bone, and an ellipsoidal
region containing fat (Fig. 3). The second phantom (Fig. 4)
consists of soft tissue, three regions containing bone, and three
other regions containing air, fat, and a “dense” material whose
attenuation coefficient is somewhere between soft tissue and
bone. Attenuation values for these materials at the reference
energy are provided in Table I.

The measured projection data consist of 360 views taken
over 180◦ and are generated by analytically computing line
integrals through the geometrically-defined phantoms. This
ensures that the model used to generate the data is not the same
as the one used in the reconstruction. The data are averaged
over 124 energies ranging from 8 to 131 keV, using a tungsten
anode spectrum generated using the Siemens Spektrum online
tool [24], [25]. For the purposes of reconstruction, we use only
eleven energy levels, and generate the weighting coefficients
ωh using the composite trapezoid rule. The spectra used to
generate the data and reconstruct the images are shown in
Fig. 2.

Fig. 3 shows the results of the reconstruction for the first
phantom. For the purposes of comparison, we reconstruct
an image from ideal monoenergetic data using FBP (top
left figure), and show a FBP reconstruction of the polyen-
ergetic data as well, which contains typical beam hardening
artifacts (top right figure). The bottom left figure contains
the image obtained from the post-reconstruction correction,
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Fig. 2. Continuous and discrete spectra used to generate data and reconstruct
images. Blue line shows the spectrum used to generate the data, consisting of
124 energies. Red crosses show the 11 energy levels used for reconstruction.
The spectrum has been normalized so that

∫
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Fig. 3. Reconstructed images of first phantom. Top left: monoenergetic
reconstruction, with tissue types labeled (cf. Table I). Top right: image
reconstructed from polyenergetic data. Bottom left: Image reconstructed
using post-reconstruction technique. Bottom right: image reconstructed using
iterative technique. Greyscale window: [0.16, 0.22] cm−1.

and the bottom right figure is the image obtained from the
iterative method. The image produced using the iterative
method has been smoothed using anisotropic diffusion [26]
to facilitate comparison with the FBP and post-reconstruction
corrected images. From this figure it is apparent that both
the post-reconstruction and iterative methods are effective for
this phantom. Even though the post-reconstruction approach
assumes the object consists only of soft tissue and bone, the
attenuation characteristics of fat are sufficiently close to soft
tissue for the method to be effective.

Fig. 4 shows the results of the reconstruction for the second
phantom. In this instance we tried two different thresholds
for the segmentation used in the post-reconstruction approach.
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Fig. 4. Reconstructed images of second phantom. Top row again contains
monoenergetic and polyenergetic FBP reconstructions. Middle row contains
two reconstructions obtained using the post-reconstruction approach with
different thresholds for segmentation. Bottom figure shows the result of the
iterative reconstruction. Greyscale window: [0.16, 0.22] cm−1

The image labeled “Post-reconstruction 1” was obtained using
a threshold where the dense region was segmented as soft
tissue, while in “Post-reconstruction 2”, the dense region was
segmented as bone. It is clear in both cases that the presence
of the dense region produces streak artifacts that the post-
reconstruction correction does not remove. In fact, one can see
that the streaks between any two bony regions are removed,
but streaks between the dense material and a bony region
are not. This is because the attenuation characteristics of the
dense material differ significantly from those of bone and of
soft tissue. In constrast, the iterative approach is effective in
removing all of the streak artifacts.

In conclusion, we have shown that the polyenergetic recon-
struction problem can be addressed using well-known nonlin-
ear minimization methods such as L-BFGS-B, by providing an
appropriate objective function and its gradient. This approach
is capable of reconstructing objects containing an arbitrary
number of materials and does not require any segmentation. It
does require knowledge of the beam’s spectrum and a model
for how the attenuation of a given tissue varies as a function
of energy. The algorithm is also flexible in the sense that
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different attenuation models or objective functions could be
used. Future work could include assessing the performance of
the method in cases involving noise or other inconsistencies
(e.g. imperfect knowledge of the spectrum), and reconstruction
of more realistic objects.
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