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Purpose: Dynamic tracer behavior in the human body arises as a result of con-
tinuous physiological processes. Hence, the change in tracer concentration within a
region of interest (ROI) should follow a smooth curve. We propose a modification
to an existing slow-rotation dynamic SPECT reconstruction algorithm (dSPECT)
with the goal of improving the smoothness of time activity curves (TACs) and other
properties of the reconstructed image.

Methods: The new method, denoted d?EM, imposes a constraint on the second
derivative (concavity) of the TAC in every voxel of the reconstructed image, allowing
it to change sign at most once. Further constraints are enforced to prevent other
non-physical behaviors from arising. The new method is compared to dSPECT using
digital phantom simulations and experimental dynamic 99MT_DTPA renal SPECT
data, to assess any improvement in image quality.

Results: In both phantom simulations and healthy volunteer experiments, the d>?EM
method provides smoother TACs than dEM, with more consistent shapes in regions
with dynamic behavior. Magnitudes of TACs within an ROI still vary noticeably
in both dSPECT and d?EM images, but also in images produced using an OSEM
approach that reconstructs each time frame individually, based on much more com-
plete projection data. TACs produced by averaging over a region are similar using
either method, even for small ROIs. Results for experimental renal data show ex-
pected behavior in images produced by both methods, with d?EM providing some-
what smoother mean TACs and more consistent TAC shapes.

Conclusion: The d2EM method is successful in improving the smoothness of time

activity curves obtained from the reconstruction, as well as improving consistency of

TAC shapes within ROIs.

PACS numbers: 87.57.uh, 87.57.nf
Keywords: dynamic SPECT, slow rotation, dSPECT, iterative reconstruction, con-

strained optimization
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ul. INTRODUCTION

1> In single photon emission computed tomography (SPECT), the distribution of a radioac-
13 tive tracer inside a patient is estimated based on a set of projections acquired sequentially
14 as the camera rotates around him or her. In a conventional SPECT study, the tracer distri-
15 bution is assumed to be static during acquisition. There are applications, however, where it
16 would be useful to administer an agent with fast uptake and washout, and to assess function

17 by measuring the rate at which the activity concentration changes.

18 Many dynamic SPECT methods have been developed since the mid-1990s; an excellent
1 review is presented in [1]. One approach is to perform repeated fast (e.g. 5- to 60-second)
» rotations of the camera to acquire multiple sets of projection data. Projections acquired
2 in a single rotation are then assumed to be consistent, and a series of 3D images (time
» frames) is reconstructed using a conventional static SPECT algorithm such as ordered sub-
2 sets expectation maximization (OSEM)?2. This approach has been studied most notably for
2 PIMTe_Tehoroxime cardiac imaging® 19, as well as applications such as lung'' and kidney'2
» imaging. Images produced by this method, however, tend to be noisy and suffer from ar-
2 tifacts due to the changing tracer distribution and the low number of counts acquired per
o7 projection. Other fast-rotation approaches, therefore, estimate kinetic parameters directly
2 from projection data using kinetic modeling'® %, to avoid bias due to image artifacts. A
» modification of this approach improves computational efficiency by using spatiotemporal
3 B-spline basis functions to represent the time activity curve (TAC) in every voxel'™18. A
a third method uses a 4D maximum a posteriori (MAP) algorithm with a compartmental

» model-based prior, which encourages TACs to conform to the model®®.

;3 All of these approaches require a camera capable of multiple fast rotations. Dedicated

20,21 which are well-suited to dynamic studies have also been devel-

u cardiac camera systems
35 oped in recent years. These cameras use novel geometries and improved detection to increase
36 sensitivity and acquire multiple views through a patient simultaneously, without the use of a
s rotating camera gantry. Dynamic SPECT reconstruction using these cameras typically fol-
s lows the same principle as the early fast rotation methods; namely, a conventional technique
s such as OSEM is used to reconstruct each time frame of the image separately. No temporal

s consistency between time frames of the dynamic image is enforced using this approach, as

s each time frame is reconstructed based only on the data corresponding to that frame.



2 At the present time the vast majority of systems available in clinics are standard SPECT
s systems which acquire data over a single slow camera rotation (10-20 minutes), precluding
u the use of these methods. Dynamic SPECT imaging on these systems requires reconstruct-
s ing an image from extremely inconsistent projection data, as the tracer distribution changes
s drastically during the acquisition. As a result, one must make assumptions about the dy-

22,23 agsumed

s namic behavior of the tracer in order to obtain a sensible image. Early methods
s that activity decayed exponentially in every voxel, and estimated the decay coefficients di-
w rectly from the projection data. The factor analysis approach,?* meanwhile, assumes that
so the dynamic activity in every voxel is a linear combination of a small number of time-

st dependent functions (factors). The reconstruction algorithm then determines the shapes of

s2 these factors and the coefficient of each factor in every dynamic voxel.

s Our dSPECT method?> 27 is another approach which constrains the solution by restricting
s« the temporal behavior of activity in every voxel, using linear inequalities. In particular,
ss activity in a voxel is allowed only to increase, decrease, or increase to a peak value and then
ss decrease. In essence, the first derivative of every TAC is allowed to change sign at most
sz once. The constraint is independently imposed on every voxel, allowing different behavior
ss in different regions of the image if required. This method eliminates a large number of
so unphysical solutions which still fit the projection data well, and unlike other approaches,
s0 does not require any a priori determination of a suitable set of basis functions or factors to
s1 model the temporal behavior. Although initially developed for single slow rotation dynamic
s2 SPECT reconstruction, the main characteristic of the dASPECT method is that it processes
63 all data simultaneously. Thus, it can also be applied in cases where more complete projection
& data is available — such as dynamic positron emission tomography or dynamic imaging on

s the new dedicated cardiac systems — to link frames of the image temporally.

6  oince dynamic tracer behavior within the body arises as a result of continuous physio-
e logical processes, we expect that the TACs for a given region of interest (ROI) should be
s fairly smooth, provided adequate temporal sampling. While dSPECT does eliminate many
so nonphysical solutions, it does not require the TAC in every voxel to be smooth. As a result,
70 TACs with unphysical behavior, such as sharp spikes, have been observed in images recon-
1 structed with dSPECT. In this paper, we propose a modification to dASPECT which instead
722 of acting on the first derivative, constrains the second derivative of the TAC in every image

73 voxel. The method, denoted d2EM, guarantees smoother TACs than dASPECT. Using digital
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72 phantom simulations and preliminary experiments on a healthy volunteer, we investigate the

s performance of the new method to assess whether it improves image quality.

% II. METHOD
7 A. dSPECT algorithm

7 The dSPECT constraint is imposed with a difference tensor, denoted A, which acts on

79 the vector x representing the 4D distribution of activity to define a new vector,
T = Ax. (1)

2o The tensor maps the vector x, consisting of the activity values in every voxel at every time
a1 frame, to the vector T, consisting of activity differences between sequential time frames
g2 for every voxel. The dSPECT algorithm then iteratively optimizes over & using either a
g3 constrained least squares (CLS) or dynamic expectation maximization (dEM) approach. In
s this study we consider only the latter, as it is more computationally efficient?®. The dEM

s update formula is analogous to maximum likelihood expectation maximization (MLEM)?:

~(n)

~(n+1) Lk -1 Dj.k
Tik = _ Zcij,kAi,k 1-(n)’ (2)
> (Oij,kAi,]i) J 2 Cij,kAi,lixz(,k)

s Where p is the vector of acquired projection data, C'is the system matrix modeling the prop-

g7 agation of photons from the patient body to the detector, 7 is the index corresponding to
ss voxels in image space, j is the index corresponding to pixels in projection space, and k is the
g0 temporal index corresponding to each time frame. In dSPECT, every projection is assumed
o to correspond to a different distribution of activity, so the total number of time frames recon-
a1 structed is equal to the number of camera stops. The system matrix may include standard
o SPECT effects such as depth-dependent collimator response and patient-specific attenua-
o3 tion. Attenuation correction is particularly important in slow-rotation dynamic SPECT,
u since without it one cannot separate the effect of attenuation on the projection data, which
s varies as the camera rotates, from the effect of changing tracer distribution.

o The fact that the dEM update formula (2) preserves positivity of & allows the desired
o7 temporal behavior to be imposed on every voxel by A. For instance, to impose strictly

e increasing behavior on voxel i, T contains the entries (x;2 — x;1), (z;3 — ;2), etc. Since

>



o these differences are positive in Z, mapping T back to x results in an increasing TAC. For
100 increasing behavior, # also contains z;;, the activity value in the first time frame. This
1 provides a one-to-one mapping between x and Z, and ensures that the TAC for voxel i
102 remains positive. Decreasing behavior is enforced similarly. For a TAC that increases and
103 then decreases, the time of peak activity is not known a priori, so the algorithm allows the
104 assumed time-to-peak for every voxel to be adjusted in between iterations, based on the
10s data. Then increasing behavior can be enforced prior to the peak point, and decreasing

106 behavior afterwards.

1wz B.  Second derivative constraint

s In this paper we introduce a dEM-like algorithm, denoted by d?EM, that imposes a second
w9 derivative (concavity) constraint on the TAC in every voxel. Just as dEM allows the first
1o derivative of the TAC in every voxel to change sign at most once, d?EM allows the concavity
m of the TAC to change at most once; from concave up to concave down, or vice-versa. The
w2 first derivative may only change sign once as well, to ensure that any solution generated
s by d?EM satisfies the dSPECT first-derivative constraint. The constraint is imposed in
s the same way as in dEM, using a modified difference tensor and the fact that the update
us formula (2) preserves positivity of the vector Z. In d?EM, rather than consisting of activity

us differences, T consists mostly of second differences. For instance, the mapping
Tik = Tig—1 — 2Tif + Ti 41 (3)

ur forces the right-hand side to be positive, ensuring that the TAC for voxel ¢ has a positive
us second derivative (concave up) at time frame k. Some first difference and activity values
1o at the endpoints of the TAC are also included in Z, to ensure positivity of the TAC and
120 Maintain a one-to-one mapping with x.

21 Since the shape of the TAC in every voxel is not known a priori, the d?EM algorithm
122 must allow the assumed behavior to be adjusted in between iterations, based on the data.
123 As mentioned earlier, in dEM the assumed time of peak activity in a voxel can shift to
124 an earlier or later time frame, if the data suggest that the current assumption is incorrect.
125 Since d2EM is based on the second derivative, it is the time of the inflection point, where

126 the concavity of the TAC changes, that is adjusted. So, for instance, if the TAC in a voxel



127 is initially assumed to be entirely concave down, but the data suggest that the latter part
128 of the TAC should be concave up, then this part of the TAC will approach zero concavity
120 after several iterations of the algorithm. This situation indicates that the assumed behavior

130 for that voxel should instead be a TAC that is initially concave down, then concave up.

wm III. EXPERIMENTS
12 A.  Annulus phantom simulation

153 The performance of d?EM was first tested using two simple 64x64-voxel annulus phan-
134 toms, denoted A and B, which were similar to those used in some previous studies?”3%3!. The
135 annulus in both phantoms was subdivided into four regions of equal size, and surrounded
136 by low-intensity, constant background activity. Additionally, a circular “cold” region con-
137 taining no activity was included inside the annulus. Dynamic activity for each region was

138 generated over 64 time frames, using a dual-exponential function:
x(t) = Ao (—e_’\lt + e’\zt) , (4)

130 where A\; and )\, were varied in each region to model different behavior. The phantoms and
10 the associated TACs are illustrated in Fig. 1. In order to assess the performance of the
11 method for a variety of dynamic situations, Phantom A featured relatively fast uptake and
2 washout of activity (half-life of 2 to 16 minutes), while in Phantom B the washout was more
s gradual (20 minutes).

s Acquisition was modeled as a dual-head (90° mode) full rotation (360° per head) over
us 20 minutes, with 64 stops (roughly 20 seconds per frame). Projections were generated
17 analytically, with Poisson noise added afterwards in proportion to the total counts. No
us attenuation or collimator blurring were included in the projection model. Images were
1o Teconstructed using 60 iterations of both dEM and d2EM, as further iterations did not
150 noticeably improve image quality.

151 To provide further context, dynamic images of the two phantoms were also reconstructed
12 using an OSEM-based approach. For these images, projection data consisting of 64 views
153 around the object for each of the 64 time frames was generated, modeling a ring SPECT-
154 like system with 64 heads. Thus, 32 times as many views were acquired per time frame

155 (compared to the projection data used by dEM and d2EM), while the counts for each view
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FIG. 1. Annulus phantom used for computer simulation. Left: Image of a single time frame of

the phantom, showing the four regions plus cold spot. Right: TACs for each of the four regions
in Phantom A (top) and Phantom B (bottom), showing the number of counts in each voxel as a
function of time. Red, blue, green and black TACs correspond to regions 1, 2, 3 and 4, respectively.

Background activity was 5 counts/voxel.

155 were not reduced, as they would be by a fast-rotating camera. Six iterations of OSEM with

157 8 subsets were then used to reconstruct each frame of the dynamic images separately. These

158

159

160

images provided a “gold standard” against which to judge the performance of the two other

methods.

For analysis of the results, ROIs were defined for each of the four annulus regions, using

161 the true boundaries. The images were then compared using the following measures:

162

163

164

166

167

1. The mean TAC was computed for each ROI and then compared to the true one. The

relative error of the mean TAC was calculated as
o= o=, /5, < o ®

where ||-||, is the {* norm (Euclidean distance), 75 is the 1 x 64 vector representing
the mean TAC for that region obtained from the reconstructed image, and 7% the
equivalent vector representing the true TAC. This error provided a measure of how

well each method performed in an aggregate sense over the entire ROI.
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2. Weighted relative standard deviation between TACs in every voxel of the ROI was

calculated as

K o
o= Wp— x 100%, (6)
k=1 Yk

where o}, is the standard deviation between true and reconstructed activities at time
k for every voxel in the ROI, v is the true activity at time k for a voxel in the ROI,

and the weighting factor is

K
Wk =V Z Vi .

k=1
This was a more severe error measure than ¢, as it penalized deviation from the true

TAC in any voxel, rather than comparing an aggregate TAC over the whole region. It
quantified the amount of variation that occurred within a region of the reconstructed

image that was known to be spatially uniform in truth.

. An average relative “shape error” was calculated for each region of interest using the

following formula:

s= 13 (-, /1) < 0 ™

=1
where I is the number of voxels in the ROI, 7€ is the 1 x 64 vector representing the

reconstructed TAC in voxel i, 7 is the true TAC vector for that ROI, and «; is the

scaling factor which minimizes the {?> norm difference between the two vectors:

Lr, rec

7
rIec . rrec:

o =

(Here - is the dot product between the two vectors). The average shape error was used
to measure how consistent the shapes of TACs were inside each ROI, while ignoring
their magnitudes. If the shape of the TAC in a voxel of the reconstructed image was
close to the true shape, then the difference between them would be small after scaling;
if their shapes were different, then the difference would still be relatively large. A
small value of & meant that the kinetic behavior indicated by the TACs at the voxel

level was generally correct, even if there was variation in magnitude.

. The time-to-peak activity was recorded for every voxel in each ROI, and the mean

and standard deviation of times-to-peak were calculated. This measure was intended
to assess how consistent the time-to-peak in every voxel was in each region, as time-

to-peak is often a quantity of interest in dynamic imaging.



17 The TACs in the “cold” region were also examined, but these error measures were not

188 calculated since they are not applicable to a region with no activity.

19 B. Healthy volunteer experiment

w0 One potential clinical application of dynamic SPECT is assessment of renal function
w1 by examining washout of 99MTe-DTPA or 99™MTe MAGS in the kidneys. Current clinical
102 protocol for dynamic renal imaging typically consists of a planar scintigram acquired from
13 behind the patient. By drawing 2D ROIs over the cortex region of each kidney, it is possible
104 to obtain a TAC for each kidney as a qualitative measure of renal function. Planar imaging,
105 however, is unable to correct for patient-specific attenuation and effects due to organ overlap;
196 both of which are accounted for in a 3D SPECT scan.

17 Dynamic 99mr. DTPA (370 MBq) renal images of a single consenting healthy adult
s volunteer were acquired using a dual-head Siemens Symbia T2 SPECT/CT system with
100 detectors positioned at 90°, and attenuation correction data provided by the 2 slice CT
200 scanner. The camera rotated over 360° per head, with 64 stops lasting 20 seconds each.
201 Images consisting of forty-four 128 x 128-voxel slices and sixty-four 20 second time frames
22 were reconstructed using 80 iterations of both dEM and d?EM. Voxels were 4.79 mm per
203 side, and the effects of attenuation and collimator blurring were incorporated into the system
204 matrix.  As mentioned in Section II, attenuation correction is essential to separate the
205 effects of attenuation on projection data from those of tracer kinetics. In the absence of a
200 SPECT/CT system, an attenuation map from a transmission scan or separately acquired
200 CT image would be necessary.

208 Since the true distribution of activity was not known in this experiment, it was not pos-
200 sible to use the same quality measures as in the phantom simulations. Nor was it possible
210 to compute OSEM-based images as a point of comparison, since no equipment capable of
o acquiring multiple views of the patient simultaneously was available. Additionally, while
212 activity distributions in the phantom simulations were known to be spatially uniform within
a3 ROIs, in reality each living kidney may contain several regions with different dynamic be-
214 haviors. In particular, uptake in the renal pelvis occurs later than in the cortex since DTPA
215 filters through the cortex before arriving at the pelvis; furthermore, the cortex itself is

216 comprised of numerous individual lobes, which may also exhibit different concentrations of

10
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FIG. 2. Volume rendering of segmentation used for healthy volunteer renal data (posterior view).
Faint outline shows left and right kidney cortices, with pelves shown in blue and ROIs shown as
red cubes. Light patches around edges appear due to the volume rendering. Figure prepared with

the assistance of A. Saad.®

activity or time-to-peak®?. Thus, assuming uniform dynamic behavior in an entire kidney

could lead to misleading evaluations.

Thus, in order to analyze the reconstructed images, small ROIs were defined in the
cortex regions of each kidney. To generate these ROIs, the image was first segmented into
four regions corresponding to the left and right kidney cortices and pelves, using a user-
assisted dynamic segmentation algorithm3?. By examining the segmentation, 4 x 4 x 4-voxel
cubes, corresponding to a real volume of about 7 cm?, were then defined in the inferior and
superior regions of each kidney, giving four ROIs in total (Fig. 2). Due to the small size
of each ROI, the true behavior within them was expected to be fairly consistent. Weighted
relative standard deviation and average shape error were calculated for each region, with
the mean TAC for the region used as a surrogate for the true TAC in formulas (6) and (7).

Mean and standard deviation of time-to-peak within each ROI were also calculated.

11
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FIG. 3. Selected 64x64-voxel time frames of reconstructed annulus phantom images, for Phantom

A. Top row shows frames from the phantom (the truth), second row the corresponding frames from

the dEM image, third row the d?’EM image, and fourth row the frame-by-frame OSEM image.
20 IV. RESULTS

20  Time frames of the true phantom and of the three reconstructed images for Phantom A
»n are shown in Fig. 3. Images of Phantom B are not shown, but were qualitatively similar.
22 Fig. 4 shows individual voxel TACs from each ROI of the dEM, d2EM and frame-by-frame
23 OSEM images for both phantoms, as well as the true and mean TACs for the ROI. The
24 calculated error measures, €, o, S, and mean + standard deviation of time-to-peak, are

235 shown in Table I.
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Phantom A Phantom B
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FIG. 4. Representative voxel TACs (counts vs time) from each ROI for the two annulus phantoms,
from images reconstructed using the dEM, d?EM and frame-by-frame OSEM approaches. Voxel
TACs shown as black solid lines, with true TAC shown as a red line and mean TAC for the entire
region shown as a light blue line. For the purpose of clarity, only the TACs from 12 randomly
selected voxels (out of 53 total) in each of the four dynamic regions are shown in each plot. Please

note the change in y-axis scale for some regions.

26 For the healthy volunteer experiment, the mean TAC and voxel TACs for each of the four

237 ROIs are shown in Fig. 5. Error measures are provided in Table II.

13



O05101520 0O 5 10 15 20
FIG. 5. TACs in the four ROIs (inferior and superior regions of right and left kidneys) in the
dynamic renal study, for the dEM (left column) and d2EM (right column) reconstructions. Sixteen
randomly selected voxel TACs (out of 64 total)4in the region are shown as black solid lines, with
the mean TAC for the entire region shown as a light blue line. X-axis shows time in minutes; y-axis

shows counts.



Phantom A Phantom B

Region|Method| ¢ o S true peak mean peak| ¢ o S  true peak mean peak

(%) (%) (%) (min)  (min) | (%) (%) (%) (min)  (min)
dEM| 274 458 23.6 1.7 £ 06| 127 22.7 10.2 44+ 1.8
rl| d?EM| 20.0 40.8 17.0 1.6 1.8 £04| 11.2 23.0 10.1 3.1 4.9+ 1.6
OSEM| 99 319 11.2 1.7+ 03] 89 223 71 4.0+ 1.3
dEM| 13.5 25.7 15.2 2.7+0.7 11.2 23.3 10.0 5.6 + 2.2
2| d?EM| 13.1 240 10.7 3.1 3.1 +04 102 228 77 5.0 6.0 £ 1.0
OSEM| 89 225 9.0 3.0+06f 86 220 7.1 55+ 1.3
dEM| 14.2 241 11.1 54 £ 1.1 11.2 253 11.0 9.3 £3.6
r3| d’EM| 10.6 234 7.2 5.6 59 +0.6| 10.1 240 66 78 91+ 1.2
OSEM| 9.1 226 74 59 £1.0f 87 221 74 82+ 1.3
dEM| 134 26.0 11.3 13.1 £ 3.8| 12.8 245 12.1 15.2 £ 3.6
r4| d’EM| 10.7 245 6.9 109 134 +19| 103 236 9.0 119 154+19
OSEM| 9.0 237 7.0 112+ 22| 85 21.6 88 12.6 £ 24

TABLE I. Error measures for dynamic regions in the two annulus simulations. Formulas for €, & and

S are given in equations (5), (6) and (7), respectively. Mean peak shows the average time-to-peak

for every TAC in the region, £ the standard deviation among times-to-peak.

2s V. DISCUSSION

20 A.  Annulus phantom simulation

20  Most time frames of the reconstructed images (Fig. 3) are fairly similar in appearance

21 whether using dEM or d?EM. The most noticeable differences occur in the first and last

22 time frames. For both Phantoms A and B (the latter is not shown), the last time frame is

23 less noisy using d2EM than dEM, likely due to the stronger d2EM constraint. In the dEM

24 Teconstruction, the activity in a given voxel for the final time frame is constrained only by

2s the activity in the same voxel in the second-last time frame; for instance, for increasing

26 activity, the activity in that voxel must be greater in the final frame than in the one before.

27 In d?EM, the activity in the last frame is restricted by the activity in both the second- and

15



Region|Method| & S mean peak
(%) (%)  (min)
RK inf.] dEM| 15.6 74 2.7 4+ 0.8

d?2EM| 154 5.2 23+ 0.4

RK sup.| dEM| 14.2 64 2.6+ 0.6
d?2EM| 13.7 44 22405

LK inf.| dEM| 155119 2.4+ 0.8
d?2EM| 145 84 24+ 0.9

LK sup.| dEM| 16.1 5.7 25405

d?EM| 16.7 4.0 2.4+ 0.3

TABLE II. Error measures for regions in the inferior and superior regions of the right and left

kidneys in the volunteer patient images.

g third-last time frames, since the constraint acts on the concavity of the TAC. Thus, the
29 activity in the final frame is more strongly tied to activity in the preceding frames, and as
250 & result, less variation occurs. The same argument holds for the first time frame. For this
»s1 phantom, however, the first time frame appears noisy using either method; probably due to

» the fact that counts in this frame are low.

3 The time frames reconstructed using frame-by-frame OSEM are visually superior to those
24 obtained using dEM and d?EM, which is to be expected given the greater number of views
255 that were used. The first frame in particular is much more accurately reconstructed. At
256 two minutes (second column of Fig. 3), some blurring is visible around region 1 in the dEM
7 and d2EM images, which is not present in the OSEM image. This artifact is also due to
2 the fact that the dEM and d?EM images are based on data where only two views of the
250 object per time frame are available. Both dEM and d?EM link the time frames of the image
20 together through the temporal constraint, so each reconstructed time frame of the image
21 is affected by views corresponding to preceding and subsequent time frames as well. When
2 the tracer concentration is changing quickly in a region, however, then the projection data
23 corresponding to that region is very inconsistent. As a result, only the views from a small
4 number of angles affect the reconstruction of the region over that time period, and blurring

25 results. In general, however, the dEM and d?2EM images are in very good agreement with

16



26 the frame-by-frame OSEM image, especially given the much smaller amount of data that
267 was used to reconstruct them.

s Analysis of TACs within each region (Fig. 4) reveals more differences. The TACs at the
290 voxel level (black lines) in the d?EM image have more consistent shapes and fewer “outly-
o0 ing” TACs with noticeably different shapes from the true one. In region 4 of Phantom A,
on for instance, there are several TACs with incorrect dynamic behavior in the dEM image,
22 including some showing increasing uptake rate in the last few time frames, and several with
23 sharp peaks around the 10-minute mark. In the d?EM image, most of the voxel TACs in
oa this region have a very similar shape, although there is still variation in magnitude. This is
o5 true in other regions shown in Fig. 4 as well, particularly those with slower washout rates.
26 The voxel TACs in regions 1 and 2 of Phantom A, which have the fastest kinetics, appear
or7 similar using either dEM or d?EM.

s The voxel TACs obtained from the frame-by-frame OSEM images generally have the cor-
a9 Tect shape, but are not smooth since each frame has been reconstructed separately, without
280 any constraint or condition on the temporal behavior of the activity in each voxel. The vari-
261 ation in magnitude among voxel TACS within regions appears comparable to that observed
2 in the dEM and d?EM images. Thus, it appears that this spread among voxel TACs is in-
283 herent to the reconstruction problem itself — perhaps due the use of an EM-based approach
2 — rather than being a drawback of the dEM and d?EM methods specifically.

»s  The mean TAC in most regions (blue lines) is very similar using either dEM or d?EM,
286 despite the large differences between TAC shapes at the voxel level observable in Fig. 4.
27 Even when each region was subdivided into small contiguous subregions of only 12-15 voxels
288 each, the mean TACs for each subregion were very similar. Thus, the performances of dEM
20 and d2EM are comparable when TACs are averaged over a region, and it is mainly at the
200 voxel level that improvements are apparent. The mean TAC obtained from the frame-by-
201 frame OSEM approach, meanwhile, is somewhat closer to the true TAC (red lines) than the
22 mean TAC obtained using the other two methods; most notably in region 1 of Phantom A,
23 where both dEM and d2EM underestimate the true activity. This underestimation is due
204 t0 the blurring of this region visible in Fig. 3.

25 The calculated error measures are summarized in Table I. In general the values of ¢
206 using d?EM are somewhat smaller than for dEM, but the improvement is not large since

207 this quantity reflects the error in the mean TAC, which is fairly similar using either method.
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e Values of & also show only an incremental improvement using d?EM, since the variation in
200 TAC magnitudes at the voxel level is comparable, as observed in Fig. 4. Values of & obtained
s00 from the frame-by-frame OSEM reconstruction are also of roughly the same magnitude in
so1 Most regions.

w2 The shape error, S, is notably smaller for the d2EM images. This is indicative of the
s03 fact that the shapes of TACs in individual voxels were generally more consistent and closer
s00 to the true shape when d?EM was used. In some regions, the shape error using d2EM is
305 smaller than that obtained using frame-by-frame OSEM as well; this is probably due to
s06 the lack of smoothness among voxel TACs in the frame-by-frame image. The deviation in
307 time-to-peak for ROIs in the d?EM images, meanwhile, is often less than half that of the
08 corresponding region in the dEM image. Deviations are also generally larger for regions
20 with slower washout (Phantom B, region 4 of Phantom A), using either method. This is
s due to the fact that the activity in these regions does not peak as sharply as in the others,
su leaving more room for ambiguity about the time of peak activity. Correspondingly, these
a2 are the regions that appear to be most improved in the d?EM image in Fig. 4. Using frame-
a3 by-frame OSEM, the mean time-to-peak is generally closer to the true peak, but there is
sus still considerable variation in time-to-peak between voxels, especially in regions with slow
s1s washout.

u6 A paired t-test on the error measures in all 8 regions considered (both phantoms) indicated
27 that €, ¢ and S values were all significantly smaller using d?EM over dEM (p = 0.008, 0.018
us and 0.0004, respectively). Both S and e were also considered to be significantly improved
20 (p < 0.05) if the two phantoms were considered separately (2 tests with 4 samples). A t-test
20 of the error measures in the d?EM image versus the OSEM image indicated that only e
21 was significantly smaller in the OSEM images of both phantoms. Thus, d?EM performed
2 comparably to frame-by-frame OSEM in terms of the accuracy of TAC shapes (S) and the
23 amount of variation between TACs (), despite the much smaller amount of data used to

324 Teconstruct the image.

»s B. Healthy volunteer experiment

»6  Fig. 5 shows the mean TAC and a sample of voxel TACs for the four cubical ROIs defined
27 in the volunteer study. It is apparent that d?EM has indeed resulted in smoother TACs,
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»s both at the voxel level and on the aggregate. In the inferior left kidney ROI, for instance,
»9 the variation in TACs in the dEM image has resulted in a mean TAC that peaks twice,
33 which is most likely unphysical. The mean TAC in the d?EM reconstructed image appears
s more reasonable, although some voxel TACs do show incorrect behavior, such as strictly
s decreasing or nearly constant activity. In the other three regions, the peak locations and
s magnitudes are fairly consistent between the dEM and d?EM images; the main difference
34 is that the TAC in the d?EM image peaks more gradually than in the dEM image. In all
135 cases, peak activity occurs between 2 and 3 minutes on average, which is consistent with the

t32. Given that abnormal behavior

136 expected renal time-to-peak for DTPA in a healthy adul
;7 may manifest itself in only a small part of the organ, it is encouraging that both dEM and
1 d2EM provide realistic TACs even for small ROIs such as the ones used here.

19 The calculated error measures are summarized in Table II. Paired t-testing indicates
10 that & was not significantly improved in the dEM image (p = 0.23), but the shape error
s § was significantly improved (p = 0.004). This indicates that the shapes of voxel TACs
w2 in the four regions were generally more consistent in the d?’EM image, but that there was
a3 considerable spread in TAC magnitude using either method. More consistent TAC shapes
ss within an ROI is an improvement since it gives more confidence that averaging the TAC
1s over that ROI (as would most likely be done in a clinical study) gives a good indication of
us the kinetics in that region; if TAC shapes vary drastically within a region, it is not clear
sz whether the average TAC is physically meaningful. Finally, standard deviation of time-to-
us peak was not significantly improved, which is not surprising since the washout of tracer in
a9 this situation was relatively fast, resulting in a well-defined peak in activity. Overall, the
350 results of the volunteer experiment are consistent with the annulus simulations, despite the
51 much greater complexity of the former. The d?EM algorithm has resulted in smoother TACs

32 and significantly more consistent TAC shapes within each region of interest.

33 VI. CONCLUSION

s« In this paper we have presented a novel dynamic SPECT reconstruction algorithm, de-
355 noted d?EM, for reconstruction of images from data acquired using a single slow camera
356 rotation. The d2EM method is an extension of the existing dEM algorithm, which provides

37 temporal regularization of the reconstructed image by constraining the first derivative of the
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s TAC in every image voxel. The d?EM algorithm instead constrains the second derivative
30 of every TAC, allowing it to change sign at most once. The goal of this modification is
30 to provide TACs with smoother shapes than those obtained using dEM, since physiology
e suggests that uptake and washout of tracers should follow a smooth curve.

w2 Digital phantom experiments indicate that the d?EM algorithm provides some improve-
33 ments in addition to the smoother temporal behavior that results from the stronger con-
s straint. Voxel TACs in the d?EM images have substantially more consistent shapes within
s Tegions of interest, especially when tracer kinetics are relatively slow. Standard deviation of
366 time-to-peak in each voxel in some ROIs of this type has been reduced by a factor of two or
37 more using d?’EM (cf. Table I). When averaged over a ROI, the mean TACs provided by
ses either method are quite similar.

%0 An overall measure of the standard deviation between all TACs within a ROI is only
s incrementally reduced using d2EM. This is indicative of the fact that even though TAC
sn shapes are more consistent, there is still considerable variation in the magnitude of TACs
s within a ROI using either method. The variation in TAC magnitudes is comparable to that
s3 observed when a frame-by-frame OSEM reconstruction approach is used, however, indicating
a4 that it does not arise as a result of the dEM/d*EM method. Variation in the magnitude
ss of TACs could potentially be reduced by including some spatial regularization, such as a
w6 smoothing prior, into the algorithm.

s7 - Dynamic renal 99mMTe DTPA data were acquired for one healthy adult volunteer. Recon-
s structed images obtained using both the dEM and d?EM algorithms provided physiologically
wo realistic TACs in four small ROIs defined in the kidneys. TACs obtained from the d?EM
30 Teconstruction were noticeably smoother than those obtained from dEM, and had more
a1 consistent shapes within each ROI. For renal applications, where uptake and washout take
s place over several minutes, the smoother TACs provided by d2EM are more in line with the
33 expected physiological behavior. For clinical applications where tracer kinetics are expected
1 to be faster than renal studies (e.g. dynamic cardiac imaging with 99mTc—Teb0roxime),
s it is not clear whether d?EM would provide better results than dEM, as higher temporal
s sampling may be needed to expect a smooth TAC. The ability of d?EM to recover accurate,
se7 three-dimensional information about dynamic in vivo processes could be further validated
% by comparing dynamic SPECT images reconstructed using d?EM to images of the same

ss9 dynamic processes using more well-established methods, such as dynamic PET imaging.
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w0  Overall, we conclude that the d?EM algorithm provides an improvement on dEM in terms
sa of providing smoother, more consistent TAC shapes within dynamic regions of interest. Ad-
12 ditionally, phantom experiments indicate that d2EM performs comparably in many respects
33 to a frame-by-frame OSEM approach, even when much more limited projection data is
s04 available to the former. Thus, even in cases where multiple views through the object are
s available for every frame, d?EM may provide improvements over a separate frame-by-frame

306 reconstruction approach.
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