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Purpose: Dynamic tracer behavior in the human body arises as a result of con-

tinuous physiological processes. Hence, the change in tracer concentration within a

region of interest (ROI) should follow a smooth curve. We propose a modification

to an existing slow-rotation dynamic SPECT reconstruction algorithm (dSPECT)

with the goal of improving the smoothness of time activity curves (TACs) and other

properties of the reconstructed image.

Methods: The new method, denoted d2EM, imposes a constraint on the second

derivative (concavity) of the TAC in every voxel of the reconstructed image, allowing

it to change sign at most once. Further constraints are enforced to prevent other

non-physical behaviors from arising. The new method is compared to dSPECT using

digital phantom simulations and experimental dynamic 99mTc-DTPA renal SPECT

data, to assess any improvement in image quality.

Results: In both phantom simulations and healthy volunteer experiments, the d2EM

method provides smoother TACs than dEM, with more consistent shapes in regions

with dynamic behavior. Magnitudes of TACs within an ROI still vary noticeably

in both dSPECT and d2EM images, but also in images produced using an OSEM

approach that reconstructs each time frame individually, based on much more com-

plete projection data. TACs produced by averaging over a region are similar using

either method, even for small ROIs. Results for experimental renal data show ex-

pected behavior in images produced by both methods, with d2EM providing some-

what smoother mean TACs and more consistent TAC shapes.

Conclusion: The d2EM method is successful in improving the smoothness of time

activity curves obtained from the reconstruction, as well as improving consistency of

TAC shapes within ROIs.
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I. INTRODUCTION11

In single photon emission computed tomography (SPECT), the distribution of a radioac-12

tive tracer inside a patient is estimated based on a set of projections acquired sequentially13

as the camera rotates around him or her. In a conventional SPECT study, the tracer distri-14

bution is assumed to be static during acquisition. There are applications, however, where it15

would be useful to administer an agent with fast uptake and washout, and to assess function16

by measuring the rate at which the activity concentration changes.17

Many dynamic SPECT methods have been developed since the mid-1990s; an excellent18

review is presented in [1]. One approach is to perform repeated fast (e.g. 5- to 60-second)19

rotations of the camera to acquire multiple sets of projection data. Projections acquired20

in a single rotation are then assumed to be consistent, and a series of 3D images (time21

frames) is reconstructed using a conventional static SPECT algorithm such as ordered sub-22

sets expectation maximization (OSEM)2. This approach has been studied most notably for23

99mTc-Teboroxime cardiac imaging3–10, as well as applications such as lung11 and kidney12
24

imaging. Images produced by this method, however, tend to be noisy and suffer from ar-25

tifacts due to the changing tracer distribution and the low number of counts acquired per26

projection. Other fast-rotation approaches, therefore, estimate kinetic parameters directly27

from projection data using kinetic modeling13–16, to avoid bias due to image artifacts. A28

modification of this approach improves computational efficiency by using spatiotemporal29

B-spline basis functions to represent the time activity curve (TAC) in every voxel17,18. A30

third method uses a 4D maximum a posteriori (MAP) algorithm with a compartmental31

model-based prior, which encourages TACs to conform to the model19.32

All of these approaches require a camera capable of multiple fast rotations. Dedicated33

cardiac camera systems20,21 which are well-suited to dynamic studies have also been devel-34

oped in recent years. These cameras use novel geometries and improved detection to increase35

sensitivity and acquire multiple views through a patient simultaneously, without the use of a36

rotating camera gantry. Dynamic SPECT reconstruction using these cameras typically fol-37

lows the same principle as the early fast rotation methods; namely, a conventional technique38

such as OSEM is used to reconstruct each time frame of the image separately. No temporal39

consistency between time frames of the dynamic image is enforced using this approach, as40

each time frame is reconstructed based only on the data corresponding to that frame.41
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At the present time the vast majority of systems available in clinics are standard SPECT42

systems which acquire data over a single slow camera rotation (10-20 minutes), precluding43

the use of these methods. Dynamic SPECT imaging on these systems requires reconstruct-44

ing an image from extremely inconsistent projection data, as the tracer distribution changes45

drastically during the acquisition. As a result, one must make assumptions about the dy-46

namic behavior of the tracer in order to obtain a sensible image. Early methods22,23 assumed47

that activity decayed exponentially in every voxel, and estimated the decay coefficients di-48

rectly from the projection data. The factor analysis approach,24 meanwhile, assumes that49

the dynamic activity in every voxel is a linear combination of a small number of time-50

dependent functions (factors). The reconstruction algorithm then determines the shapes of51

these factors and the coefficient of each factor in every dynamic voxel.52

Our dSPECT method25–27 is another approach which constrains the solution by restricting53

the temporal behavior of activity in every voxel, using linear inequalities. In particular,54

activity in a voxel is allowed only to increase, decrease, or increase to a peak value and then55

decrease. In essence, the first derivative of every TAC is allowed to change sign at most56

once. The constraint is independently imposed on every voxel, allowing different behavior57

in different regions of the image if required. This method eliminates a large number of58

unphysical solutions which still fit the projection data well, and unlike other approaches,59

does not require any a priori determination of a suitable set of basis functions or factors to60

model the temporal behavior. Although initially developed for single slow rotation dynamic61

SPECT reconstruction, the main characteristic of the dSPECT method is that it processes62

all data simultaneously. Thus, it can also be applied in cases where more complete projection63

data is available – such as dynamic positron emission tomography or dynamic imaging on64

the new dedicated cardiac systems – to link frames of the image temporally.65

Since dynamic tracer behavior within the body arises as a result of continuous physio-66

logical processes, we expect that the TACs for a given region of interest (ROI) should be67

fairly smooth, provided adequate temporal sampling. While dSPECT does eliminate many68

nonphysical solutions, it does not require the TAC in every voxel to be smooth. As a result,69

TACs with unphysical behavior, such as sharp spikes, have been observed in images recon-70

structed with dSPECT. In this paper, we propose a modification to dSPECT which instead71

of acting on the first derivative, constrains the second derivative of the TAC in every image72

voxel. The method, denoted d2EM, guarantees smoother TACs than dSPECT. Using digital73
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phantom simulations and preliminary experiments on a healthy volunteer, we investigate the74

performance of the new method to assess whether it improves image quality.75

II. METHOD76

A. dSPECT algorithm77

The dSPECT constraint is imposed with a difference tensor, denoted A, which acts on78

the vector x representing the 4D distribution of activity to define a new vector,79

x̃ = Ax. (1)

The tensor maps the vector x, consisting of the activity values in every voxel at every time80

frame, to the vector x̃, consisting of activity differences between sequential time frames81

for every voxel. The dSPECT algorithm then iteratively optimizes over x̃ using either a82

constrained least squares (CLS) or dynamic expectation maximization (dEM) approach. In83

this study we consider only the latter, as it is more computationally efficient28. The dEM84

update formula is analogous to maximum likelihood expectation maximization (MLEM)29:85

x̃
(n+1)
i,k =

x̃
(n)
i,k

∑

j

(

Cij,kA
−1
i,k

)

∑

j

Cij,kA
−1
i,k

pj,k
∑

i Cij,kA
−1
i,k x̃

(n)
i,k

, (2)

where p is the vector of acquired projection data, C is the system matrix modeling the prop-86

agation of photons from the patient body to the detector, i is the index corresponding to87

voxels in image space, j is the index corresponding to pixels in projection space, and k is the88

temporal index corresponding to each time frame. In dSPECT, every projection is assumed89

to correspond to a different distribution of activity, so the total number of time frames recon-90

structed is equal to the number of camera stops. The system matrix may include standard91

SPECT effects such as depth-dependent collimator response and patient-specific attenua-92

tion. Attenuation correction is particularly important in slow-rotation dynamic SPECT,93

since without it one cannot separate the effect of attenuation on the projection data, which94

varies as the camera rotates, from the effect of changing tracer distribution.95

The fact that the dEM update formula (2) preserves positivity of x̃ allows the desired96

temporal behavior to be imposed on every voxel by A. For instance, to impose strictly97

increasing behavior on voxel i, x̃ contains the entries (xi,2 − xi,1), (xi,3 − xi,2), etc. Since98
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these differences are positive in x̃, mapping x̃ back to x results in an increasing TAC. For99

increasing behavior, x̃ also contains xi,1, the activity value in the first time frame. This100

provides a one-to-one mapping between x and x̃, and ensures that the TAC for voxel i101

remains positive. Decreasing behavior is enforced similarly. For a TAC that increases and102

then decreases, the time of peak activity is not known a priori, so the algorithm allows the103

assumed time-to-peak for every voxel to be adjusted in between iterations, based on the104

data. Then increasing behavior can be enforced prior to the peak point, and decreasing105

behavior afterwards.106

B. Second derivative constraint107

In this paper we introduce a dEM-like algorithm, denoted by d2EM, that imposes a second108

derivative (concavity) constraint on the TAC in every voxel. Just as dEM allows the first109

derivative of the TAC in every voxel to change sign at most once, d2EM allows the concavity110

of the TAC to change at most once; from concave up to concave down, or vice-versa. The111

first derivative may only change sign once as well, to ensure that any solution generated112

by d2EM satisfies the dSPECT first-derivative constraint. The constraint is imposed in113

the same way as in dEM, using a modified difference tensor and the fact that the update114

formula (2) preserves positivity of the vector x̃. In d2EM, rather than consisting of activity115

differences, x̃ consists mostly of second differences. For instance, the mapping116

x̃i,k = xi,k−1 − 2xi,k + xi,k+1 (3)

forces the right-hand side to be positive, ensuring that the TAC for voxel i has a positive117

second derivative (concave up) at time frame k. Some first difference and activity values118

at the endpoints of the TAC are also included in x̃, to ensure positivity of the TAC and119

maintain a one-to-one mapping with x.120

Since the shape of the TAC in every voxel is not known a priori, the d2EM algorithm121

must allow the assumed behavior to be adjusted in between iterations, based on the data.122

As mentioned earlier, in dEM the assumed time of peak activity in a voxel can shift to123

an earlier or later time frame, if the data suggest that the current assumption is incorrect.124

Since d2EM is based on the second derivative, it is the time of the inflection point, where125

the concavity of the TAC changes, that is adjusted. So, for instance, if the TAC in a voxel126
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is initially assumed to be entirely concave down, but the data suggest that the latter part127

of the TAC should be concave up, then this part of the TAC will approach zero concavity128

after several iterations of the algorithm. This situation indicates that the assumed behavior129

for that voxel should instead be a TAC that is initially concave down, then concave up.130

III. EXPERIMENTS131

A. Annulus phantom simulation132

The performance of d2EM was first tested using two simple 64x64-voxel annulus phan-133

toms, denoted A and B, which were similar to those used in some previous studies27,30,31. The134

annulus in both phantoms was subdivided into four regions of equal size, and surrounded135

by low-intensity, constant background activity. Additionally, a circular “cold” region con-136

taining no activity was included inside the annulus. Dynamic activity for each region was137

generated over 64 time frames, using a dual-exponential function:138

x(t) = A0

(

−e−λ1t + eλ2t
)

, (4)

where λ1 and λ2 were varied in each region to model different behavior. The phantoms and139

the associated TACs are illustrated in Fig. 1. In order to assess the performance of the140

method for a variety of dynamic situations, Phantom A featured relatively fast uptake and141

washout of activity (half-life of 2 to 16 minutes), while in Phantom B the washout was more142

gradual (20 minutes).143144

Acquisition was modeled as a dual-head (90◦ mode) full rotation (360◦ per head) over145

20 minutes, with 64 stops (roughly 20 seconds per frame). Projections were generated146

analytically, with Poisson noise added afterwards in proportion to the total counts. No147

attenuation or collimator blurring were included in the projection model. Images were148

reconstructed using 60 iterations of both dEM and d2EM, as further iterations did not149

noticeably improve image quality.150

To provide further context, dynamic images of the two phantoms were also reconstructed151

using an OSEM-based approach. For these images, projection data consisting of 64 views152

around the object for each of the 64 time frames was generated, modeling a ring SPECT-153

like system with 64 heads. Thus, 32 times as many views were acquired per time frame154

(compared to the projection data used by dEM and d2EM), while the counts for each view155
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FIG. 1. Annulus phantom used for computer simulation. Left: Image of a single time frame of

the phantom, showing the four regions plus cold spot. Right: TACs for each of the four regions

in Phantom A (top) and Phantom B (bottom), showing the number of counts in each voxel as a

function of time. Red, blue, green and black TACs correspond to regions 1, 2, 3 and 4, respectively.

Background activity was 5 counts/voxel.

were not reduced, as they would be by a fast-rotating camera. Six iterations of OSEM with156

8 subsets were then used to reconstruct each frame of the dynamic images separately. These157

images provided a “gold standard” against which to judge the performance of the two other158

methods.159

For analysis of the results, ROIs were defined for each of the four annulus regions, using160

the true boundaries. The images were then compared using the following measures:161

1. The mean TAC was computed for each ROI and then compared to the true one. The162

relative error of the mean TAC was calculated as163

ε =
∥

∥

∥τrec − τtr
∥

∥

∥

2

/

∥

∥

∥τtr
∥

∥

∥

2
× 100% (5)

where ‖·‖2 is the l2 norm (Euclidean distance), τrec is the 1 × 64 vector representing164

the mean TAC for that region obtained from the reconstructed image, and τtr the165

equivalent vector representing the true TAC. This error provided a measure of how166

well each method performed in an aggregate sense over the entire ROI.167
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2. Weighted relative standard deviation between TACs in every voxel of the ROI was168

calculated as169

σ̄ =
K
∑

k=1

Wk

σk

νk

× 100%, (6)

where σk is the standard deviation between true and reconstructed activities at time

k for every voxel in the ROI, νk is the true activity at time k for a voxel in the ROI,

and the weighting factor is

Wk = νk

/

K
∑

k′=1

νk′ .

This was a more severe error measure than ε, as it penalized deviation from the true170

TAC in any voxel, rather than comparing an aggregate TAC over the whole region. It171

quantified the amount of variation that occurred within a region of the reconstructed172

image that was known to be spatially uniform in truth.173

3. An average relative “shape error” was calculated for each region of interest using the174

following formula:175

S =
1

I

I
∑

i=1

(

∥

∥

∥τtr − αiτ
rec
i

∥

∥

∥

2

/

∥

∥

∥τtr
∥

∥

∥

2

)

× 100% (7)

where I is the number of voxels in the ROI, τrec
i is the 1× 64 vector representing the

reconstructed TAC in voxel i, τtr is the true TAC vector for that ROI, and αi is the

scaling factor which minimizes the l2 norm difference between the two vectors:

αi =
τtr · τrec

i

τrec
i · τrec

i

.

(Here · is the dot product between the two vectors). The average shape error was used176

to measure how consistent the shapes of TACs were inside each ROI, while ignoring177

their magnitudes. If the shape of the TAC in a voxel of the reconstructed image was178

close to the true shape, then the difference between them would be small after scaling;179

if their shapes were different, then the difference would still be relatively large. A180

small value of S meant that the kinetic behavior indicated by the TACs at the voxel181

level was generally correct, even if there was variation in magnitude.182

4. The time-to-peak activity was recorded for every voxel in each ROI, and the mean183

and standard deviation of times-to-peak were calculated. This measure was intended184

to assess how consistent the time-to-peak in every voxel was in each region, as time-185

to-peak is often a quantity of interest in dynamic imaging.186
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The TACs in the “cold” region were also examined, but these error measures were not187

calculated since they are not applicable to a region with no activity.188

B. Healthy volunteer experiment189

One potential clinical application of dynamic SPECT is assessment of renal function190

by examining washout of 99mTc-DTPA or 99mTc-MAG3 in the kidneys. Current clinical191

protocol for dynamic renal imaging typically consists of a planar scintigram acquired from192

behind the patient. By drawing 2D ROIs over the cortex region of each kidney, it is possible193

to obtain a TAC for each kidney as a qualitative measure of renal function. Planar imaging,194

however, is unable to correct for patient-specific attenuation and effects due to organ overlap;195

both of which are accounted for in a 3D SPECT scan.196

Dynamic 99mTc-DTPA (370 MBq) renal images of a single consenting healthy adult197

volunteer were acquired using a dual-head Siemens Symbia T2 SPECT/CT system with198

detectors positioned at 90◦, and attenuation correction data provided by the 2 slice CT199

scanner. The camera rotated over 360◦ per head, with 64 stops lasting 20 seconds each.200

Images consisting of forty-four 128 × 128-voxel slices and sixty-four 20 second time frames201

were reconstructed using 80 iterations of both dEM and d2EM. Voxels were 4.79 mm per202

side, and the effects of attenuation and collimator blurring were incorporated into the system203

matrix. As mentioned in Section II, attenuation correction is essential to separate the204

effects of attenuation on projection data from those of tracer kinetics. In the absence of a205

SPECT/CT system, an attenuation map from a transmission scan or separately acquired206

CT image would be necessary.207

Since the true distribution of activity was not known in this experiment, it was not pos-208

sible to use the same quality measures as in the phantom simulations. Nor was it possible209

to compute OSEM-based images as a point of comparison, since no equipment capable of210

acquiring multiple views of the patient simultaneously was available. Additionally, while211

activity distributions in the phantom simulations were known to be spatially uniform within212

ROIs, in reality each living kidney may contain several regions with different dynamic be-213

haviors. In particular, uptake in the renal pelvis occurs later than in the cortex since DTPA214

filters through the cortex before arriving at the pelvis; furthermore, the cortex itself is215

comprised of numerous individual lobes, which may also exhibit different concentrations of216
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FIG. 2. Volume rendering of segmentation used for healthy volunteer renal data (posterior view).

Faint outline shows left and right kidney cortices, with pelves shown in blue and ROIs shown as

red cubes. Light patches around edges appear due to the volume rendering. Figure prepared with

the assistance of A. Saad.33

activity or time-to-peak32. Thus, assuming uniform dynamic behavior in an entire kidney217

could lead to misleading evaluations.218

Thus, in order to analyze the reconstructed images, small ROIs were defined in the219

cortex regions of each kidney. To generate these ROIs, the image was first segmented into220

four regions corresponding to the left and right kidney cortices and pelves, using a user-221

assisted dynamic segmentation algorithm33. By examining the segmentation, 4×4×4-voxel222

cubes, corresponding to a real volume of about 7 cm3, were then defined in the inferior and223

superior regions of each kidney, giving four ROIs in total (Fig. 2). Due to the small size224

of each ROI, the true behavior within them was expected to be fairly consistent. Weighted225

relative standard deviation and average shape error were calculated for each region, with226

the mean TAC for the region used as a surrogate for the true TAC in formulas (6) and (7).227

Mean and standard deviation of time-to-peak within each ROI were also calculated.228
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FIG. 3. Selected 64x64-voxel time frames of reconstructed annulus phantom images, for Phantom

A. Top row shows frames from the phantom (the truth), second row the corresponding frames from

the dEM image, third row the d2EM image, and fourth row the frame-by-frame OSEM image.

IV. RESULTS229

Time frames of the true phantom and of the three reconstructed images for Phantom A230

are shown in Fig. 3. Images of Phantom B are not shown, but were qualitatively similar.231

Fig. 4 shows individual voxel TACs from each ROI of the dEM, d2EM and frame-by-frame232

OSEM images for both phantoms, as well as the true and mean TACs for the ROI. The233

calculated error measures, ε, σ̄, S, and mean ± standard deviation of time-to-peak, are234

shown in Table I.235
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FIG. 4. Representative voxel TACs (counts vs time) from each ROI for the two annulus phantoms,

from images reconstructed using the dEM, d2EM and frame-by-frame OSEM approaches. Voxel

TACs shown as black solid lines, with true TAC shown as a red line and mean TAC for the entire

region shown as a light blue line. For the purpose of clarity, only the TACs from 12 randomly

selected voxels (out of 53 total) in each of the four dynamic regions are shown in each plot. Please

note the change in y-axis scale for some regions.

For the healthy volunteer experiment, the mean TAC and voxel TACs for each of the four236

ROIs are shown in Fig. 5. Error measures are provided in Table II.237
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FIG. 5. TACs in the four ROIs (inferior and superior regions of right and left kidneys) in the

dynamic renal study, for the dEM (left column) and d2EM (right column) reconstructions. Sixteen

randomly selected voxel TACs (out of 64 total) in the region are shown as black solid lines, with

the mean TAC for the entire region shown as a light blue line. X-axis shows time in minutes; y-axis

shows counts.
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Phantom A Phantom B

Region Method ε σ̄ S true peak mean peak ε σ̄ S true peak mean peak

(%) (%) (%) (min) (min) (%) (%) (%) (min) (min)

dEM 27.4 45.8 23.6 1.7 ± 0.6 12.7 22.7 10.2 4.4 ± 1.8

r1 d2EM 20.0 40.8 17.0 1.6 1.8 ± 0.4 11.2 23.0 10.1 3.1 4.9 ± 1.6

OSEM 9.9 31.9 11.2 1.7 ± 0.3 8.9 22.3 7.1 4.0 ± 1.3

dEM 13.5 25.7 15.2 2.7 ± 0.7 11.2 23.3 10.0 5.6 ± 2.2

r2 d2EM 13.1 24.0 10.7 3.1 3.1 ± 0.4 10.2 22.8 7.7 5.0 6.0 ± 1.0

OSEM 8.9 22.5 9.0 3.0 ± 0.6 8.6 22.0 7.1 5.5 ± 1.3

dEM 14.2 24.1 11.1 5.4 ± 1.1 11.2 25.3 11.0 9.3 ± 3.6

r3 d2EM 10.6 23.4 7.2 5.6 5.9 ± 0.6 10.1 24.0 6.6 7.8 9.1 ± 1.2

OSEM 9.1 22.6 7.4 5.9 ± 1.0 8.7 22.1 7.4 8.2 ± 1.3

dEM 13.4 26.0 11.3 13.1 ± 3.8 12.8 24.5 12.1 15.2 ± 3.6

r4 d2EM 10.7 24.5 6.9 10.9 13.4 ± 1.9 10.3 23.6 9.0 11.9 15.4 ± 1.9

OSEM 9.0 23.7 7.0 11.2 ± 2.2 8.5 21.6 8.8 12.6 ± 2.4

TABLE I. Error measures for dynamic regions in the two annulus simulations. Formulas for ε, σ̄ and

S are given in equations (5), (6) and (7), respectively. Mean peak shows the average time-to-peak

for every TAC in the region, ± the standard deviation among times-to-peak.

V. DISCUSSION238

A. Annulus phantom simulation239

Most time frames of the reconstructed images (Fig. 3) are fairly similar in appearance240

whether using dEM or d2EM. The most noticeable differences occur in the first and last241

time frames. For both Phantoms A and B (the latter is not shown), the last time frame is242

less noisy using d2EM than dEM, likely due to the stronger d2EM constraint. In the dEM243

reconstruction, the activity in a given voxel for the final time frame is constrained only by244

the activity in the same voxel in the second-last time frame; for instance, for increasing245

activity, the activity in that voxel must be greater in the final frame than in the one before.246

In d2EM, the activity in the last frame is restricted by the activity in both the second- and247
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Region Method σ̄ S mean peak

(%) (%) (min)

RK inf. dEM 15.6 7.4 2.7 ± 0.8

d2EM 15.4 5.2 2.3 ± 0.4

RK sup. dEM 14.2 6.4 2.6 ± 0.6

d2EM 13.7 4.4 2.2 ± 0.5

LK inf. dEM 15.5 11.9 2.4 ± 0.8

d2EM 14.5 8.4 2.4 ± 0.9

LK sup. dEM 16.1 5.7 2.5 ± 0.5

d2EM 16.7 4.0 2.4 ± 0.3

TABLE II. Error measures for regions in the inferior and superior regions of the right and left

kidneys in the volunteer patient images.

third-last time frames, since the constraint acts on the concavity of the TAC. Thus, the248

activity in the final frame is more strongly tied to activity in the preceding frames, and as249

a result, less variation occurs. The same argument holds for the first time frame. For this250

phantom, however, the first time frame appears noisy using either method; probably due to251

the fact that counts in this frame are low.252

The time frames reconstructed using frame-by-frame OSEM are visually superior to those253

obtained using dEM and d2EM, which is to be expected given the greater number of views254

that were used. The first frame in particular is much more accurately reconstructed. At255

two minutes (second column of Fig. 3), some blurring is visible around region 1 in the dEM256

and d2EM images, which is not present in the OSEM image. This artifact is also due to257

the fact that the dEM and d2EM images are based on data where only two views of the258

object per time frame are available. Both dEM and d2EM link the time frames of the image259

together through the temporal constraint, so each reconstructed time frame of the image260

is affected by views corresponding to preceding and subsequent time frames as well. When261

the tracer concentration is changing quickly in a region, however, then the projection data262

corresponding to that region is very inconsistent. As a result, only the views from a small263

number of angles affect the reconstruction of the region over that time period, and blurring264

results. In general, however, the dEM and d2EM images are in very good agreement with265

16



the frame-by-frame OSEM image, especially given the much smaller amount of data that266

was used to reconstruct them.267

Analysis of TACs within each region (Fig. 4) reveals more differences. The TACs at the268

voxel level (black lines) in the d2EM image have more consistent shapes and fewer “outly-269

ing” TACs with noticeably different shapes from the true one. In region 4 of Phantom A,270

for instance, there are several TACs with incorrect dynamic behavior in the dEM image,271

including some showing increasing uptake rate in the last few time frames, and several with272

sharp peaks around the 10-minute mark. In the d2EM image, most of the voxel TACs in273

this region have a very similar shape, although there is still variation in magnitude. This is274

true in other regions shown in Fig. 4 as well, particularly those with slower washout rates.275

The voxel TACs in regions 1 and 2 of Phantom A, which have the fastest kinetics, appear276

similar using either dEM or d2EM.277

The voxel TACs obtained from the frame-by-frame OSEM images generally have the cor-278

rect shape, but are not smooth since each frame has been reconstructed separately, without279

any constraint or condition on the temporal behavior of the activity in each voxel. The vari-280

ation in magnitude among voxel TACS within regions appears comparable to that observed281

in the dEM and d2EM images. Thus, it appears that this spread among voxel TACs is in-282

herent to the reconstruction problem itself – perhaps due the use of an EM-based approach283

– rather than being a drawback of the dEM and d2EM methods specifically.284

The mean TAC in most regions (blue lines) is very similar using either dEM or d2EM,285

despite the large differences between TAC shapes at the voxel level observable in Fig. 4.286

Even when each region was subdivided into small contiguous subregions of only 12-15 voxels287

each, the mean TACs for each subregion were very similar. Thus, the performances of dEM288

and d2EM are comparable when TACs are averaged over a region, and it is mainly at the289

voxel level that improvements are apparent. The mean TAC obtained from the frame-by-290

frame OSEM approach, meanwhile, is somewhat closer to the true TAC (red lines) than the291

mean TAC obtained using the other two methods; most notably in region 1 of Phantom A,292

where both dEM and d2EM underestimate the true activity. This underestimation is due293

to the blurring of this region visible in Fig. 3.294

The calculated error measures are summarized in Table I. In general the values of ε295

using d2EM are somewhat smaller than for dEM, but the improvement is not large since296

this quantity reflects the error in the mean TAC, which is fairly similar using either method.297
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Values of σ̄ also show only an incremental improvement using d2EM, since the variation in298

TAC magnitudes at the voxel level is comparable, as observed in Fig. 4. Values of σ̄ obtained299

from the frame-by-frame OSEM reconstruction are also of roughly the same magnitude in300

most regions.301

The shape error, S, is notably smaller for the d2EM images. This is indicative of the302

fact that the shapes of TACs in individual voxels were generally more consistent and closer303

to the true shape when d2EM was used. In some regions, the shape error using d2EM is304

smaller than that obtained using frame-by-frame OSEM as well; this is probably due to305

the lack of smoothness among voxel TACs in the frame-by-frame image. The deviation in306

time-to-peak for ROIs in the d2EM images, meanwhile, is often less than half that of the307

corresponding region in the dEM image. Deviations are also generally larger for regions308

with slower washout (Phantom B, region 4 of Phantom A), using either method. This is309

due to the fact that the activity in these regions does not peak as sharply as in the others,310

leaving more room for ambiguity about the time of peak activity. Correspondingly, these311

are the regions that appear to be most improved in the d2EM image in Fig. 4. Using frame-312

by-frame OSEM, the mean time-to-peak is generally closer to the true peak, but there is313

still considerable variation in time-to-peak between voxels, especially in regions with slow314

washout.315

A paired t-test on the error measures in all 8 regions considered (both phantoms) indicated316

that ε, σ̄ and S values were all significantly smaller using d2EM over dEM (p = 0.008, 0.018317

and 0.0004, respectively). Both S and ε were also considered to be significantly improved318

(p < 0.05) if the two phantoms were considered separately (2 tests with 4 samples). A t-test319

of the error measures in the d2EM image versus the OSEM image indicated that only ε320

was significantly smaller in the OSEM images of both phantoms. Thus, d2EM performed321

comparably to frame-by-frame OSEM in terms of the accuracy of TAC shapes (S) and the322

amount of variation between TACs (σ̄), despite the much smaller amount of data used to323

reconstruct the image.324

B. Healthy volunteer experiment325

Fig. 5 shows the mean TAC and a sample of voxel TACs for the four cubical ROIs defined326

in the volunteer study. It is apparent that d2EM has indeed resulted in smoother TACs,327
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both at the voxel level and on the aggregate. In the inferior left kidney ROI, for instance,328

the variation in TACs in the dEM image has resulted in a mean TAC that peaks twice,329

which is most likely unphysical. The mean TAC in the d2EM reconstructed image appears330

more reasonable, although some voxel TACs do show incorrect behavior, such as strictly331

decreasing or nearly constant activity. In the other three regions, the peak locations and332

magnitudes are fairly consistent between the dEM and d2EM images; the main difference333

is that the TAC in the d2EM image peaks more gradually than in the dEM image. In all334

cases, peak activity occurs between 2 and 3 minutes on average, which is consistent with the335

expected renal time-to-peak for DTPA in a healthy adult32. Given that abnormal behavior336

may manifest itself in only a small part of the organ, it is encouraging that both dEM and337

d2EM provide realistic TACs even for small ROIs such as the ones used here.338

The calculated error measures are summarized in Table II. Paired t-testing indicates339

that σ̄ was not significantly improved in the dEM image (p = 0.23), but the shape error340

S was significantly improved (p = 0.004). This indicates that the shapes of voxel TACs341

in the four regions were generally more consistent in the d2EM image, but that there was342

considerable spread in TAC magnitude using either method. More consistent TAC shapes343

within an ROI is an improvement since it gives more confidence that averaging the TAC344

over that ROI (as would most likely be done in a clinical study) gives a good indication of345

the kinetics in that region; if TAC shapes vary drastically within a region, it is not clear346

whether the average TAC is physically meaningful. Finally, standard deviation of time-to-347

peak was not significantly improved, which is not surprising since the washout of tracer in348

this situation was relatively fast, resulting in a well-defined peak in activity. Overall, the349

results of the volunteer experiment are consistent with the annulus simulations, despite the350

much greater complexity of the former. The d2EM algorithm has resulted in smoother TACs351

and significantly more consistent TAC shapes within each region of interest.352

VI. CONCLUSION353

In this paper we have presented a novel dynamic SPECT reconstruction algorithm, de-354

noted d2EM, for reconstruction of images from data acquired using a single slow camera355

rotation. The d2EM method is an extension of the existing dEM algorithm, which provides356

temporal regularization of the reconstructed image by constraining the first derivative of the357
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TAC in every image voxel. The d2EM algorithm instead constrains the second derivative358

of every TAC, allowing it to change sign at most once. The goal of this modification is359

to provide TACs with smoother shapes than those obtained using dEM, since physiology360

suggests that uptake and washout of tracers should follow a smooth curve.361

Digital phantom experiments indicate that the d2EM algorithm provides some improve-362

ments in addition to the smoother temporal behavior that results from the stronger con-363

straint. Voxel TACs in the d2EM images have substantially more consistent shapes within364

regions of interest, especially when tracer kinetics are relatively slow. Standard deviation of365

time-to-peak in each voxel in some ROIs of this type has been reduced by a factor of two or366

more using d2EM (cf. Table I). When averaged over a ROI, the mean TACs provided by367

either method are quite similar.368

An overall measure of the standard deviation between all TACs within a ROI is only369

incrementally reduced using d2EM. This is indicative of the fact that even though TAC370

shapes are more consistent, there is still considerable variation in the magnitude of TACs371

within a ROI using either method. The variation in TAC magnitudes is comparable to that372

observed when a frame-by-frame OSEM reconstruction approach is used, however, indicating373

that it does not arise as a result of the dEM/d2EM method. Variation in the magnitude374

of TACs could potentially be reduced by including some spatial regularization, such as a375

smoothing prior, into the algorithm.376

Dynamic renal 99mTc-DTPA data were acquired for one healthy adult volunteer. Recon-377

structed images obtained using both the dEM and d2EM algorithms provided physiologically378

realistic TACs in four small ROIs defined in the kidneys. TACs obtained from the d2EM379

reconstruction were noticeably smoother than those obtained from dEM, and had more380

consistent shapes within each ROI. For renal applications, where uptake and washout take381

place over several minutes, the smoother TACs provided by d2EM are more in line with the382

expected physiological behavior. For clinical applications where tracer kinetics are expected383

to be faster than renal studies (e.g. dynamic cardiac imaging with 99mTc-Teboroxime),384

it is not clear whether d2EM would provide better results than dEM, as higher temporal385

sampling may be needed to expect a smooth TAC. The ability of d2EM to recover accurate,386

three-dimensional information about dynamic in vivo processes could be further validated387

by comparing dynamic SPECT images reconstructed using d2EM to images of the same388

dynamic processes using more well-established methods, such as dynamic PET imaging.389
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Overall, we conclude that the d2EM algorithm provides an improvement on dEM in terms390

of providing smoother, more consistent TAC shapes within dynamic regions of interest. Ad-391

ditionally, phantom experiments indicate that d2EM performs comparably in many respects392

to a frame-by-frame OSEM approach, even when much more limited projection data is393

available to the former. Thus, even in cases where multiple views through the object are394

available for every frame, d2EM may provide improvements over a separate frame-by-frame395

reconstruction approach.396
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