Numerical Modeling of Hydrokinetic Turbines and their Environmental Effects

Teymour Javaherchi
Alberto Aliseda

IMPSO - Sept.23.2010

University of Washington
Department of Mechanical Engineering
Northwest National Marine Renewable Energy Center (NNMREC)
Motivation

Methodology development for numerical modeling of tidal turbines:

- Optimized distance in a turbine farm
- Simulating the flow around blades
- Modeling the turbulent wake
- Blade design

Understanding and minimizing the potential environmental impacts of tidal turbines:

- Sediment transport
- Effects on marine species
Outline

• Benchmarking numerical models:
 ▪ NREL Phase VI wind turbine
 ▪ Single Reference Frame (SRF)
 ▪ Virtual Blade Model (VBM)
 ▪ Actuator Disk Model (ADM)

• Considering potential environmental effects:
 ▪ Turbine effect on suspended particles sedimentation process.
Numerical Models

Single Reference Frame (SRF)
Numerical Models

Virtual Blade Model (VBM)
Actuator Disk Model (ADM)
Validation of SRF Methodology Against Experimental Data from AMES Wind Tunnel (NREL Phase VI turbine).

\[r/R = 0.3 \quad r/R = 0.8 \]
Validation of VBM with SRF Results
Application of Numerical Models to Quantify the Potential Environmental Effects

- Apply VBM to model particle settling in the tidal turbine wake.

- Apply SRF to look at potential effects of blade tip vortices and pressure fluctuations due to turbine turbulent wake on marine species (Will not be discussed in this talk).
Modeling Suspended Particle Sedimentation Process

Video was captured by NNMREC during one of the field works.
Modeling Suspended Particle Sedimentation Process

- VBM is used to study the particles sedimentation
- Particles are modeled as simple sphere
- Discrete Random Walk (DRW) model

<table>
<thead>
<tr>
<th>Place of injection grid</th>
<th>Injection grid size</th>
<th>Number of tries for DRW model</th>
<th>Total number of injected particles</th>
<th>Diameters of injected particles</th>
<th>Density ratio w.r.t water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet of the channel</td>
<td>20 by 20</td>
<td>10</td>
<td>4000</td>
<td>100 [µm], 1 [mm], 5 [mm], 1 [cm]</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Particles Motion Along the Tidal Channel (VBM)
Top view of the Channel - Turbine at (0,0) - 5 [mm] - Left with Turbine - Right no Turbine

% of Sedimented Particles - Inlet (20 by 20) - DFW (10) - d=5 [mm] - density ratio=1.2 - 0% particles escaped

% of Sedimented Particles - Inlet (20 by 20) - DFW (10) - d=5 [mm] - density ratio=1.2 - 0% particles escaped
Top view of the Channel - Turbine at (0,0) - 1 [mm] - Left with Turbine - Right no Turbine

% of Sedimented Particles - Inlet (20 by 20) - DRW (10) - \(d = 1 \) [mm] - density ratio = 1.2 - 11.85% particles escaped

% of Sedimented Particles - Inlet (20 by 20) - DRW (10) - \(d = 1 \) [mm] - density ratio = 1.2 - 6.10% particles escaped
Summary and Future Work

• Hierarchy of models to simulate the turbulent wake of a well characterized wind turbine (NREL Phase VI) has been developed and validated.

• Validated models has been modified to simulate a hydrokinetic turbine with realistic boundary conditions.

• Preliminary effects of turbine wake on particles settling has been studied and improvement for modeling has been investigated.

• Modeling the hub of the turbine with ideas from simpler models.

• Modeling array of devices in a farm of turbine with goal of array optimization.
Validation of VBM with SRF Results

Velocity Profile at Y/R=-1

Velocity Profile at Y/R=-5

Velocity Profile at Y/R=-9
Turbine interaction with juveniles fishes.

Injection plane

<table>
<thead>
<tr>
<th>Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
</tr>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>Density ratio w.r.t water</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injection plane</th>
<th>Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid</td>
<td>10 x 1 [evenly located particles on each rake]</td>
</tr>
<tr>
<td>Diameter</td>
<td>5 [mm]</td>
</tr>
<tr>
<td>Density ratio w.r.t water</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Results for pressure fluctuation through turbines
Results for pressure fluctuation through turbines

Total Pressure History of Particles Injected at X=0 (Top)

Normalized Particle Height along Channel

Normalized Particle Width along Channel