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Abstract 
Economic growth has been a showcase of model uncertainty, given the many competing theories and candidate 
regressors that have been proposed to explain growth. Bayesian Model Averaging (BMA) addresses model 
uncertainty as part of the empirical strategy, but its implementation is subject to the choice of priors: the priors for the 
parameters in each model, and the prior over the model space. For a well-known growth dataset, we show that model 
choice can be sensitive to the prior specification, but that economic significance (model-averaged inference about 
regression coefficients) is quite robust to the choice of prior. We provide a procedure to assess priors in terms of their 
predictive performance. The Unit Information Prior, combined with a uniform model prior outperformed other 
popular priors in the growth dataset and in simulated data. It also identified the richest set of growth determinants, 
supporting several new growth theories. We also show that there is a tradeoff between model and parameter priors, so 
that the results of reducing prior expected model size and increasing prior parameter variance are similar.  Our 
branch-and-bound algorithm for implementing BMA was faster than the alternative coin flip importance sampling 
and MC3 algorithms, and was also more successful in identifying the best model.  
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1. Introduction  

Economic growth has been a showcase of model uncertainty since the early 1990s when a surge 

of new growth theories gave rise to a large literature that sought to evaluate the new growth 

determinants (see Durlauf, Johnson and Temple, 2005 for a survey). Recent growth literature has 

used Bayesian Model Averaging (BMA), which is specifically designed to address model 

uncertainty as part of the empirical strategy (e.g., Fernández, Ley and Steel, 2001a; Sala-i-Martin, 

Doppelhofer and Miller, 2004). The advantages of BMA are that it incorporates model 

uncertainty and also assesses the robustness of conclusions to model assumptions in a principled 

way. The implementation of BMA is, however, subject to a major challenge (and criticism): it 

requires prior distributions over all parameters in all models, and the prior probability of each 

model must also be specified. In this paper we examine the sensitivity of growth determinants to 

alternative prior specifications, develop a procedure to evaluate competing priors, and suggest a 

default prior that provided consistently good results in our experiments.  

 Previous applications of BMA to economic growth highlighted its ability to account for 

model uncertainty but did not emphasize that prior distributions may well influence results. With 

well defined parameters and large sample sizes, reasonable choices of prior distributions have 

only minor effects on posterior inferences (Leamer, 1978). Unfortunately, the definitions of ‘well 

identified’ and ‘large’ sample size are often problematic in economics. Datasets in economics, 

and especially in growth applications, are generally small (often less than 100 observations) and 

the number of candidate regressors motivated by theory can be large (with over 40 regressors). 

The large number of models and the small number of observations pose challenges for both prior 

specification and computation.  In statistics, it is thus a common practice to assess the potential 

sensitivity of inferences to changes in the prior distributions. In economics, such systematic 

sensitivity analysis is not the norm, nor is it part of the empirical toolbox.2  

 We provide an integrated evaluation procedure to examine the impact of subjective and 

objective prior distributions on BMA inference. The procedure allows for the direct comparison 

of a dozen popular parameter priors in addition to any given prior over the model space. Since 

different prior structures may imply different relationships between regressors and dependent 

                                                 
2 Recent examples of prior robustness analyses in economic applications include Sala-i-Martin, Doppelhofer and 
Miller (2004), Durlauf, Kourtellos and Tan (2006; 2007), and Ley and Steel (2007b). 
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variables, our procedure also evaluates results, based on predictive performance. To date, such an 

integrated evaluation procedure that simultaneously compares model and parameter prior along 

with their predictive performance has not been offered.  

 Using a prominent growth dataset that contains 41 regressors compiled by Fernández, Ley 

and Steel (2001a) (hereafter FLS), we show that the number of growth determinants implied by 

the various popular priors varies widely - from as few as 3 to as many as 22. We suggest it would 

be ill-advised to search for common regressors among alterative priors and declare them robustly 

related to growth. Instead, our evaluation criterion is out-of-sample predictive performance, which 

provides a neutral basis for comparing methods. We assess predictive performance in terms of 

point estimation (the Mean Squared Error), and in terms of the quality of the predictive 

probability distribution as a whole. Our measures of the latter take account of both sharpness 

(narrow prediction intervals) and calibration (probability estimates that are correct). We introduce 

the Continuous Ranked Probability Score (CRPS) to economics, which captures both sharpness 

and calibration (Matheson and Winkler, 1976), but which is less sensitive to outliers and extreme 

events than alternative measures that have been used in the previous economics literature, such as 

the Log Predictive Score (Weigend and Shi, 2000; Gneiting and Raftery, 2007). 

 In our experiments, we found that the Unit Information Prior (UIP) for the parameters of 

each model, combined with the uniform model prior, provided consistently superior out-of-

sample predictive performance. This was true for our growth dataset and for simulated data. If a 

comparison of all possible priors is too time consuming, we therefore suggest UIP together with 

uniform model priors as a default prior for BMA in linear regression. From a practical point of 

view this is a convenient finding, because the UIP leads to a very simple approximation to the 

posterior model probabilities in terms of the Bayesian Information Criterion (BIC; Schwarz, 

1978; Raftery, 1995) which reduces BMA’s computational intensity.  

 The UIP performed better than the “automatic” parameter prior suggested by FLS (2001b) 

in the growth application and in simulated datasets. In terms of model priors, we found that the 

UIP, together with a uniform prior on the model space, also produced better predictive 

performance than the subjective model prior suggested by Sala-i-Martin, Doppelhofer and Miller 

(2004) (hereafter SDM).  The UIP default prior not only generated consistently better predictive 

performance, but it also identified a larger number of growth determinants than previous analyses. 

Aside from Confucius (the eastern religion dummy), Initial GDP, Life Expectancy, Rule of Law 
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and Equipment Investment, we also found robust effects of Primary and Secondary Education, 

Ethnolinguistic Fragmentation, Civil Liberties, Black Market Premium and Outward Orientation 

on growth.  There has been doubt about whether the growth dataset features a sufficiently large 

number of observations to provide a rich set of growth determinants. Our analysis shows that, 

with the appropriate prior, a rich set of growth determinants provides good predictive 

performance. 

 BMA poses the challenge of computing the model average, since the number of candidate 

models is often huge. In our experiments we compared three popular computational methods: the 

branch-and-bound method used in our algorithm (Raftery, 1995), the MC3 (Markov Chain Monte 

Carlo Model Composition) of Madigan and York (1995) used by FLS, and the coin flip 

importance sampling method suggested by SDM. We found that the branch-and-bound method 

was faster and more likely to find the model with the highest posterior probability than the other 

two methods. 

 The economics literature has long recognized model uncertainty as a central problem in 

regression analyses in general and in growth applications in particular. The initial approach to 

model selection was to use stepwise regression (Efroymson, 1960). Leamer (1978) suggested 

extreme bounds analysis to account not only for within-model uncertainty, but also for between-

model uncertainty, which is associated with model selection.3  The BMA methodology was 

developed by Leamer (1978), Raftery (1988) who coined the name, Raftery (1993), George and 

McCulloch (1993), Madigan and Raftery (1994) and others; for a survey of its early development 

see Hoeting, Madigan, Raftery and Volinsky (1999).4  Early applications of BMA in economics 

include FLS (2001a), Brock and Durlauf (2001) and SDM. FLS (2001a) applied a “benchmark 

prior” (FLS 2001b) to the growth context, but did not report robustness analysis. Brock and 

Durlauf (2001) applied BMA to highlight parameter heterogeneity in popular growth datasets. 

                                                 
3 See Levine and Renelt (1992) and Sala-i-Martin (1997) for applications of extreme bound analysis to growth. 
4 The combination of estimates and forecasts from different models had earlier been discussed, for example by Bates 
and Granger (1969), Newbold and Granger (1974), Moulton (1991) and Palm and Zellner (1992), but this was in the 
context of equal weighting or inverse variance weighting, not of Bayesian model averaging, and was for point 
estimates only, not distributions. 
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SDM (whose working paper version dates back to 2000) highlighted the importance of the model 

prior distributions in BMA growth analysis.5 

 The paper is organized as follows. Section 2 discusses the basics of BMA theory and 

estimation with particular emphasis on prior structures. Section 3 presents the growth results 

using our integrated evaluation approach that provides an assessment of prior structures via 

predictive performance.  Section 4 confirms our results using simulated data, and Section 5 

concludes. 

2. Bayesian Model Averaging 

In this section we briefly sketch the basic ideas of BMA and the challenges involved in 

implementing it, namely the choice of prior distributions for the parameters and the models, and 

computation of the model average. For more complete surveys of Bayesian model averaging see 

Raftery, Madigan and Hoeting (1997), Hoeting et al. (1999), Clyde and George (2004) and 

Doppelhofer (2007). 

2.1 Basic BMA Methodology 

BMA is a standard Bayesian solution to model uncertainty, and consists of basing prediction and 

inference on a weighted average over all the models considered, rather than on one single 

regression model. BMA requires a prior probability of each model and a prior probability 

distribution over the parameters of each model. The model and prior probabilities are then used to 

derive weights to average over all models. The approach has the attractive feature that it directly 

addresses questions that are central to the researcher's interests, such as “what is the probability 

that a model is correct?” (given that one of the models considered is), and “how likely is it that a 

regressor has an effect on the dependent variable?”6 

                                                 
5 Subsequent examples of the rapidly growing literature on economics applications of BMA include policy 
evaluations (e.g. Brock, Durlauf, and West, 2003; and Sirimaneetham and Temple, 2006) monetary policy (e.g. Levin 
and Williams, 2003), macroeconomic forecasting (e.g. Garratt, Lee, Pesaran and Shin, 2003), international trade (e.g. 
Eicher, Henn, and Papageorgiou, 2007), environmental economics (e.g., Begun and Eicher, 2006), output volatility 
(e.g. Malik and Temple, 2006), and economic growth (e.g., Min and Zellner, 1993; Leon-Gonzalez and Montolio, 
2004; Durlauf, Kourtellos and Tan, 2006; 2007; Eicher, Papageorgiou and Roehn, 2007; Masanjala and 
Papageorgiou, 2007a,b; and Ley and Steel, 2007a,b). The BMA economic forecasting literature is surveyed by Stock 
and Watson (2006). 
6 Here we use the phrase “has an effect on the dependent variable” as shorthand for “is associated with the dependent 
variable after controlling for the other regressors.” Even if a regressor has an effect on the dependent variable in this 
sense, a causal relationship is not established because the statistical result could have other sources, such as selection 
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 For linear regression models, the basic setup is as follows. Given a dependent variable, Y, 

a number of observations, n, and a set of candidate regressors, pXX ,,1 … , the variable selection 

problem is to find the “best” model, or subset of regressors. We denote by KMM ,,1 …  the 

models considered, where each one represents a subset of the candidate regressors. Often all 

possible subsets are considered, in which case pK 2= . Model kM  has the form  
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the vector of parameters in kM . 

 The likelihood function of model kM , ),|( kk MDpr θ , summarizes all the information 

about kθ  that is provided by the data, D . The integrated likelihood is the probability of the data 

given model kM , equal to the likelihood times the prior density, )|( kk Mpr θ , integrated over the 

parameter space, so that  

   .)|(),|()|( kkkkkk dMprMDprMDpr θθθ∫=    (2) 

Equation (2) follows from the law of total probability. 

 The integrated likelihood is the crucial ingredient in deriving the model weight for model 

averaging. We denote by )( kMpr  the prior probability that kM  is the correct model, given that 

one of the models considered is. Then, by Bayes's theorem, the posterior model probability of 

kM , )|( DMpr k , is equal to the model's share in the total posterior mass, 
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The posterior mean and variance of a regression coefficient, jβ , are then given by  

                                                                                                                                                               
bias or omitted regressors. In this paper we ignore these issues, as has been common in the growth literature, and 
focus on the variable selection issues. 
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where )(ˆ k
jβ  is the posterior mean of jβ  under model kM , and is equal to zero if jX  is not 

included in kM  (Raftery, 1993). 

 Hence the posterior mean is the weighted average of the model-specific posterior means, 

where the weights are equal to the models’ posterior probabilities. The posterior variance reflects 

both the weighted average of the within-model posterior variances, and the between-model 

variation of the model-specific posterior means. Conditioning on a single model leaves out the 

between-model variation, and thus underestimates overall uncertainty. In a decision-making 

context, this would lead to decisions that are riskier than the decision-maker thinks they are. BMA 

incorporates model uncertainty into the posterior distribution itself, and thus allows it to be 

propagated through to final conclusions and decisions. 

 In addition to the posterior means and standard deviations, BMA provides the posterior 

inclusion probability of a candidate regressor, )|0( Dpr j ≠β , by summing the posterior model 

probabilities across those models that include the regressor. Posterior inclusion probabilities 

provide a probability statement regarding the importance of a regressor that directly addresses 

what is often the researcher's prime concern: “what is the probability that the regressor has an 

effect on the dependent variable?” 

 BMA involves averaging over all the models considered. This can be a very large number; 

for example, the growth dataset we consider below features 41 candidate regressors (and so 
412=K , or about two trillion models). Such a vast model space involves a major computational 

challenge; the obvious method, direct evaluation, is typically not feasible. Three practical 

approaches have been advocated and we comment on their efficiency below. The first is a method 

developed by Raftery (1995), based on the branch-and-bound algorithm of Furnival and Wilson 
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(1974), that is guaranteed to find the single best model contained in the data.7 The second 

approach is the Markov Chain Monte Carlo Model Composition (MC3) algorithm (Madigan and 

York, 1995), applied to BMA for regression by Raftery, Madigan and Hoeting (1997) and FLS 

(2001b). While efficient, MC3 does not guarantee finding the global maximum. The third 

approach is the coin flip importance sampling method used by SDM, whose computational 

efficiency is not much lower than that of MC3 if the sampling probability equals the prior 

inclusion probability (Clyde, DeSimone and Parmigiani, 1996). The sampling probability does not 

equal the prior inclusion probability in SDM’s “stratified” coin flip importance sampling method 

and their algorithm guarantees neither finding the global maximum, nor finding the same best 

model in different runs. 

2.2  Prior Distributions of Parameters 

The implementation of BMA in linear regression as described by equations (1)-(3) is subject to a 

major challenge (and criticism): prior distributions must be specified over all parameters in all 

models. Prior probabilities of all models must also be specified. If the researcher has information 

about the parameters, ideally this should be reflected in the priors, and informative priors should 

be used, as was done, for example, by Jackman and Western (1994).  

 However, often the amount of prior information is small and the effort needed to specify it 

in terms of a probability distribution is large. Thus there have been many efforts to specify default 

priors that could reasonably be used for all such analyses. These are sometimes called 

“noninformative” or “reference” priors, but there is debate about the extent to which a prior can 

be totally noninformative, and so we use the term “default prior” here. Priors on parameters may 

affect results since they may influence the integrated likelihood (2), which is a key component of 

the posterior weights used in the averaging process (3). The integrated likelihood of a model is 

approximately proportional to the prior density of the model parameter evaluated at the posterior 

mode (Kass and Raftery, 1995). Thus the prior density should be spread out enough so that it is 

                                                 
7 The algorithm organizes the model space in a tree-like way and chops off branches of models with low posterior 
probability. It is fast for less than about 45 regressors and for more than that tends to be slower. It is implemented for 
the Unit Information Prior in the BICREG function that is part of the BMA R package, available on CRAN at 
http://cran.r-project.org (Raftery, 1995; Raftery, Painter and Volinsky, 2005). Yeung, Baumgarner and Raftery (2005) 
have developed an iterative method that is much faster for large numbers of regressors (about 5000 in their case), but 
is no longer guaranteed to find the model with the highest posterior probability. This iterative BMA version has been 
applied in the growth context by Eicher, Papageorgiou and Roehn (2007).  



 8

reasonably flat over the region of the parameter space where the likelihood is substantial. It is 

crucial to note, however, that the prior density should be no more spread out than necessary, since 

increasing the spread of the prior tends to decrease the prior ordinate at the posterior model, 

which decreases the integrated likelihood and may unnecessarily penalize larger models (Raftery, 

1996). Thus there is a trade-off, and the various priors we discuss below make this trade-off in 

different ways.  

 We focus on a set of 12 candidate default priors that have been prominently advocated in 

the literature. Table 1 presents, describes and provides sources for all 12 priors. First is the Unit 

Information Prior (UIP), which contains about the same amount of information as a typical single 

observation (Kass and Wasserman 1995; Raftery, 1995). Second, the Data-Dependent prior 

suggested by Raftery, Madigan and Hoeting (1997) is explicitly designed to be relatively flat over 

the region of the parameter space supported by the data but no more spread out than necessary. 

Third, ten automatic priors used in FLS (2001b) do not rely on input from the researcher or 

information in the data, but only on the sample size and the number of regressors. 

The first prior that we consider is defined implicitly, by the form of the integrated 

likelihood that is used, namely 

    ( ) kk BIC½cMDpr −≈|log ,    (6)  

where 

    ).log()1log( 2 npRnBIC kkk +−=    (7) 

 In (7), 2
kR  and kp  are the 2R  value and the number of regressors, respectively, for model kM , 

and c is a constant that does not vary across models and so cancels in the model averaging. BICk 

is the Bayesian Information Criterion for kM , which is equivalent to the approximation derived 

by Schwarz (1978). The approximate integrated likelihood in (6) was the basis of the model 

averaging method of Raftery (1995) for linear regression, and was also used by SDM.   

 It follows from the results of Kass and Wasserman (1995) that for any pairwise model 

comparison, the ratio of posterior model probabilities resulting from the use of (6) closely 

approximates the ratio of posterior model probabilities that would be obtained from a particular 

prior for the regression parameters, with a relatively small error that is of the order ( )2/1−nO .  This 
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is a multivariate normal prior centered at zero with variance matrix equal to n times the inverse 

Fisher information matrix. This prior is much more spread out than the likelihood, and typically is 

relatively flat where the likelihood is substantial (Raftery, 1999). It contains the same amount of 

information as would be contained on average in a single observation and so, following Kass and 

Wasserman (1995), we call it the Unit Information Prior (UIP). Because of its simplicity and 

intuitive appeal, we use this UIP as a baseline, and we compare other proposed default priors to it. 

 Next we consider ten automatic priors suggested by FLS (2001b) to be applied in 

situations when the researcher has little or no subjective prior information. These parameter priors 

are based on Zellner (1986), who suggested a particular form of the natural conjugate gamma 

family of priors, namely a g-prior density for the parameters in (1):  

     σσ /1)|( ∝kMp ,     (8a) 
     1)|( ∝kMp α  ,     (8b) 

     ( )( )1)()(2)( ',0,| −
∼ kk

kk
k ZZgNM σσβ  ,  (8c) 

where )(kZ  is the kpn×  matrix consisting of the kp  regressors included in kM , each one 

centered by subtracting its mean.  These are all special cases of Zellner’s (1986) g-prior for kβ  

where the g value is a factor of proportionality that scales the reciprocal of the variance of the 

parameter prior. Values of g that are closer to zero imply priors that are less informative, and 

1=g  implies that prior information and data information are weighted equally in the posterior 

distribution. 

 Different automatic priors result from different choices of kg , as listed in Table 1.  The 

choice ng 1=  (Prior 12 in Table 1) is in the spirit of the UIP. Alternatives are Prior 4, ng 1= , 

which attributes a smaller asymptotic penalty than BIC, and Prior 2, npg kk /= , where prior 

information increases with the number of regressors in the model. Other priors suggested by FLS 

(2001b) correspond to previous proposals: Priors 6 and 7 in Table 1 are versions of the Hannan 

and Quinn criterion (Hannan and Quinn, 1979), and Prior 9, 2/1 kk pg = , corresponds to the Risk 

Inflation Criterion (RIC) of Foster and George (1994), designed to take account of the number of 

candidate regressors. FLS (2001b) stated that Prior 8 in Table 1 is comparable to model averaging 

using AIC-based weights. Prior 10 is the preferred prior of FLS (2001b), developed on the basis 

of their experiments with their priors. It is composed of either the RIC-based prior (Prior 9) or 
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Prior 12, depending on the number of observations and regressors in the particular dataset. For the 

datasets considered in this paper, Prior 10 is identical to Prior 9.  

 An alternative class of data-dependent priors can be viewed as approximating the 

subjective prior of an experienced researcher. Clearly, if such knowledge is readily available, it 

should be introduced into the analysis, and Wasserman (2000) showed that data-dependent priors 

can improve predictive performance.8 Raftery, Madigan and Hoeting (1997) automate a process 

that specifies data-dependent priors that are as concentrated as possible, subject to being 

reasonably flat over the region of parameter space where the likelihood is not negligible. Their 

prior (Table 1, Prior 11) is determined by four hyperparameters that are explained in Table 1.  A 

variant of such data-dependent priors is based on Laud and Ibrahim (1996) (Table 1, Prior 8) who 

specified ( )jj ppg /1/1 1 δγδγ −= . Given FLS’s suggestions for γ and δ, they mention that model 

comparisons based on the resulting log integrated likelihood can roughly be compared to those 

based on the Akaike Information Criterion (AIC) (Akaike, 1974).  

2.3 Model Priors 

We consider two main types of prior over the model space that have been widely advocated. The 

first is the uniform prior, that gives equal prior probabilities to each model, so that KMpr k /1)( =  

for each k. This seems to have been suggested first by Raftery (1988) and, for linear regression 

models, by George and McCulloch (1993). Hoeting et al. (1999) cite the extensive evidence that 

supports the good performance of the uniform model prior, since the integrated likelihood on the 

model space is often concentrated enough for the results to be insensitive to moderate deviations 

from the uniform prior. 

 Treating all models equally a priori might be a “neutral” choice, but it may not be the best 

choice when prior information is available. “Subjective Bayesianism” is prominent in economic 

applications, where researchers hold beliefs about the true theory that are strong enough to 

suggest model sizes that deviate significantly from uniform distributions. For example, in the 

growth context SDM argue that most researchers prefer small model sizes and suggest a prior 

model size of 7 regressors. This argument is made although over 140 candidate regressors have 

                                                 
8 FLS (2001b) point out a common criticism of data-dependent priors, namely that the posterior distribution can no 
longer be interpreted as a conditional distribution given the observables.  
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been proposed for growth regressions in a survey for the Handbook of Economic Growth 

(Durlauf, Johnson and Temple, 2005). At the heart of SDM’s argument is the observation that 

several new growth theories have been developed over the past decade. Under uniform model 

priors such an increase in candidate theories (along with the associated increase in candidate 

regressors) would imply larger expected prior model sizes although there is no reason to suspect 

that the true model size has changed. 

 Mitchell and Beauchamp (1988) suggested assigning a discrete prior probability mass to 

any regressor that is to be considered for exclusion from regression model Mk, namely 

    ,)1()( 1

1

kjkj
jj

p

j
kMpr δδ ππ −

=

−=∏     (9) 

where 1=kjδ  if jX  is included in kM  and 0 otherwise. In (9), jπ  is the prior probability that jX  

is included in the model, and often the jπ 's are equal, with ππ =j . This prior over model space 

has been widely used, for example by George and McCulloch (1993), Madigan and Raftery 

(1994) and SDM. Letting πpp =  be the prior expected number of regressors in the model, SDM 

argued for the use of 7=p  in growth applications. Ley and Steel (2007b) evaluated that choice 

relative to Prior 9. We evaluate the SDM choice relative to other popular parameter priors and 

choices of p  in our experiments below. Note that when 5.0=π , the prior in (9) reduces to the 

uniform prior, in which case 2/pp = . Brown, Vannucci, and Fearn (1998; 2002) and Ley and 

Steel (2007b) went one step further and suggested that the probability that a given variable is 

included in a model itself be a random variable drawn from some distribution.  

 George (1999) pointed out that if several candidate regressors are highly correlated, 

independent model priors such as the uniform prior and the SDM prior can give too little weight 

to models that exclude all these variables, and he proposed a dilution prior to deal with this. A 

clear example of this is when three different but highly correlated measures of the same quantity 

are used (say three different measures of unemployment). Then with the uniform prior, the prior 

probability of unemployment having an effect would be 7/8, not 1/2. George’s dilution prior 

increases the prior probabilities of models not containing the correlated regressors to take account 

of this effect. This seems reasonable when the variables are indeed measures of the same thing, as 

in the example just mentioned. However, often in economics, variables represent distinct 
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concepts, but are nevertheless correlated. In this situation, independent prior inclusion 

probabilities (as in either the uniform prior or the SDM prior) do seem defensible. A direct use of 

the correlation-based dilution prior of George (2001) for our growth dataset would lead to very 

harsh penalization of larger models. 

  A related situation is when several correlated regressors are proxies for the same theory. 

For this situation, Durlauf, Kourtellos and Tan (2006; 2007) proposed a modification of George’s 

(2001) correlation-based dilution prior in which dilution takes place “in blocks,” within the 

regressors that proxy each growth theory considered. This seems like a good idea in principle. 

However, one difficulty with it in the present context is that it requires agreement on which 

theories are represented by which variables. Such agreement is often not present, and in its 

absence a dilution prior based on the assessments of one research group cannot be viewed as a 

default prior. Also, for our growth dataset it would tend to strongly favor models in which each 

theory was represented by just one proxy regressor, so the decision about how to group the 

variables into blocks could be highly consequent. As a result, we have considered only 

independent model priors in the present paper.   

2.4 An Integrated Approach to Prior Distributions and Posterior Inference 

The examination of the impact of alternative model and parameter prior specifications is 

hampered by the diverse set of priors and the large variation in software packages used for 

implementation.  Our baseline UIP is contained in Raftery’s (1995) BICREG function written in 

the open source statistical language R and the data-dependent prior is contained in the MC3.REG 

function also written in R; these are both included in the R package BMA available at 

http://cran.r-project.org (Raftery, Painter and Volinsky, 2005). Priors 2-7, 9, 10 and 12 are 

considered in FLS’s (2001b) procedure written in FORTRAN77. All of the above mentioned 

packages assume a uniform prior over the model space. Alternative model priors are considered in 

SDM’s procedure available in GAUSS, but only for Prior 1. In this paper we apply one integrated 

procedure, programmed in R to examine the BMA results using a popular growth dataset and 

simulated datasets.9 

3. Uncovering Robust Growth Determinants 

                                                 
9 The R program BMA.COMPARE simultaneously evaluates all 12 different parameter priors and any specific prior 
model size, as well as their predictive performance. It is available upon request from the first author.  
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 Since economic growth is the fundamental driver of living standards, it is of great interest 

to economists and policymakers alike to identify which of the numerous proposed theories receive 

support from the data and which determinants are related to growth.  Attempts to identify robust 

growth determinants date back to the extreme bound analysis of Levine and Renelt (1992) and 

Sala-i-Martin (1997). Formal BMA analysis was conducted by FLS (2001a) and SDM (2004).  

The dataset used across studies always contains a core of at least 41 candidate regressors, 

motivated by Sala-i-Martin (1997) and FLS (2001a).  We base our growth analysis on this same 

dataset that FLS kindly shared with us.   

3.1 Effects of Parameter Priors on Growth Determinants 

 For datasets with small numbers of observations, priors may well be expected to play an 

important role unless the data contain decisive information. Given that our growth dataset has 72 

observations, priors may be suspected to influence growth results.  As can be seen in Figure 1, the 

precisions of the parameter priors vary widely; for example the information contained in Prior 7 is 

three orders of magnitude greater than that in the FLS-preferred prior. It thus seems possible that 

the BMA results would vary considerably between priors. 

 Table 2 reports the BMA posterior inclusion probabilities for all 12 prior distributions 

applied to the growth dataset. Jeffreys (1961) proposed rules of thumb, refined by Kass and 

Raftery (1995), suggesting that the evidence for a regressor having an effect is either weak, 

positive, strong, or decisive when the posterior inclusion probabilities range from 50-75%, 75-

95%, 95-99%, and > 99%, respectively.10  We mark all variables that exhibit evidence for an 

effect (above 50%) with a shaded box in Table 2.11   

 Posterior inclusion probabilities and the number of regressors that exhibit evidence of an 

effect on growth vary widely across priors. The latter ranges from a low of 7 regressors (Priors 5, 

7, and 11) to a high of 21 regressors or more (Priors 1, 3, and 12).  Recall that the prior 

distributions are all centered at zero and that Priors 5, 7, and 11 have small prior variance (Figure 

1).  Priors 5, 7, and 11 thus contain strong information against a large effect, and the information 

                                                 
10 In economics an alternative rule of thumb for an effect was suggested by SDM that the posterior inclusion 
probability exceeds the prior inclusion probability. We discuss this rule in Section 3.2 below. 
11 Barbieri and Berger (2004) show that under regularity assumptions the median probability model (i.e., the model 
containing all covariates whose marginal posterior inclusion probability exceeds 50%) minimizes predictive squared 
error loss. 
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contained in the data is too weak to overwhelm that prior. As the priors over the parameter space 

become sufficiently spread out to include regions where the likelihood is substantial, the number 

of regressors that exhibit an effect increases. However, once the priors become very spread out 

(especially for Prior 9), we observe a decline in the integrated likelihood, and the number of 

parameters that show an effect is reduced. The relationship between prior variance and the 

number of regressors exhibiting an effect is plotted in Figure 1. 

 Figure 2 shows scatterplots of posterior inclusion probabilities generated by the various 

priors against our baseline prior (Prior 1).  Since Prior 1 was the most optimistic, with 22 

candidate regressors showing an effect in Table 2, it is no surprise that most of the points in the 

scatterplots lie above the 45 degree line, indicating generally higher posterior inclusion 

probabilities for each regressor under Prior 1 as compared to other priors. More importantly, 

however, the scatterplots highlight not only that Prior 1 is more optimistic, but also how the 

differences between Prior 1 and alternative priors increase as the implied g-prior diverges. Priors 

1, 6, and 12 have relatively similar results, but most other priors show differing effects implied by 

the priors. 

 Alternatively, one might be tempted to interpret Table 2 as suggesting that 6 regressors 

(Confucius, Initial GDP, Life Expectancy, Rule of Law, Sub-Saharan Africa dummy, and 

Equipment Investment) are robustly related to growth, since there is clear evidence for an effect 

for each of these regressors across all priors. We view this interpretation as misguided because the 

selection criterion based on the lowest common denominator is inappropriately conservative.  

Instead we argue that the choice of variable selection method should be based on comparing the 

predictive performances of the prior distributions.  

 The same dispersion of results across priors can be observed in the number of regressors 

contained in the models that have the greatest posterior model probability. Table 3 reports the best 

model for each prior and shows that the best model discovered by Prior 1 also generates the 

highest adjusted R2. Image plots in Figures 3a and 3b compare Prior 1 with the FLS benchmark 

prior (Prior 9) using the growth dataset. The figures highlight models used in the averaging 

process (ranked by posterior probability on the vertical axis, where the vertical width indicates the 

model weight). Red and blue indicate the inclusion of a regressor with a positive and negative 

coefficient, respectively.  The image plots highlight how different the models are over which the 
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various priors average. It is no surprise that these two prominent priors differ substantially in 

terms of posterior inclusion probabilities. 

 Economists are interested not just in which variable exhibits evidence of an effect, but 

also in what economic impact a variable has. Table 4 shows that the posterior inferences about the 

effects of variables are much more robust to the prior specification than are inferences about the 

best model. This table presents the posterior mean and standard deviation of the regression 

coefficients for all 12 priors, and indicates that the economic impact of regressors, as measured by 

the posterior mean of the corresponding coefficients, hardly varies across priors. With the 

exception of Equipment Investment and High School Enrollment, we find that economic 

significance is estimated quite uniformly.  This indicates that the estimated economic effects of 

most variables are relatively robust to the prior specification, although the models selected may 

vary significantly across prior parameter distributions.  Figure 4 shows all standardized posterior 

means for each candidate regressor, which indicate general agreement on the economic impact. 

None of the posterior means have reversed signs and they are generally of similar magnitudes. 

 Table 5 shows that our results do not depend on the computational algorithms used, which 

generate similar inclusion probabilities. However, the Raftery (1995) branch-and-bound algorithm 

is faster and it also discovers the best model, unlike the other algorithms. We also include an 

example of the class of general-to-simple approaches based on multi-path search proposed in 

Hoover and Perez (1999). The PcGets algorithm (Hendry and Krolzig, 2004) is shown for 

comparison as it has been suggested as an alternative to BMA model selection (see Durlauf et al 

2006, 2007). Table 5 shows that the best model identified by BMA with the branch-and-bound 

algorithm is better than the one selected by PcGets in terms of both adjusted R2 and BIC. More 

fundamentally, the PcGets approach does not incorporate uncertainty about model form, unlike 

the BMA approaches. Carrying out inference conditional on the selected PcGets model could 

substantially underestimate uncertainty, as dramatically illustrated by Freedman (1983) in the 

context of a similar general-to-simple algorithm for selecting predictor variables in regression. 

Although we have not assessed the predictive performance of the PcGets-selected model here, the 

theoretical and empirical results summarized by Raftery and Zheng (2003) indicate that BMA has 

better predictive performance than approaches based on single selected regression models.  

3.2 Combined Effects of Parameter and Model Priors on Growth Determinants 
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In Bayesian analysis, any valuable prior knowledge should be included in the priors. This 

“subjective Bayesian” approach has become prominent in economics applications, especially in 

the field of economic growth, where SDM argued that uniform priors on the model size are not 

desirable in this context. Instead, SDM proposed that the true growth model should be closer to 7 

regressors.  

 In addition, SDM contended that their alternative prior distribution also requires a new 

effect-threshold to identify candidate regressors that exhibit an effect on the dependent variable.  

Their suggested effect-threshold is that the posterior regressor probability must exceed the prior 

model probability.  In our growth dataset the SDM benchmark model prior implies that 7 of 41 

regressors matter to the analysis, which yields an effect-threshold of each individual regressor of 

7/41 = 17%. However, there seems to be a tension between this and the basic idea of Bayesian 

statistics, namely that all information about a quantity of interest is contained in the posterior 

distribution, which is determined by the prior and the likelihood. The tension arises when effect-

thresholds are based only on prior information. When the posterior inclusion probability of a 

regressor is below 50%, the evidence for it is weak, even if prior evidence would lead one to 

expect that the model should be small.  We favor the conventional Jeffreys rules of thumb, in 

particular the 50% threshold for reporting effects, since it implies that the combined available 

evidence (of prior and likelihood) does not support the variable having an effect when the 

posterior inclusion probability of a variable falls below 50%.  

 The SDM effect-threshold has two important implications. First, the smaller the number of 

regressors specified by the model prior, the lower the threshold on the posterior inclusion 

probability of an individual regressor. So on the one hand the researcher imposes priors that favor 

smaller models, but on the other hand the effect-threshold, in terms of inclusion probabilities of 

the individual variables, is lowered. Researchers that stipulate strong priors over small models are 

at the same time relaxing the effect-threshold.  Second, as highlighted by the example of growth 

theories, as the number of candidate regressors rise, but the prior model size stays constant, the 

effect-threshold becomes lower. We discuss results with both the Jeffreys and SDM effect-

thresholds.  

 Table 6 shows how the results differ between the two kinds of model prior. As expected, 

the subjective prior expectation that the true growth model contains only 7 covariates leads to 
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smaller models than the uniform model prior, ranging from 3 to 8 effective regressors for the 

Jeffreys effect-threshold and from 6 to 12 effective regressors for the SDM effect-threshold. 

Again the priors with intermediate variance have a slightly larger number of regressors (Priors 3, 

4, and 12), and as before the number of regressors that exhibit an effect declines as the prior 

variance become large (Priors 6 and 9). One change is that using the SDM threshold some new 

regressors, such as Muslim, Years Open, and Protestant, become important for a number of priors. 

This leads not only to fewer regressors that surpass the effect-threshold, but also to a different set 

of effective regressors.  

 The restrictive model prior has the least impact on Prior 11; for this prior, the Rule of Law 

variable loses significance but otherwise the results are identical to Table 2. Thus forcing BMA to 

increase the weight on smaller models and penalize larger models affects priors differently: it can 

change the number of candidate regressors that pass the effect-threshold, and it can lead to 

different regressors with high inclusion probabilities. Thus, not only does the nonuniform model 

prior lead to smaller models, but it also attributes significance to regressors that were previously 

not seen as strong. Later we examine these results in light of predictive performance to assess 

whether the researchers’ subjective prior was indeed appropriate. 

 The two different effect-thresholds do not alter the results dramatically. As expected, the 

more stringent Jeffreys threshold is more limiting in terms of the number of regressors that show 

an effect. The weaker threshold adds between two to four regressors to the list of effective growth 

determinants. For the sake of clarity and to establish constant and unambiguous thresholds, we 

suggest the traditional Jeffreys’ thresholds as a default.  

 The image plot in Figure 3c shows Prior 1 with prior expected model size 7, the 

combination recommended by SDM. Comparing Figures 3a and 3c, we see that the model prior 

with prior expected model size 7 biases the results towards growth models with fewer variables. 

We will see in the subsequent section on predictive performance that this does not improve 

prediction. Note also the similarity between Figures 3b and 3c, two very different model and 

parameter priors. This similarity was first observed for these specific priors by Masanjala and 

Papageorgiou (2005). Ley and Steel (2007b) describe the similarity between the FLS uniform 

prior and Prior 1 with prior model size 7 as arising “mostly by accident” and discuss specific 

parameter constellations that generate similar posterior probabilities.  
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 This similarity has a theoretical explanation. Any two prior structures may differ 

according to the parameter variance (proportional to 1/g) and the model prior size, p . Comparing 

the posterior probabilities for a given model in (3) for different prior structures, Kass and Raftery 

(1995) show that an increase in the prior standard deviation by a factor c, is approximately 

equivalent to a reduction in the prior odds for an increase in the model size by an additional 

variable, by the same factor of c.  

 Using the approximation of Kass and Raftery (1995, equation 14), it can be shown that for 

two prior structures, A, B, with associated prior scale factors, BA gg , , and expected prior model 

sizes, BA pp , , the posterior odds for one regression model against an alternative regression model 

with one additional regressor are approximately equal when the prior structures satisfy  
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For the FLS dataset with n=72 and p=41, the FLS benchmark parameter prior implies 2/1 pgA = , 

combined with the uniform model prior, 2/pp A = . When ngB /1=  as in the case of Prior 1, used 

by SDM, equation (10) holds when the prior expected model size is =Ap 7.03. It is therefore not 

surprising that for the SDM suggested prior expected model size of =Ap 7, the priors 

recommended by SDM and FLS yield similar results for the growth dataset, although they are 

based on very different parameter and model priors. Note that this similarity depends crucially on 

the number of parameters in the dataset, p. For the values of g suggested by SDM and FLS, the 

prior expected model size that equates posterior probabilities, Ap , therefore depends on the 

number of observations.  This indicates that there is a tradeoff between prior expected model size 

and prior parameter variance. Subjective priors that favor small models thus achieve their aim by 

punishing larger models (Figure 3c) or by increasing the prior variance on each individual 

parameter (Figure 3b). 

In summary, candidate default priors differed considerably in dispersion, and led to the 

choice of different sets of variables. As few as 3 and as many as 22 regressors were found to be 

related to growth, depending on the specific parameter and/or model prior used. In contrast, the 

BMA posterior effect estimates and standard errors were quite robust to the prior specification.  
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3.3 Assessment of Prior Distributions using Predictive Performance 

The previous analysis does not identify the best prior for our growth dataset. Instead, we compare 

the priors on the basis of their predictive performance. Prediction provides a neutral criterion to 

compare methods.  To assess predictive performance, we outline the scoring rules used compare 

the performances of the different methods, and we assess the impact of both parameter and model 

priors on predictive performances for the growth and simulated datasets. 

 We base our predictive performance evaluation on three different scoring rules: the Mean 

Squared Error (MSE), the Continuous Ranked Probability Score (CRPS; Matheson and Winkler, 

1976), and the Log Predictive Score (LPS; Good, 1952). The CRPS has been widely used in other 

areas such as weather forecasting, but this is its first use in economics of which we are aware. 

Scoring rules provide summary measures to evaluate probabilistic forecasts; they assign a 

numerical score based on the value that materializes relative to the forecast. All three are proper 

scoring rules for assessing predictive performance.12   

 The MSE is the most popular measure to assess predictive performance in economics. It 

focuses on point estimation, while the LPS and the CRPS assess the entire predictive distribution. 

The CRPS and the LPS assess both the sharpness of a predictive distribution and its calibration, 

namely the consistency between the distributional forecasts and the observations. However, the 

LPS assigns harsh penalties to particularly poor probabilistic forecasts, and can be very sensitive 

to outliers and extreme events (Weigend and Shi, 2000; Gneiting and Raftery, 2007). This may be 

a factor when we split our small sample to examine predictive performance. The CRPS is more 

robust to outliers (Carney, Cunningham and Byrne, 2006; Gneiting and Raftery, 2007), and hence 

it is our preferred measure of the performance of the predictive distribution as a whole. We also 

report the LPS for comparability with previous work, notably that of FLS (2001b).  The three 

scoring rules are described in the appendix.  

 Formally, the predictive distribution in BMA is as follows. Let q  be a quantity of interest, 

such as an out of sample observation. Then the posterior distribution of q , given the data D, is 

given by  

                                                 
12 A proper scoring rule is one in which the forecaster gets the best score by reporting a forecast distribution that 
mirrors his or her true beliefs.  The scoring rule is strictly proper if its maximum is unique. 
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which is the average of the posterior distributions of q under the different models, weighted by the 

posterior model probabilities. In our application, the predictive ability of a prior distribution is 

evaluated and compared to the predictive ability of alternative prior distributions.  

 The analysis requires us to split the sample into a training set, DT, and a hold-out set, DH. 

The training sample is used to derive the BMA results, and the hold-out sample allows us to 

gauge the predictive performance of on independent data. The method of cross validation via 

training and hold out sets dates back at least as far as Mosteller and Wallace (1963). Our split of 

the data involves a training set that contains 80% of the data and thus leaves 20% of the data to be 

predicted. The larger the dataset, the more desirable even splits become.  

 Each random split of the data generates a different fit and therefore a different score. 

Given the different functions that each scoring rule optimizes, it is not surprising that they may 

not agree on which particular prior generates the highest score for any given data split. We 

therefore used S random splits rather than a single one, and found that we needed 200≥S  to 

obtain reliable results. Since we are comparing each prior to our baseline prior, we also report the 

proportion of times that Prior 1 outperformed the prior being evaluated.  

 Table 7 shows the predictive performance of the 12 parameter priors in conjunction with 

uniform model priors as evaluated by the MSE, LPS and CRPS using S=578 random splits. The 

MSE and the CRPS agree that our baseline Prior 1 decisively outperforms all the other priors. The 

LPS suggests, however, that Priors 2, 4, 6, and 8 outperform Prior 1. Since this result runs counter 

to the results from the two other scoring rules, it seems possible that the difference is due to 

outliers or influential cases in the dataset. Several of the regressors have extreme outlying values. 

When such cases are in the test set, they can have a large effect on the LPS, while the CRPS is 

more robust to individual cases. Given the known outlier sensitivity of the LPS, we discount the 

results it gives for this dataset, and conclude that Prior 1 performs best in this case.  

 Next, we compare the default model priors to the more restrictive model prior proposed by 

SDM by assessing whether such a prior generates better predictive performance. Table 8 shows 

the predictive performance of a number of alternative (smaller) prior model probabilities for the 

growth dataset including prior model size 7 (shaded area). This shows that nonuniform model 
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priors that favor smaller models do not provide improved predictive performance in the growth 

dataset. The results indicate that the UIP does not overfit in the growth application.  

 Indeed in the growth example, our baseline prior is shown to be flat enough to extend over 

the part of the distribution where the likelihood is substantial, but not so flat that it overpenalizes 

large models (as is for example Prior 9). This is clear from the fact that the UIP performs better 

than parameter and model priors that specify either smaller model sizes, or smaller or larger 

variances of the prior parameter distribution. Overall, the unit information prior (Prior 1) with a 

uniform model prior performs best of the candidate default priors that we have evaluated. Thus 

the prior expectation of a model size of about 7 regressors is not borne out by the predictive 

performance results. Indeed only as the prior model size approaches p/2 do some of the other 

priors again show better performance. Note however, that no other prior considered ever beats 

Prior 1 for any model size in terms of MSE or CRPS.  

4. Simulated Data 

In the growth dataset we found that the models selected were sensitive to the prior used, although 

posterior inference about effect sizes was relatively robust. We found that one candidate default 

prior, the Unit Information Prior, dominated the others in terms of predictive performance. The 

question is whether this result is specific to the growth dataset, or whether it applies more 

generally. To investigate this question we now apply BMA to several simulated datasets designed 

to mimic features of datasets commonly found in economics. 

4.1 Effects of Prior Structure 

We examine the effects of the set of priors using simulated datasets from two models that have 

been prominent in the BMA literature: Model 1 is provided by FLS and is based on Raftery, 

Madigan and Hoeting (1997), and Model 2 was also suggested by FLS and is based on George 

and McCulloch (1993). For Model 1 we generate an ( )15=× ppn  matrix ( )151 ,..., rrR =  of 

regressors, where the first ten columns are drawn from independent standard normal distributions, 

and the next five columns are constructed according to 

( ) ( )( ) ( ) Errrr += ,1,1,1,1'1.19.07.05.03.0,...,,..., 511511 , where E is an 5×n  matrix of independent 

standard normal deviates. Model 1 implies small to moderate correlations between the first and 

last five regressors 51,...,rr  and 1511 ,..., rr . The correlations increase from 0.153 to 0.561 for 
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51,...,rr  and are somewhat larger between the last five regressors, reaching 0.740. Each regressor 

is centered by subtracting its mean, which results in a matrix ( )151 ,..., zzZ = .  A vector of n 

observations is then generated according to  

  Model 1: σε++++−+= 1311751 5.05.124 zzzzziy n ,   (12) 

where the n elements of ε  are independent standard normal and 5.2=σ .  In Model 1 a third of 

all the regressors intervene, which we view as fairly typical of some real world situations, and we 

examine datasets with 50 and 100 observations to stay close to the structure of our growth 

example.   

 The structure of Model 2 is closer to the growth dataset in terms of numbers of 

observations and numbers of regressors. It is generated using p regressors, pierr ii ,...,1,* =+= , 

where *
ir  and e are n-dimensional vectors of independent standard normal deviates. This induces 

a pairwise correlation of 0.5 between all regressors. Let Z again denote the pn×  matrix of 

centered regressors, and generate the n observations according to  

   Model 2: ( )∑ = + ++=
2/

1 2/
p

h hpn ziy σε ,    (13) 

where the n elements of the error are again independent standard normal and 2=σ . In this 

simulation model, the second half of the regressors intervene, namely ( )4021 ,..., zz . 

 For Model 1, the differences in the prior variances shown in Figures 5a,b are similar to the 

magnitudes observed for the growth dataset in Figure 1.  Again about three orders of magnitude 

separate the most concentrated and most diffuse priors, although the level of concentration is a bit 

lower in the simulated datasets. Tables 9a,b show, however, that with well-behaved data all priors 

basically agree upon which regressors have an effect, even in a dataset that contains only 50 

observations.  For the larger simulated dataset in Model 2, with about three times the number of 

candidate regressors as in Model 1, we again find diversity in the number of regressors identified 

as having an effect on the dependent variable. Table 7c shows that several priors are clearly too 

concentrated, with Priors 2, 5, and 7 identifying only between 3 and 7 of the 20 relevant 

regressors that in fact had an effect on the dependent variable. As the prior variance increases 

enough to cover the more substantive part of the likelihood, the priors are able to pick up more of 



 23

the relevant regressors, getting closer to the correct number of regressors. Priors 3, 9, and 11 pick 

up 16 candidate regressors although only Prior 1 shows appropriately high posterior inclusion 

probabilities. 

 In summary, our simulation experiment shows that priors can matter, especially when 

there are many candidate regressors. The Unit Information Prior is the only one that was robust 

across simulations, coming closest to identifying the right regressors in all cases.  

4.2 Prior Structure and Predictive Performance. 

We now report the predictive performance results from the simulated data experiments. Table 10 

shows the Unit Information Prior’s overall superior performance, and also the importance of 

examining alternative scoring rules. In terms of point estimates, the MSE was quite consistent in 

its evaluation. However, the CRPS and LPS differed in their assessment at times, even after 400 

trials. Prior 1 usually outperformed all the other priors for all scoring rules, but some other priors 

gave better CRPS results for some simulated datasets. 

 While the MSE and the LPS unanimously attributed the best predictive performance to 

Prior 1, for Model 1 the CRPS did not agree and identified Priors 3, 4, and 8 as best.  For Model 

2, however, the results again show strong overall support for Prior 1.  The CRPS and LPS did not 

agree on one prior each, but otherwise there is clear evidence that Prior 1 is not overfitting.  This 

result is not surprising since our baseline prior’s number of regressors with an effect was the 

closest to the true number of regressors in the model.  

5. Conclusion 

Model uncertainty is intrinsic in economic analysis and the economic growth literature has been a 

showcase for model uncertainty over the past decade. Over 140 growth determinants have been 

motivated by the empirical literature, and the number of competing theories has grown 

dramatically since the advent of the New Growth Theory (see Durlauf, Johnson and Temple, 2005 

for a survey). Standard in all empirical studies is, or should be, the examination of robustness and 

performance of alternative specifications. Bayesian Model Averaging (BMA) provides a solid 

theoretical foundation for robustness analysis that juxtaposes different theories.  For a well-known 

growth dataset, we show that growth determinants can be sensitive to the prior specification.  The 
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same analysis also shows, however, the important result that model-averaged inference about the 

economic effect of growth regressors is robust across alternative priors.  

 To identify the best prior for our growth dataset, we examine the predictive performance 

of 12 candidate default parameter priors that have been proposed in the economics and statistics 

literature, as well as two candidate model priors. We argue that predictive performance is a 

neutral criterion for comparing different priors, and we introduce an improved scoring rule. In 

addition, we examine these priors’ success in identifying the right determinants in simulated 

datasets. The Unit Information Prior (UIP) for the parameters performed consistently better than 

the other 11 priors in the growth data, and in simulated data, and as measured by all three scoring 

rules. The uniform model prior together with the uniform model prior also performed better than 

the Mitchell-Beauchamp model prior with expected model size 7, which had previously been 

recommended by Sala-i-Martin, Doppelhofer and Miller (2004) in the context of economic 

growth.  We view the Unit Information Prior with the uniform model prior as a reasonable default 

prior and starting place, but our results also highlight that researchers should also assess other 

possibilities that may be more appropriate for their data. 

 In spite of widespread doubts about the ability of the “small” cross-country growth dataset 

to provide a rich set of growth determinants, our analysis shows that the UIP parameter prior with 

uniform model priors robustly identifies far more growth determinants than other priors. The UIP 

discovers substantial evidence for 14 additional growth determinants as compared to those in 

Sala-i-Martin, Doppelhofer and Miller (2004) and Fernández, Ley and Steel (2001b). Hence we 

show that the appropriate prior in the growth context delivers a rich set of robust growth 

determinants that also generate good predictive performance. The new regressors prominently 

feature colonial origins, openness (Outward Orientation as well as the Black Market Premium) as 

well as institutional characteristics (Rule of Law, Civil Liberties and Ethnolinguistic 

Fragmentation).  Thus our results provide support for several new growth theories.  
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APPENDIX 
 

Scoring Rules  
The goal in evaluating predictive performance is to maximize the sharpness of predictive 
distributions subject to calibration (Gneiting et al., 2007). Calibration refers to the statistical 
consistency between the distributional forecasts and the observations; it is a joint property of the 
forecasts and the values that materialize. Sharpness refers to the concentration of the predictive 
distributions around the observation and it is a property of the forecasts only. 
 
Mean Square Error (MSE) 
The most basic measure predictive performance is the mean squared error that focuses on point 
estimation and point prediction. For point estimates this is a straightforward process that involves 
determining the Euclidean distance between the predicted and observed points.  Given the BMA 
posterior distribution, ( ) ( ) ( )∑ =
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Log Predictive Score (LPS) 
The MSE is sufficient when researchers are concerned only with the quality of a point forecast. 
However, researchers might also be interested in providing a good prediction of the density, to 
tests whether the model produces estimates that give both, a high density at the observation and 
correct probability estimates. The LPS is the logarithmic scoring rule where each event, A, is 
assigned a score of ( )[ ]Aprlog−  (Good 1952).  
 The predictive ability of any model is then measured by the sum of the logarithm of the 
posterior predictive ordinates for the observations in the hold-out set. This is the logarithm of the 
geometric mean of the conditional predictive ordinates. The log score for any given model is the 
observed coordinate of the predictive density  
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where ( )T
k DMpr ,|'θ  is the posterior predictive ordinate. The predictive log score for BMA is 

then  
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K

k
TT

kD
DMprDMprLPS H `1 ,'

||'log' θθ
εθ

.  (A3) 
 
Continuous Ranked Probability Score (CRPS) 
 The Continuous Ranked Probability Score (CRPS; Mattheson and Winkler, 1976), is a 
verification method for probabilistic forecasts of continuous variables. It is equivalent to the Brier 
Score (Brier, 1950) integrated over all possible values and is a generalization of the Ranked 
Probability Score (Epstein, 1969) that is used to evaluate probabilistic predictions over ordinal 
variables. In essence, the CRPS measures the difference between the predicted and the occurred 
cumulative distributions. The squared errors are computed with respect to the cumulative 
probabilities of the forecast and observation 
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 ( ) ( ) { }( ) '|'1|'' 2
, θθθθ ∫

∞

∞−
≥−= dxDMprCRPS T

k ,  (A4) 

where { }|'1 x≥θ  denotes a Heaviside step function that attains the value 1 if x≥'θ  and the value 0 
otherwise. The CRPS thus measures the area between the observed value and the predicted 
cumulative probability density function. Therefore sharpness (small spread) is rewarded if the 
prediction is accurate. A perfect CRPS score is 0.   
 Like the LPS, the mean CRPS is calculated over all predictions to determine the average 
error. Hersbach (2002) shows that the CRPS reduces to the MSE for deterministic forecasts. 
Therefore, this evaluation technique is the preferred means of comparing deterministic and 
probabilistic forecasting methods. 
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Source: FLS (2001b), Raftery et al (1997), Kass and Raftery (1995)

Table 1: Parameter Prior Structures 
 

Prior Specification of g-prior Comment Source 

1  Unit Information Prior  
 

The prior contains information approximately equal to 
that contained in a single typical observation. The 
resulting posterior model probabilities are closely 
approximated by the Schwarz Criterion, BIC. 

Kass and Wasserman (1995) 

2 npg kk /=  Prior information increases with the number of 
regressors in the model. 

FLS(2001b) 

3 npg kp
k

/1=  Prior information decreases with the number of 
regressors in the model. 

FLS(2001b) 

4  ng 1=  
This is an intermediate case of prior 1 suggested by 
FLS where a smaller asymptotic penalty is chosen for 
larger models.  

FLS(2001b) 

5 npg kk /=  
This is an intermediate case of prior 2, suggested by 
FLS, where prior information increases with the 
number of regressors in the model. 

FLS(2001b) 

6 ( )3ln/1 ng =  
The Hannan-Quinn criterion. CHQ=3 as n becomes 
large. 

Hannan-Quinn (1979) 

7 ( ) ( )npg kk ln1ln +=  
Prior information decreases even slower with sample 
size and there is asymptotic convergence to the 
Hannan-Quinn criterion with CHQ = 1. 

Hannan-Quinn (1979) 

8 ( ) ( )( )kk pp
kg /1/1 1 δγδγ −=   

A natural conjugate prior structure, subjectively 
elicited through predictive implications. γ < 1 (so that 
g increases with kj) and delta such that g/(1+g) Є 
[0.10, 0.15] (the weight of the “prior prediction error” 
in the Bayes factors); for kj ranging from 1 to 15.  FLS 
suggest covering this interval with the values of γ = 
0.65 and δ = 0.15. 

Laud and Ibrahim (1996) 

9 2/1 pg =  This prior is suggested by the risk inflation criterion 
(RIC). 

Foster and George (1994) 

10 [ ]( )2,max/1 png =  The preferred prior by Fernandez Ley and Steel 
(2001), a mix of Prior 9 or Prior 1.  

FLS (2001b) 

11 

( )
( )

22
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~/
'/1

,~

χσλ

φσ

σµβ

v
XnXV

VN
−=  

Data dependent priors. φ  = 2.85, ν  = 2.58, λ  = 0.28 
if the R2 of the full model is less than 0.9, and φ  = 
9.2, ν  = 0.2, λ  = 0.1684 if the R2 of the full model is 
greater than 0.9. 

Raftery, Madigan and 
Hoeting (1997) 

12 1−= ng  Similar to the Unit Information Prior. FLS(2001b) 

 



Table 2
Posterior Inclusion Probabilities Across Parameter Priors

Model Prior = Uniform
(Growth Dataset)

Prior 11 9 (FLS) Prior 6 Prior 1 (UIP) Prior 12 Prior 3 Prior 4 Prior 8 Prior 2 Prior 5 Prior 7
Confucius 99.5 99.9 100 100.0 100.0 100.0 100.0 100.0 99.9 99.2 98.5
GDPsh560 99.9 99.9 100 100.0 100.0 100.0 100.0 100.0 100.0 99.5 98.5
Life 96.5 96.4 99.9 100.0 100.0 99.9 99.8 98.6 96.4 93.1 90.9
RuleofLaw 47.2 64.0 99.6 100.0 99.6 99.6 98.3 93.0 69.3 57.3 56.6
SubSahara 74.8 83.8 99.9 100.0 100.0 100.0 99.7 97.5 86.3 80.2 79.6
EquipInv 99.0 96.8 98.3 99.9 98.4 98.3 95.6 88.8 94.4 95.3 95.2
Hindu 3.2 10.3 96.6 99.9 97.0 96.8 88.7 42.8 16.7 15.0 18.5
HighEnroll 0.3 0.7 93.4 99.8 94.0 93.5 78.1 2.8 2.1 3.9 7.2
LabForce 0.4 1.3 94.5 99.8 95.0 94.6 81.6 11.6 3.9 5.6 9.2
EthnoLFrac 0.5 1.3 90.8 99.3 91.4 90.8 74.6 7.2 3.3 4.8 8.0
Mining 28.0 38.5 96.4 99.2 96.5 96.4 93.3 74.7 49.1 43.4 44.1
LatAmerica 9.2 13.4 79.5 97.2 80.3 79.4 61.0 30.2 17.7 17.5 19.1
SpanishCol 0.0 0.1 67.6 94.6 68.7 67.3 42.3 2.0 0.5 1.1 2.4
FrenchCol 0.3 0.2 65.4 93.9 66.5 65.1 39.4 0.0 0.3 1.0 2.2
BritCol 0.0 0.0 64.7 93.6 65.8 64.4 38.7 0.7 0.2 0.6 1.8
PrSc 19.3 12.0 72.2 90.7 72.8 72.2 58.0 8.1 14.1 16.1 17.5
CivlLib 5.2 3.3 66.8 85.7 67.5 66.7 51.2 3.7 4.4 5.4 7.1
NEquipInv 28.8 49.3 71.3 85.6 71.7 71.3 66.6 82.1 52.4 41.1 40.3
English. 0.5 1.1 58 84.5 58.9 57.7 36.7 2.7 2.2 2.4 3.5
OutwarOr 0.0 0.0 51.2 82.8 52.2 51.0 31.4 0.7 0.2 0.6 1.7
BlMktPm 5.1 12.2 63.8 72.5 63.9 64.1 67.6 45.4 19.6 17.4 19.9
Muslim 66.9 68.3 44.3 60.9 44.4 44.4 49.4 54.9 66.5 60.3 56.1
Buddha 4.1 10.2 19.5 36.5 19.7 19.7 21.5 31.1 13.4 10.6 11.4
EcoOrg 34.2 56.6 39.5 35.6 39.2 39.7 50.1 88.7 61.0 47.3 45.2
X.PublEdu 0.0 0.2 17.9 13.3 17.8 18.1 19.4 1.5 0.6 1.1 2.0
PolRights 2.0 2.7 16.4 12.4 16.5 16.5 14.6 10.1 4.5 4.4 4.8
Protestants 35.5 51.5 25.7 11.7 25.2 26.0 41.7 81.3 56.8 47.7 46.4
WarDummy 1.1 0.9 6.2 11.7 6.4 6.3 3.9 0.8 1.2 1.8 2.0
Age 0.4 0.7 14.6 11.4 14.7 14.7 12.2 3.3 1.3 1.7 2.3
RFEXDist 1.8 2.0 4.6 9.6 4.7 4.7 4.0 0.6 2.6 3.3 3.4
Catholic 4.1 8.7 3.5 7.5 3.5 3.6 7.1 20.3 11.0 8.3 8.2
Popg 0.2 0.3 2.2 3.6 2.2 2.3 2.2 0.2 0.5 0.5 0.5
PrExports 2.2 2.5 1.2 2.8 1.2 1.2 2.1 5.9 3.7 3.0 2.8
Foreign. 0.5 0.3 0.7 2.0 0.7 0.7 0.4 0.0 0.2 0.6 0.7
Jewish 0.0 0.0 0.8 1.3 0.8 0.8 0.7 0.0 0.0 0.0 0.1
std.BMP. 0.0 0.0 0.6 1.3 0.6 0.6 0.4 0.0 0.0 0.0 0.0
Area 0.0 0.0 0.8 1.1 0.9 0.9 1.1 0.0 0.1 0.1 0.2
Work.Pop 0.4 0.2 0.3 1.1 0.3 0.3 0.2 0.0 0.2 0.6 0.8
AbsLat 0.6 0.5 1.2 1.0 1.2 1.2 1.8 0.3 0.7 0.9 1.0
YrsOpen 57.8 40.9 1.2 1.0 1.1 1.2 3.4 15.3 37.3 44.2 42.4
Rev.Coup 0.1 0.2 0.4 0.7 0.4 0.4 0.7 1.1 0.5 0.4 0.4
# of relevant 
regressors

7 8 15 22 21 21 17 10 10 7 7

Adj. R2 best models 0.827 0.843 0.845 0.925 0.915 0.915 0.874 0.846 0.825 0.745 0.685

1) Shaded cells indicated posterior inclusion probability over 50% (Jeffreys, 1961)
2) Priors 9 and 10 are identical in the growth context

Priors Arranged By Effective g-Value (increasing left to right)



(Growth Dataset)

Prior 11 Prior 9 (FLS) Prior 6 Prior 1 (UIP) Prior 12 Prior 3 Prior 4 Prior 8 Prior 2 Prior 5 Prior 7
Best Model Best Model Best Model Best Model Best Model Best Model Best Model Best Model Best Model Best Model Best Model

Confucius 0.0576 0.0575 0.0711 0.0759 0.071 0.0708 0.0708 0.0527 0.0499 0.0665 0.0381
GDPsh560 -0.0184 -0.0165 -0.0176 -0.0188 -0.0176 -0.0176 -0.0176 -0.0135 -0.0144 -0.0169 -0.0086
Life 0.0008 0.0008 0.0008 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0008 0.0007
RuleofLaw 0.0166 0.0168 0.0133 0.0131 0.0133 0.0133 0.0133 0.0122 0.0146 0.0107 .
SubSahara -0.0166 -0.0133 -0.025 -0.0218 -0.025 -0.025 -0.025 -0.0117 -0.0115 -0.0154 .
EquipInv 0.154 0.1587 0.1511 0.1511 0.1509 0.1505 0.1505 0.0964 0.1378 0.1466 0.1441
Hindu . . -0.1224 -0.1108 -0.1223 -0.122 -0.122 . . -0.0656 .
HighEnroll . . -0.1313 -0.1213 -0.1312 -0.1308 -0.1308 . . -0.0894 .
LabForce . . 0.0000 0.0000 . . . . . . .
EthnoLFrac . . 0.0163 0.0165 0.0163 0.0163 0.0163 . . 0.0143 .
Mining . . 0.0301 0.0328 0.03 0.03 0.03 0.028 . 0.0355 .
LatAmerica . . -0.0159 -0.0127 -0.0159 -0.0158 -0.0158 . . . .
SpanishCol . . 0.0161 0.0140 0.016 0.016 0.016 . . . .
FrenchCol . . 0.0136 0.0110 0.0136 0.0136 0.0136 . . . .
BritCol . . 0.01 0.0079 0.01 0.01 0.01 . . . .
PrSc . . 0.0187 0.0249 0.0187 0.0187 0.0187 . . 0.0253 .
CivlLib . . -0.0026 -0.0028 -0.0026 -0.0026 -0.0026 . . -0.0021 .
NEquipInv 0.0603 0.0635 0.0377 0.0295 0.0376 0.0375 0.0375 0.0412 0.0552 . .
English. . . -0.0083 -0.0078 -0.0083 -0.0082 -0.0082 . . . .
OutwarOr . . -0.0038 -0.0035 -0.0038 -0.0038 -0.0038 . . . .
BlMktPm . . . -0.0055 . . . -0.0059 . -0.0087 .
Muslim 0.0107 0.01 . 0.0078 . . . 0.0105 0.0087 0.0157 0.0078
Buddha . . . . . . . 0.0103 . . .
EcoOrg 0.0029 0.0031 . . . . . 0.0024 0.0027 . .
X.PublEdu . . . . . . . . . . .
PolRights . . . . . . . . . . .
Protestants . -0.011 . . . . . -0.0082 -0.0096 . -0.009
WarDummy . . . . . . . . . . .
Age . . . . . . . . . . .
RFEXDist . . . . . . . . . . .
Catholic . . . . . . . . . . .
Popg . . . . . . . . . . .
PrExports . . . . . . . . . . .
Foreign. . . . . . . . . . . .
Jewish . . . . . . . . . . .
std.BMP. . . . . . . . . . . .
Area . . . . . . . . . . .
Work.Pop . . . . . . . . . . .
AbsLat . . . . . . . . . . .
YrsOpen . . . . . . . . . . 0.0116
Rev.Coup . . . . . . . . . . .

# of Regressors 8 9 14 22 19 19 19 12 10 14 6

R2 0.846 0.863 0.876 0.948 0.938 0.938 0.938 0.872 0.85 0.899 0.712

Adj. R2 0.827 0.843 0.845 0.924 0.915 0.915 0.915 0.846 0.825 0.874 0.685
1) Priors 9 and 10 are identical in the growth context

Table 3

Priors Arranged By Effective g-Value (increasing left to right)

Best Models Across Parameter Priors
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Confucius 99.5 0.0553 0.0130 99.9 0.0559 0.0121 100.0 0.0688 0.0109 100.0 0.0732 0.0104 100.0 0.0688 0.0109 100.0 0.0685 0.0110 100.0 0.0600 0.0142 100.0 0.0483 0.0140 99.9 0.0488 0.0141 99.2 0.0408 0.0158 98.5 0.0361 0.0164
GDPsh560 99.9 -0.0163 0.0030 99.9 -0.0163 0.0029 100.0 -0.0174 0.0024 100.0 -0.0180 0.0023 100.0 -0.0174 0.0024 100.0 -0.0173 0.0024 100.0 -0.0155 0.0030 100.0 -0.0141 0.0030 100.0 -0.0142 0.0031 99.5 -0.0116 0.0034 98.5 -0.0101 0.0036
Life 96.5 0.0008 0.0003 96.4 0.0008 0.0003 99.9 0.0009 0.0002 100.0 0.0009 0.0002 100.0 0.0009 0.0002 99.9 0.0009 0.0002 99.8 0.0008 0.0003 98.6 0.0007 0.0003 96.4 0.0007 0.0003 93.1 0.0006 0.0003 90.9 0.0005 0.0003
RuleofLaw 47.2 0.0073 0.0084 64.0 0.0100 0.0084 99.6 0.0123 0.0038 100.0 0.0124 0.0038 99.6 0.0123 0.0038 99.6 0.0123 0.0039 98.3 0.0112 0.0052 93.0 0.0119 0.0062 69.3 0.0092 0.0077 57.3 0.0063 0.0071 56.6 0.0054 0.0066
SubSahara 74.8 -0.0111 0.0076 83.8 -0.0129 0.0072 99.9 -0.0218 0.0048 100.0 -0.0222 0.0044 100.0 -0.0218 0.0047 100.0 -0.0217 0.0048 99.7 -0.0183 0.0056 97.5 -0.0143 0.0058 86.3 -0.0118 0.0067 80.2 -0.0093 0.0066 79.6 -0.0083 0.0063
EquipInv 99.0 0.1871 0.0557 96.8 0.1644 0.0593 98.3 0.1403 0.0425 99.9 0.1466 0.0363 98.4 0.1403 0.0423 98.3 0.1396 0.0430 95.6 0.1203 0.0555 88.8 0.0978 0.0616 94.4 0.1335 0.0646 95.3 0.1234 0.0671 95.2 0.1107 0.0669
Hindu 3.2 -0.0009 0.0060 10.3 -0.0030 0.0104 96.6 -0.0940 0.0315 99.9 -0.1075 0.0205 97.0 -0.0947 0.0309 96.8 -0.0936 0.0314 88.7 -0.0679 0.0387 42.8 -0.0116 0.0185 16.7 -0.0046 0.0133 15.0 -0.0042 0.0138 18.5 -0.0055 0.0163
HighEnroll 0.3 -0.0002 0.0051 0.7 -0.0007 0.0082 93.4 -0.1056 0.0408 99.8 -0.1193 0.0298 94.0 -0.1063 0.0402 93.5 -0.1052 0.0409 78.1 -0.0758 0.0528 2.8 -0.0022 0.0145 2.1 -0.0016 0.0124 3.9 -0.0025 0.0153 7.2 -0.0043 0.0197
LabForce 0.4 0.0000 0.0000 1.3 0.0000 0.0000 94.5 0.0000 0.0000 99.8 0.0000 0.0000 95.0 0.0000 0.0000 94.6 0.0000 0.0000 81.6 0.0000 0.0000 11.6 0.0000 0.0000 3.9 0.0000 0.0000 5.6 0.0000 0.0000 9.2 0.0000 0.0000
EthnoLFrac 0.5 0.0001 0.0009 1.3 0.0001 0.0013 90.8 0.0131 0.0058 99.3 0.0152 0.0042 91.4 0.0132 0.0057 90.8 0.0130 0.0058 74.6 0.0095 0.0072 7.2 0.0006 0.0026 3.3 0.0003 0.0020 4.8 0.0004 0.0022 8.0 0.0006 0.0028
Mining 28.0 0.0113 0.0198 38.5 0.0151 0.0212 96.4 0.0334 0.0134 99.2 0.0331 0.0117 96.5 0.0333 0.0134 96.4 0.0333 0.0136 93.3 0.0309 0.0173 74.7 0.0236 0.0203 49.1 0.0166 0.0209 43.4 0.0123 0.0189 44.1 0.0109 0.0178
LatAmerica 9.2 -0.0008 0.0027 13.4 -0.0012 0.0033 79.5 -0.0105 0.0066 97.2 -0.0129 0.0048 80.3 -0.0107 0.0066 79.4 -0.0105 0.0067 61.0 -0.0069 0.0069 30.2 -0.0024 0.0042 17.7 -0.0014 0.0034 17.5 -0.0012 0.0031 19.1 -0.0012 0.0030
SpanishCol 0.0 0.0000 0.0001 0.1 0.0000 0.0003 67.6 0.0098 0.0076 94.6 0.0134 0.0051 68.7 0.0099 0.0075 67.3 0.0097 0.0076 42.3 0.0054 0.0073 2.0 0.0001 0.0010 0.5 0.0000 0.0006 1.1 0.0001 0.0010 2.4 0.0002 0.0015
FrenchCol 0.3 0.0000 0.0004 0.2 0.0000 0.0004 65.4 0.0076 0.0061 93.9 0.0106 0.0041 66.5 0.0078 0.0061 65.1 0.0076 0.0061 39.4 0.0041 0.0057 0.0 0.0000 0.0001 0.3 0.0000 0.0004 1.0 0.0001 0.0008 2.2 0.0001 0.0012
BritCol 0.0 0.0000 0.0000 0.0 0.0000 0.0001 64.7 0.0052 0.0043 93.6 0.0073 0.0032 65.8 0.0052 0.0043 64.4 0.0051 0.0043 38.7 0.0027 0.0040 0.7 0.0000 0.0003 0.2 0.0000 0.0002 0.6 0.0000 0.0005 1.8 0.0001 0.0008
PrSc 19.3 0.0043 0.0096 12.0 0.0026 0.0077 72.2 0.0157 0.0116 90.7 0.0194 0.0093 72.8 0.0158 0.0115 72.2 0.0156 0.0116 58.0 0.0119 0.0122 8.1 0.0014 0.0056 14.1 0.0027 0.0075 16.1 0.0027 0.0074 17.5 0.0026 0.0071
CivlLib 5.2 -0.0001 0.0006 3.3 -0.0001 0.0005 66.8 -0.0017 0.0014 85.7 -0.0023 0.0012 67.5 -0.0017 0.0014 66.7 -0.0017 0.0014 51.2 -0.0011 0.0014 3.7 -0.0001 0.0004 4.5 -0.0001 0.0005 5.4 -0.0001 0.0005 7.1 -0.0001 0.0006
NEquipInv 28.8 0.0169 0.0286 49.3 0.0292 0.0327 71.3 0.0303 0.0247 85.6 0.0320 0.0210 71.7 0.0303 0.0245 71.3 0.0302 0.0247 66.6 0.0283 0.0278 82.1 0.0402 0.0288 52.4 0.0264 0.0308 41.1 0.0170 0.0267 40.3 0.0144 0.0248
English. 0.5 0.0000 0.0005 1.1 -0.0001 0.0008 58.0 -0.0048 0.0049 84.5 -0.0067 0.0045 58.9 -0.0048 0.0049 57.7 -0.0047 0.0049 36.7 -0.0027 0.0046 2.7 -0.0001 0.0011 2.2 -0.0001 0.0011 2.4 -0.0001 0.0011 3.5 -0.0001 0.0014
OutwarOr 0.0 0.0000 0.0000 0.0 0.0000 0.0001 51.2 -0.0019 0.0022 82.8 -0.0031 0.0021 52.2 -0.0019 0.0022 51.0 -0.0019 0.0022 31.4 -0.0010 0.0020 0.7 0.0000 0.0002 0.2 0.0000 0.0002 0.6 0.0000 0.0003 1.7 0.0000 0.0005
BlMktPm 5.1 -0.0004 0.0020 12.2 -0.0009 0.0028 63.8 -0.0046 0.0043 72.5 -0.0043 0.0036 63.9 -0.0046 0.0043 64.1 -0.0047 0.0044 67.6 -0.0049 0.0046 45.4 -0.0028 0.0041 19.6 -0.0013 0.0032 17.4 -0.0010 0.0028 19.9 -0.0010 0.0028
Muslim 66.9 0.0086 0.0071 68.3 0.0083 0.0066 44.3 0.0051 0.0067 60.9 0.0054 0.0056 44.4 0.0050 0.0067 44.4 0.0051 0.0067 49.4 0.0059 0.0072 54.9 0.0058 0.0062 66.5 0.0072 0.0064 60.3 0.0056 0.0060 56.1 0.0046 0.0056
Buddha 4.1 0.0005 0.0027 10.2 0.0013 0.0041 19.5 0.0015 0.0037 36.5 0.0027 0.0044 19.7 0.0015 0.0037 19.7 0.0015 0.0037 21.5 0.0018 0.0044 31.1 0.0031 0.0059 13.4 0.0014 0.0043 10.6 0.0009 0.0036 11.4 0.0009 0.0036
EcoOrg 34.2 0.0010 0.0014 56.6 0.0016 0.0015 39.5 0.0007 0.0011 35.6 0.0005 0.0008 39.2 0.0007 0.0011 39.7 0.0007 0.0011 50.1 0.0010 0.0012 88.7 0.0021 0.0012 61.0 0.0015 0.0014 47.3 0.0009 0.0012 45.2 0.0008 0.0011
X.PublEdu 0.0 0.0000 0.0034 0.2 0.0004 0.0098 17.9 0.0395 0.0963 13.3 0.0212 0.0688 17.8 0.0392 0.0960 18.1 0.0399 0.0968 19.4 0.0396 0.0995 1.5 0.0023 0.0245 0.6 0.0011 0.0175 1.1 0.0016 0.0223 2.0 0.0026 0.0291
PolRights 2.0 0.0000 0.0003 2.7 0.0000 0.0003 16.4 -0.0003 0.0007 12.4 -0.0002 0.0007 16.5 -0.0003 0.0007 16.5 -0.0003 0.0007 14.6 -0.0002 0.0007 10.1 -0.0001 0.0005 4.5 -0.0001 0.0004 4.4 -0.0001 0.0003 4.8 0.0000 0.0003
Protestants 35.5 -0.0045 0.0066 51.5 -0.0065 0.0071 25.7 -0.0028 0.0053 11.7 -0.0009 0.0031 25.2 -0.0027 0.0053 26.0 -0.0028 0.0053 41.7 -0.0043 0.0062 81.3 -0.0087 0.0065 56.8 -0.0062 0.0068 47.7 -0.0043 0.0061 46.4 -0.0038 0.0057
WarDummy 1.1 -0.0001 0.0005 0.9 0.0000 0.0005 6.2 -0.0002 0.0008 11.7 -0.0003 0.0010 6.4 -0.0002 0.0008 6.3 -0.0002 0.0008 3.9 -0.0001 0.0007 0.8 0.0000 0.0004 1.2 0.0000 0.0005 1.8 -0.0001 0.0006 2.0 -0.0001 0.0006
Age 0.4 0.0000 0.0000 0.7 0.0000 0.0000 14.6 0.0000 0.0000 11.4 0.0000 0.0000 14.7 0.0000 0.0000 14.7 0.0000 0.0000 12.2 0.0000 0.0000 3.3 0.0000 0.0000 1.3 0.0000 0.0000 1.7 0.0000 0.0000 2.3 0.0000 0.0000
RFEXDist 1.8 0.0000 0.0000 2.0 0.0000 0.0000 4.6 0.0000 0.0000 9.6 0.0000 0.0000 4.7 0.0000 0.0000 4.7 0.0000 0.0000 4.0 0.0000 0.0000 0.6 0.0000 0.0000 2.6 0.0000 0.0000 3.3 0.0000 0.0000 3.4 0.0000 0.0000
Catholic 4.1 -0.0003 0.0017 8.7 -0.0006 0.0025 3.5 -0.0001 0.0013 7.5 0.0003 0.0014 3.5 -0.0001 0.0013 3.6 -0.0001 0.0013 7.1 -0.0003 0.0020 20.3 -0.0012 0.0034 11.0 -0.0007 0.0026 8.3 -0.0004 0.0020 8.2 -0.0003 0.0018
Popg 0.2 0.0005 0.0128 0.3 0.0006 0.0141 2.2 0.0013 0.0318 3.6 -0.0034 0.0366 2.2 0.0012 0.0321 2.3 0.0014 0.0324 2.2 0.0023 0.0365 0.2 0.0004 0.0125 0.5 0.0010 0.0188 0.5 0.0007 0.0175 0.5 0.0006 0.0181
PrExports 2.2 -0.0003 0.0019 2.5 -0.0003 0.0019 1.2 -0.0001 0.0008 2.8 -0.0001 0.0010 1.2 -0.0001 0.0007 1.2 -0.0001 0.0008 2.1 -0.0001 0.0012 5.9 -0.0004 0.0023 3.7 -0.0003 0.0021 3.0 -0.0002 0.0017 2.8 -0.0002 0.0016
Foreign. 0.5 0.0000 0.0005 0.3 0.0000 0.0004 0.7 0.0000 0.0003 2.0 0.0000 0.0004 0.7 0.0000 0.0003 0.7 0.0000 0.0003 0.4 0.0000 0.0002 0.0 0.0000 0.0001 0.2 0.0000 0.0003 0.6 0.0000 0.0005 0.7 0.0000 0.0004
Jewish 0.0 0.0000 0.0000 0.0 0.0000 0.0001 0.8 0.0000 0.0008 1.3 0.0000 0.0010 0.8 0.0000 0.0008 0.8 0.0000 0.0008 0.7 0.0000 0.0010 0.0 0.0000 0.0000 0.0 0.0000 0.0002 0.0 0.0000 0.0003 0.1 0.0000 0.0004
std.BMP. 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.6 0.0000 0.0000 1.3 0.0000 0.0000 0.6 0.0000 0.0000 0.6 0.0000 0.0000 0.4 0.0000 0.0000 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.0 0.0000 0.0000
Area 0.0 0.0000 0.0000 0.0 0.0000 0.0000 0.8 0.0000 0.0000 1.1 0.0000 0.0000 0.9 0.0000 0.0000 0.9 0.0000 0.0000 1.1 0.0000 0.0000 0.0 0.0000 0.0000 0.1 0.0000 0.0000 0.1 0.0000 0.0000 0.2 0.0000 0.0000
Work.Pop 0.4 -0.0001 0.0009 0.2 0.0000 0.0007 0.3 0.0000 0.0003 1.1 0.0000 0.0007 0.3 0.0000 0.0003 0.3 0.0000 0.0003 0.2 0.0000 0.0004 0.0 0.0000 0.0001 0.2 0.0000 0.0006 0.6 -0.0001 0.0010 0.8 -0.0001 0.0011
AbsLat 0.6 0.0000 0.0000 0.5 0.0000 0.0000 1.2 0.0000 0.0000 1.0 0.0000 0.0000 1.2 0.0000 0.0000 1.2 0.0000 0.0000 1.8 0.0000 0.0000 0.3 0.0000 0.0000 0.7 0.0000 0.0000 0.9 0.0000 0.0000 1.0 0.0000 0.0000
YrsOpen 57.8 0.0088 0.0083 40.9 0.0061 0.0080 1.2 0.0001 0.0010 1.0 0.0000 0.0004 1.1 0.0001 0.0009 1.2 0.0001 0.0009 3.4 0.0003 0.0018 15.3 0.0015 0.0042 37.3 0.0047 0.0070 44.2 0.0049 0.0067 42.4 0.0042 0.0062
Rev.Coup 0.1 0.0000 0.0002 0.2 0.0000 0.0003 0.4 0.0000 0.0002 0.7 0.0000 0.0003 0.4 0.0000 0.0002 0.4 0.0000 0.0002 0.7 0.0000 0.0004 1.1 0.0000 0.0006 0.5 0.0000 0.0004 0.4 0.0000 0.0004 0.4 0.0000 0.0004
1) Priors 9 and 10 are identical in the growth context

Prior 4Prior 9 FLS Prior 7

Table 4: Posterior Means, SDs, and Inclusion Probabilities Across Parameter Priors

Priors Arranged By Effective g-Value (increasing left to right)
Prior 11 Prior 12 Prior 5Prior 6 Prior 8Prior 1 UIP Prior 2Prior 3



Sampler PcGetsc

Prior/g value NA
Computer Language GiveWin

 Posterior Best model Posterior Best model Posterior Best model PcGets
Confucius 100.0 0.0759 100.0 0.0720 100.0 0.0571 0.056
GDPsh560 100.0 -0.0188 100.0 -0.0179 100.0 -0.0164 -0.165
Life 100.0 0.0009 99.9 0.0009 99.9 0.0010 0.098
RuleofLaw 100.0 0.0131 96.3 0.0135 92.1 0.0119 0.015
SubSahara 100.0 -0.0218 99.8 -0.0254 99.7 -0.0228 -0.027
EquipInv 99.9 0.1511 98.0 0.1530 98.1 0.186
Hindu 99.9 -0.1108 98.5 -0.1240 99.4 -0.0759 -0.111
HighEnroll 99.8 -0.1213 95.2 -0.1330 97.6 -0.0701 -0.114
LabForce 99.8 0.0000 96.8 0.0000 99.0 0.0000 0.004
EthnoLFrac 99.3 0.0165 91.1 0.0166 95.3 0.013
Mining 99.2 0.0328 95.2 0.0305 97.1 0.0431 0.034
LatAmerica 97.2 -0.0127 78.9 -0.0161 89.1 -0.0090 -0.016
SpanishCol 94.6 0.0140 63.8 0.0163 81.8 0.015
FrenchCol 93.9 0.0110 58.8 0.0138 78.5 0.011
BritCol 93.6 0.0079 53.3 0.0101 71.2 0.008
PrSc 90.7 0.0249 64.2 0.0190 77.6  0.017
CivlLib 85.7 -0.0028 55.1 -0.0027 67.7
NEquipInv 85.6 0.0295 72.7 0.0382 82.0 0.0560
English. 84.5 -0.0078 45.1 -0.0084 60.2
OutwarOr 82.8 -0.0035 43.1 -0.0039 68.1
BlMktPm 72.5 -0.0055 67.8 73.2 -0.0090
Muslim 60.9 0.0078 40.7 52.6
Buddha 36.5 21.2 39.7
EcoOrg 35.6 54.5 56.5 0.0023
X.PublEdu 13.3 28.1 37.0 0.2671
PolRights 12.4 28.9 35.9 -0.0015
Protestants 11.7 41.7 45.5 -0.0152
WarDummy 11.7 9.6 29.7 -0.0028
Age 11.4 23.6 33.0 0.0000
RFEXDist 9.6 3.1 23.8
Catholic 7.5 7.1 21.0 -0.0033
Popg 3.6 5.5 17.0 0.2119
PrExports 2.8 3.1 16.0
Foreign. 2.0 3.0 15.0
Jewish 1.3 2.5 13.4
std.BMP. 1.3 2.9 13.8
Area 1.1 3.8 14.1
Work.Pop 1.1 3.0 13.5
AbsLat 1.0 4.7 15.0
YrsOpen 1.0 4.1 15.4
Rev.Coup 0.7 8.4 13.1
# of Regressors 22 20 20 17
BIC -118.161 -117.490 -100.356 -118.014
R2 0.948 0.940 0.924 0.929
Adj. R2 0.924 0.917 0.895 0.907

Best model is BMA.COMPARE's best model # 1 3 not in top 5 not in top 5

System time in seconds (h/min) 900sec (0.25h)c

c PcGets (Hendry and Krolzig, 2004) reports only the best regression
Benchmarks for Dell OptiPlex GX270, Pentium 4, 3 GHz, 1 GB RAM, prior 1

bFLS Fortran77 defaults used, see http://qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/. The result is robust to 
quadrupling the default number of integer chains (the maximum for the test computer)

aBACE defaults used, see http://www.econ.cam.ac.uk/faculty/doppelhofer/. These defaults assured that the program does 
converged with this growth dataset

798sec (0.22h) 1555sec (0.43h) 15359sec (4.25h)

GAUSS
prior 1

Branch and Bounds
prior 1

R

MC3 (FLS)b

g=1/n
Fortran77

Table 5
Sampler Comparsion:

Best Model, Posterior Inclusion Probabilities and System Time

Coinflipa



 

Prior 1 UIP 
Model Prior: 

Uniform Prior 11 Prior 9 Prior 6 Prior 1 Prior 12 Prior 3 Prior 4 Prior 8 Prior 2 Prior 5 Prior 7
Confucius 100.0 0.1 95.8 99.7 99.9 99.7 99.7 98.7 97.2 96.5 87.1 84.8
GDPsh560 100.0 0.0 91.7 99.8 100.0 99.8 99.8 99.0 97.3 96.8 71.8 50.1
Life 100.0 0.0 77.4 94.8 97.8 94.9 94.8 90.2 84.9 82.0 48.8 30.8
RuleofLaw 100.0 0.0 16.9 49.4 68.6 50.2 50.4 37.0 29.2 21.5 12.3 8.2
SubSahara 100.0 0.0 60.4 76.5 86.3 76.9 77.0 70.1 66.1 62.9 48.5 35.1
EquipInv 99.9 0.2 99.4 98.2 99.2 98.1 98.0 98.5 98.7 99.0 98.5 97.9
Hindu 99.9 0.0 0.0 4.8 9.6 5.0 5.1 2.3 1.1 0.1 0.0 0.0
HighEnroll 99.8 0.0 0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.1 0.8 1.2
LabForce 99.8 0.0 0.0 0.3 1.5 0.3 0.3 0.1 0.0 0.0 0.0 0.0
EthnoLFrac 99.3 0.0 0.2 0.4 0.9 0.5 0.5 0.4 0.4 0.4 0.5 0.3
Mining 99.2 0.0 6.9 31.2 33.7 31.8 32.2 25.8 19.6 12.0 3.8 1.7
LatAmerica 97.2 0.0 6.0 11.2 11.1 11.4 11.6 11.6 10.9 9.3 6.1 3.9
SpanishCol 94.6 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FrenchCol 93.9 0.0 0.3 0.3 0.0 0.3 0.3 0.6 0.7 0.7 0.3 0.1
BritCol 93.6 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PrSc 90.7 0.0 7.8 13.3 8.0 13.3 13.5 14.6 13.6 11.5 6.5 4.8
CivlLib 85.7 0.0 1.2 3.2 2.2 3.2 3.3 3.3 2.9 2.1 0.6 0.4
NEquipInv 85.6 0.0 5.6 34.7 56.2 35.4 35.5 23.0 16.6 9.8 5.2 4.1
English. 84.5 0.0 0.0 0.8 0.1 0.8 0.9 0.7 0.4 0.1 0.1 0.3
OutwarOr 82.8 0.0 0.0 0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.3
BlMktPm 72.5 0.0 0.3 6.8 10.0 7.1 7.3 4.6 2.7 0.8 0.1 0.0
Muslim 60.9 0.0 29.2 65.6 69.1 65.9 65.8 56.5 46.9 37.2 13.0 7.2
Buddha 36.5 0.0 2.6 5.9 11.8 6.1 6.2 3.8 3.1 2.0 9.6 13.8
EcoOrg 35.6 0.0 7.6 40.7 61.9 41.6 41.7 27.4 19.7 11.9 6.2 5.0
X.PublEdu 13.3 0.0 0.0 0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PolRights 12.4 0.0 0.5 1.9 0.8 1.9 2.0 2.0 1.7 1.2 0.4 0.5
Protestants 11.7 0.0 21.3 40.7 51.8 41.3 41.5 32.6 27.4 21.4 24.9 25.6
WarDummy 11.7 0.0 0.9 1.2 0.0 1.2 1.2 1.9 2.1 1.9 1.3 0.7
Age 11.4 0.0 0.6 0.6 0.1 0.6 0.7 0.9 1.1 1.0 1.8 2.0
RFEXDist 9.6 0.0 1.6 2.5 0.0 2.5 2.6 3.3 3.3 2.6 3.8 4.8
Catholic 7.5 0.0 1.1 5.3 9.0 5.5 5.5 3.3 2.3 1.4 1.9 1.6
Popg 3.6 0.0 0.0 0.2 0.0 0.2 0.3 0.2 0.1 0.0 0.1 0.2
PrExports 2.8 0.0 0.1 1.8 1.3 1.9 1.9 1.4 0.9 0.3 0.5 0.5
Foreign. 2.0 0.0 0.9 0.6 0.0 0.6 0.6 1.1 1.3 1.5 1.0 0.7
Jewish 1.3 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
std.BMP. 1.3 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.8
Area 1.1 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3
Work.Pop 1.1 0.0 1.2 0.5 0.1 0.4 0.5 1.0 1.5 1.7 2.2 2.2
AbsLat 1.0 0.0 0.3 0.6 0.0 0.6 0.6 0.8 0.8 0.7 0.2 1.0
YrsOpen 1.0 0.0 63.0 52.4 38.0 51.8 51.7 59.2 61.0 63.5 49.1 38.2
Rev.Coup 0.7 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
effect threshold 50% 22 6 6 7 10 8 8 7 6 6 3 3
effect threshold 17.08% NA 7 8 12 12 12 12 12 11 9 7 7

2) Priors 9 and 10 are identical in the growth context
1) Light shaded cells are inclusion probabilities > 50%. Dark shaded cells indicate the additional regressors that pass the Sala-i-Martin et al 2004 17.08% effect-threshold.

Priors Arranged By Effective g-Value (increasing left to right)

Table 6
Posterior Inclusion Probabilities Across Parameter and Model Priors

 Uniform Model Prior Column 1, All Other Columns: Prior Model Size =7 (as in Sala-i-Martin et al., 2004)
(Growth Dataset)



Parameter Priors And Predictive Performance

Prior Mediana + / 100b Significancec

11 0.014 69 0.00
9 0.012 69 0.00
6 0.006 70 0.00
12 0.006 71 0.00
3 0.006 70 0.00
4 0.003 57 0.00
8 0.002 57 0.00
2 0.003 57 0.00
5 0.002 53 0.07
7 0.002 55 0.01

11 0.030 68 0.00
9 0.032 68 0.00
6 0.008 64 0.00
12 0.009 65 0.00
3 0.008 64 0.00
4 0.002 53 0.07
8 0.003 55 0.01
2 0.007 57 0.00
5 0.011 59 0.00
7 0.021 64 0.00

11 0.969 62 0.00
9 1.540 65 0.00
6 1.478 75 0.00
12 1.748 78 0.00
3 1.478 75 0.00
4 -0.833 37 1.00
8 -0.861 38 1.00
2 -0.468 43 1.00
5 0.003 50 0.52
7 0.580 55 0.01

1) Priors 9 and 10 are identical in the simulated dataset
2) Priors arranged by effective g-value (increasing top to bottom)

a Median refers to the median inprovement in the score attained by the UIP 
compared to a given alternative prior

c Significance refers to the binomial p values, P(X > or = z), for the given 
number of trials and successes; where success is defined as a better score 
for prior 1 as compared to a given alternative prior 

b Indicates number of successes per 100 trials where "success" is a better 
predictive score by the UIP than by the alternative prior

LPS

Trials: 578

Table 7

MSE

CRPS

Performance Scores Relative  to Parameter Prior 1
(Growth Dataset, Model Prior: Uniform)



Prior Model Size=3 Prior Model Size=5 Prior Model Size=6 Prior Model Size=7 Prior Model Size=8 Prior Model Size=9 Prior Model Size=11 Prior Model Size=13 Prior Model Size=15 Prior Model Size=17

Prior Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc Mediana + / 100b Sigc

 
11 0.16 71 0.000 0.13 72 0.00 0.14 77 0.00 0.13 71 0.00 0.12 71 0.00 0.16 79 0.00 0.17 81 0.00 0.11 71 0.00 0.10 71 0.00 0.10 72 0.00
9 0.15 71 0.000 0.12 71 0.00 0.14 78 0.00 0.12 71 0.00 0.12 71 0.00 0.16 81 0.00 0.16 80 0.00 0.11 73 0.00 0.11 74 0.00 0.10 73 0.00
6 0.09 70 0.000 0.08 71 0.00 0.13 75 0.00 0.09 73 0.00 0.09 72 0.00 0.15 79 0.00 0.12 77 0.00 0.08 80 0.00 0.08 81 0.00 0.07 79 0.00
1 0.03 67 0.000 0.02 67 0.00 0.02 67 0.00 0.02 69 0.00 0.02 68 0.00 0.04 58 0.01 0.02 69 0.00 0.01 68 0.00 0.01 69 0.00 0.01 70 0.00

12 0.10 70 0.000 0.09 71 0.00 0.13 75 0.00 0.09 72 0.00 0.09 73 0.00 0.15 80 0.00 0.12 78 0.00 0.08 82 0.00 0.08 81 0.00 0.07 81 0.00
3 0.09 70 0.000 0.08 71 0.00 0.13 75 0.00 0.09 73 0.00 0.09 72 0.00 0.15 79 0.00 0.12 77 0.00 0.08 80 0.00 0.08 81 0.00 0.07 79 0.00
4 0.08 68 0.000 0.06 67 0.00 0.09 70 0.00 0.05 65 0.00 0.05 65 0.00 0.13 78 0.00 0.11 76 0.00 0.06 69 0.00 0.06 73 0.00 0.05 73 0.00
8 0.09 67 0.000 0.08 65 0.00 0.09 68 0.00 0.05 65 0.00 0.05 65 0.00 0.13 74 0.00 0.12 76 0.00 0.05 66 0.00 0.05 71 0.00 0.05 71 0.00
2 0.09 67 0.000 0.07 68 0.00 0.10 70 0.00 0.07 68 0.00 0.06 67 0.00 0.12 74 0.00 0.14 76 0.00 0.05 63 0.00 0.06 65 0.00 0.05 65 0.00
5 0.15 70 0.000 0.13 69 0.00 0.15 76 0.00 0.11 67 0.00 0.11 67 0.00 0.17 73 0.00 0.17 77 0.00 0.09 65 0.00 0.09 64 0.00 0.08 65 0.00
7 0.19 75 0.000 0.17 73 0.00 0.18 80 0.00 0.16 73 0.00 0.15 72 0.00 0.20 75 0.00 0.20 80 0.00 0.13 69 0.00 0.12 69 0.00 0.10 68 0.00
 

11 0.04 83 0.000 0.04 80 0.00 0.03 78 0.00 0.03 79 0.00 0.02 77 0.00 0.03 72 0.00 0.05 78 0.00 0.01 77 0.00 0.01 72 0.00 0.01 71 0.00
9 0.04 85 0.000 0.03 77 0.00 0.02 79 0.00 0.02 79 0.00 0.02 75 0.00 0.02 71 0.00 0.04 75 0.00 0.01 73 0.00 0.01 74 0.00 0.01 71 0.00
6 0.01 69 0.000 0.01 66 0.00 0.01 69 0.00 0.01 66 0.00 0.01 67 0.00 0.01 62 0.00 0.01 63 0.00 0.00 71 0.00 0.00 62 0.00 0.00 63 0.00
1 0.00 61 0.002 0.00 59 0.01 0.00 62 0.00 0.00 61 0.00 0.00 61 0.00 0.01 53 0.26 0.00 59 0.01 0.00 57 0.03 0.00 57 0.03 0.00 55 0.08

12 0.02 73 0.000 0.01 68 0.00 0.01 71 0.00 0.01 71 0.00 0.01 69 0.00 0.01 62 0.00 0.01 63 0.00 0.00 68 0.00 0.00 65 0.00 0.00 68 0.00
3 0.01 69 0.000 0.01 66 0.00 0.01 69 0.00 0.01 66 0.00 0.01 67 0.00 0.01 62 0.00 0.01 63 0.00 0.00 71 0.00 0.00 62 0.00 0.00 63 0.00
4 0.01 67 0.000 0.00 56 0.05 0.00 59 0.01 0.00 56 0.06 0.00 53 0.21 0.01 59 0.01 0.00 53 0.15 0.00 59 0.01 0.00 57 0.03 0.00 57 0.02
8 0.01 65 0.000 0.00 57 0.02 0.00 59 0.01 0.00 56 0.05 0.00 56 0.06 0.00 55 0.11 0.00 56 0.01 0.00 53 0.26 0.00 55 0.11 0.00 56 0.06
2 0.01 72 0.000 0.01 66 0.00 0.01 66 0.00 0.00 58 0.01 0.00 57 0.03 0.01 61 0.00 0.01 65 0.00 0.00 53 0.21 0.00 54 0.17 0.00 52 0.31
5 0.01 65 0.000 0.01 65 0.00 0.00 63 0.00 0.00 61 0.00 0.00 61 0.00 0.01 59 0.01 0.01 57 0.00 0.00 55 0.11 0.00 51 0.47 0.00 51 0.41
7 0.01 63 0.000 0.01 58 0.01 0.00 60 0.00 0.00 59 0.01 0.00 62 0.00 0.01 60 0.00 0.01 57 0.00 0.00 55 0.08 0.00 52 0.36 0.00 51 0.47
 

11 1.50 62 0.00 1.17 59 0.01 1.89 64 0.00 1.23 58 0.01 1.15 57 0.02 3.58 82 0.00 4.18 78 0.00 0.82 55 0.08 0.89 57 0.03 0.99 57 0.02
9 1.53 62 0.00 1.31 60 0.00 1.96 64 0.00 1.30 59 0.01 1.16 59 0.01 3.51 82 0.00 4.28 78 0.00 1.10 56 0.06 1.21 59 0.01 1.24 61 0.00
6 0.40 54 0.14 0.66 54 0.17 1.72 59 0.01 0.68 55 0.11 0.89 56 0.05 2.79 82 0.00 3.23 75 0.00 1.26 65 0.00 1.41 70 0.00 1.60 72 0.00
1 0.86 62 0.00 0.57 61 0.00 0.43 61 0.00 0.34 60 0.00 0.42 59 0.01 1.63 60 0.00 0.32 61 0.00 0.22 61 0.00 0.18 62 0.00 0.10 63 0.00

12 0.66 56 0.06 0.76 54 0.17 1.99 59 0.01 0.87 57 0.03 1.13 57 0.03 2.89 83 0.00 3.34 76 0.00 1.46 67 0.00 1.58 72 0.00 1.94 73 0.00
3 0.40 54 0.14 0.66 54 0.17 1.72 59 0.01 0.68 55 0.11 0.89 56 0.05 2.79 82 0.00 3.23 75 0.00 1.26 65 0.00 1.41 70 0.00 1.60 72 0.00
4 0.18 52 0.31 -0.28 47 0.79 0.92 57 0.03 -0.44 47 0.83 -0.44 47 0.79 2.36 77 0.00 3.01 72 0.00 -0.54 44 0.97 -0.48 45 0.94 -0.53 43 0.98
8 0.45 53 0.26 -0.05 48 0.69 0.58 57 0.03 -0.43 47 0.79 -0.40 47 0.83 2.37 77 0.00 3.11 73 0.00 -0.62 42 0.99 -0.61 43 0.98 -0.82 44 0.95
2 0.46 53 0.26 0.10 51 0.41 0.99 58 0.01 -0.17 48 0.74 -0.28 48 0.69 2.65 78 0.00 3.29 75 0.00 -0.39 48 0.74 -0.40 46 0.89 -0.54 45 0.94
5 1.45 59 0.01 1.11 58 0.01 1.68 61 0.00 0.81 56 0.05 0.69 55 0.08 3.43 88 0.00 4.05 79 0.00 0.20 52 0.31 0.02 50 0.53 -0.02 50 0.53
7 1.86 62 0.00 1.69 61 0.00 2.06 64 0.00 1.45 58 0.01 1.30 58 0.01 4.22 91 0.00 4.61 81 0.00 0.83 55 0.08 0.69 54 0.14 0.57 53 0.21

b Indicates number of successes per 100 trials where "success" is a better predictive score by the UIP than by the alternative prior

1) Priors 9 and 10 are identical in the simulated dataset
2) Priors arranged by effective g-value (increasing top to bottom)

a Median refers to the median inprovement in the score attained by the UIP compared to a given alternative 

c Significance refers to the binomial p values P(X > or = z) for the given number of trials and successes; 
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Table 8
Parameter Priors, Model Priors, and Predictive Performance (Growth Dataset)

Performance Scores Relative  to Prior 1 with Uniform Model Prior
Trials = 190



Table 9a
Posterior Inclusion Probabilities Across Parameter Priors

Simulated Data, Model1, k=15, n=50

Priors Arranged By Effective g-Value (increasing left to right)

Regressor 11 9 6 1 12 3 4 2 8 5 7
z1 100 100 100 100 100 100 100 100 100 99.9 99.5
z7 100 100 99.3 100 100 100 99.8 99.2 99.6 94.4 90.9
z11 99.6 99.6 96.9 99.9 99.7 99.7 98.6 95.6 97.9 84.3 79
z5 70 67 65.5 73.7 70.5 71.2 67.8 46.2 65.1 36.9 34.5
z2 18.5 23.6 37.3 34.9 32.2 34.9 37 20.9 35.7 22.6 22.3
z4 19.9 23.1 36.7 32.9 30.7 33.2 35.8 22.1 34.9 26 26.3
z14 18.8 13.8 32.5 27.4 23.4 26.8 31.1 11.2 29.2 14.7 15.9
z9 10.6 8.7 31.3 20 16.7 20.1 28.2 8.8 26.3 11.4 12.5
z3 9 9.3 29.2 21.7 18.1 21.5 27.3 8.4 25.4 11.4 12.5
z13 10.7 7.5 22.1 14.1 12.5 14.4 19.6 7.7 18.6 11 12.4
z12 10.2 8.9 20.2 15 13.6 15.2 18.6 8.2 17.7 10.5 11.3
z8 6.7 5.3 18.1 9.5 8.7 10.1 15.2 7.2 14.7 11.2 12.6
z15 6.4 6.1 15.3 9.7 9.1 10.3 13.5 6.3 13.1 7.8 8.4
z6 5.1 4.2 7.3 4.9 5.1 5.4 6.4 5.2 6.5 6.8 7.2
z10 5.2 4.4 7.1 4.9 5.2 5.4 6.3 5.3 6.4 7.1 7.5

# effects 4 4 4 4 4 4 4 3 4 4 4

Table 9b
Posterior Inclusion Probabilities Across Parameter Priors

Simulated Data, Model 1, k=15, n=100

Priors Arranged By Effective g-Value (increasing left to right)
Regressor 11 9 1 12 6 3 2 4 8 5 7

z1 100 100 100 100 100 100 100 100 100 100 100
z7 100 100 100 100 100 100 100 100 100 99.6 97.9
z11 99.4 99.4 99.7 99.5 99.5 99.5 97.6 99.1 98.1 86.5 75.6
z5 92.9 92.9 95.6 94.5 94.5 94.9 83.8 93.9 90.5 57.6 43.6
z15 79.9 81.1 87.8 85 85.1 86.2 63.2 85.1 78.8 35.8 28.3
z6 15.6 15.4 22.1 21.2 21.3 23.7 14.9 39 38 13 12.3
z12 13.7 13.2 19.2 18.3 18.4 20.5 12.4 33.2 32.2 10.9 10.4
z4 14.3 15.8 17.3 17.9 18 19.1 23 27.5 29.7 33.6 34.2
z13 7.7 6.9 9.9 9.7 9.7 10.9 7.1 16.7 16.6 7.9 8.8
z10 4.8 5.1 7.9 7.6 7.6 8.7 5.2 17.7 17.8 5.3 5.4
z3 4 6.1 7.4 7.6 7.6 8.3 7.7 12.3 13.1 9.1 8.7
z2 3.2 5 7 6.9 6.9 7.8 5.4 13.2 13.4 5.9 5.9
z8 6 5.6 7 7 7.1 7.7 6.4 11 11.3 7.4 7.7
z9 4.9 4.6 6.8 6.6 6.7 7.6 4.9 14.3 14.4 5.2 5.2
z14 4.6 4.3 6 5.9 6 6.7 4.6 10.9 11.1 5 5.3

# effects 5 5 5 5 5 5 5 5 5 4 3

Table 9c
Posterior Inclusion Probabilities Across Parameter Priors

Simulated Data, Model 2, k=40, n=100

Priors Arranged By Effective g-Value (increasing left to right)
Regressor 11 9 1 12 6 3 4 8 2 5 7

z1 1.5 1.8 2.8 2.4 2 2.7 0.8 1.3 0.8 2.1 2
z2 0.9 1.2 8.6 1.7 1.5 2 0.2 0.1 0 0 0
z3 4.1 4.8 13.9 4.9 4.5 5.6 0.4 0.2 0 0.4 0.9
z4 0.6 0.6 1.6 1.1 1.3 1.2 0.1 0 0 1 2.1
z5 0.3 0.4 1.9 0.8 0.5 0.9 0.2 0.6 0.7 0.2 0.1
z6 0.4 0.5 3.9 1 0.5 1.1 0.1 0 0 0 0
z7 0.3 0.3 1.5 0.8 0.1 0.9 0.2 0.5 0.9 0.5 0.3
z8 0.4 0.6 4.5 1 0.1 1.1 0.1 0.1 0.1 1 1.1
z9 0.3 0.4 2.5 0.8 0.5 0.9 0.1 0 0 0 0
z10 0.4 0.4 1.6 0.9 0.6 0.9 0.1 0 0.1 1.3 1.9
z11 6.1 6.7 14.3 6.1 6.2 6.8 0.5 0.2 1.2 6.3 7
z12 10.7 14.2 33.2 11.7 10.7 13.2 1.8 0.7 0 0 0
z13 0.3 0.4 3 0.9 0.6 1 0.1 0 0 0 0.2
z14 12.7 12.6 6.8 15.7 14.7 16 12 7.8 0.5 0.4 0.2
z15 0.4 0.5 3.9 0.9 0.1 1.1 0.1 0 0 0 0.1
z16 1.5 1.8 4.9 2.1 2.3 2.4 0.2 0.1 0 0.6 1.2
z17 0.5 0.6 2.5 1 1 1.1 0.2 0.4 0.4 2.6 3.4
z18 10.4 10.6 7.1 8.8 9.6 9.3 14.7 22.4 29.9 23.7 17.8
z19 0.8 1 6.1 1.4 1.3 1.7 1.4 3.6 9.3 10.6 9
z20 0.6 0.7 2.7 1.2 1.4 1.3 1.7 1.5 1.9 1.2 1.2
z21 4.4 7 57.1 4.2 4 5.3 0.4 0.9 2.1 1 0.6
z30 35.3 41.9 94 26.5 26.5 30 3.8 1.5 0 0.4 1.1
z38 44.6 50.9 95.9 38.4 38.4 41.2 20.1 11.9 1.3 0.6 0.3
z33 98.7 99 100 93.3 93.2 93.7 38.2 19.8 0.5 3.8 5.3
z22 72.2 75.4 98.6 50.9 49.7 54.8 7.4 9.1 21.8 40.4 45.2
z25 99.7 99.8 100 96.8 96.6 97.1 29.1 14.7 1.1 1.1 0.8
z27 100 100 100 99.3 99.4 99.3 64.5 39.4 0.9 0.3 0.3
z32 99 99.3 100 94.2 93.8 94.7 50.8 30.9 1.3 1 1.4
z35 100 100 100 100 100 100 72.5 45.7 2.6 2.7 2.9
z23 100 100 100 100 100 100 81.9 56.9 3.1 2 2.3
z37 100 100 100 100 100 100 83.1 57.8 4.6 1.6 1.1
z39 100 100 100 100 100 100 97.3 86.7 31 13.4 10.4
z31 100 100 100 99.4 99.5 99.4 77.4 79 67.6 45.7 35.2
z29 100 100 100 100 100 100 99.9 98.7 78.3 37.3 24.6
z24 100 100 100 100 100 100 99.4 95 55.7 26.6 19.9
z36 100 100 100 100 100 100 80.7 61.4 28.4 19.6 14
z28 100 100 100 100 100 100 99.9 99.2 90.2 64.5 50.5
z26 99 99.2 100 92.7 93.5 93.3 55.8 66.7 82.2 85.6 86.1
z40 100 100 100 99.5 99.4 99.5 85.1 89.3 100 95.3 86.8

# effects 16 17 19 16 15 16 13 10 7 4 3
1) Light brown shaded variables should have an effect
2) Dark grey shaded cells indicated posterior inclusion probability over 50% (Jeffreys, 1961)
3) Priors 9 and 10 are identical in the simulated datasets
4) Uniform model priors through



Table 10a Table 10b Table 10c
Predictive Performance Predictive Performance Predictive Performance

Relative  to Parameter Prior 1 Relative to Parameter Prior 1 Relative  to Parameter Prior 1
Model 1, k=15 n=50 Model 1, k=15 n=100 Model 2, k=40 n=100

(Uniform Model Prior) (Uniform Model Prior) (Uniform Model Prior)
Trials: 400 Trials: 400 Trials: 400

   
Prior Mediana + / 100b Significancec Mediana + / 100b Significancec Mediana + / 100b Significancec

 
11 0.003 55 0.020 0.002 66 0.000 0.007 90 0.000
9 0.002 56 0.007 0.014 69 0.000 0.006 90 0.000
6 0.000 52 0.291 0.000 59 0.000 0.001 64 0.000

12 0.001 55 0.040 0.002 67 0.000 0.003 79 0.000
3 0.000 52 0.291 0.000 59 0.000 0.001 64 0.000
4 0.007 59 0.000 0.006 64 0.000 0.007 62 0.000
2 0.010 60 0.000 0.006 66 0.000 0.022 84 0.000
8 0.008 59 0.000 0.014 69 0.000 0.017 71 0.000
5 0.054 75 0.000 0.039 84 0.000 0.059 88 0.000
7 0.088 79 0.000 0.074 91 0.000 0.097 93 0.000
 

11 0.007 72 0.000 0.007 319 0.000 -0.002 47 0.927
9 0.004 69 0.000 0.008 82 0.000 0.000 50 0.520

12 0.000 47 0.876 0.000 46 0.939 0.001 54 0.073
6 -0.001 42 0.999 -0.003 26 1.000 0.002 57 0.005
3 -0.001 42 0.999 -0.003 26 1.000 0.002 57 0.005
4 -0.002 41 1.000 -0.006 23 1.000 0.012 71 0.000
8 -0.001 42 0.999 -0.006 25 1.000 0.013 73 0.000
2 0.001 54 0.060 -0.001 48 0.773 0.004 58 0.001
5 0.001 54 0.073 -0.004 33 1.000 0.013 71 0.000
7 0.002 57 0.003 -0.004 38 1.000 0.016 74 0.000

9 0.053 55 0.040 0.120 71 0.000 0.331 79 0.000
8 0.817 71 0.000 2.257 77 0.000 1.872 73 0.000

11 0.057 56 0.016 0.142 70 0.000 0.463 81 0.000
6 0.049 56 0.007 0.162 56 0.009 -0.092 45 0.988
3 0.049 56 0.007 0.162 56 0.009 -0.092 44 0.988
2 0.849 70 0.000 1.233 70 0.000 1.475 76 0.000
4 0.768 71 0.000 1.468 69 0.000 0.954 67 0.000
7 2.962 87 0.000 5.801 94 0.000 6.124 92 0.000
5 2.330 84 0.000 4.043 90 0.000 4.274 87 0.000
6 1.542 76 0.000 3.105 85 0.000 2.734 77 0.000

b Number of successes per 100 trials where "success" is a better predictive score by the UIP than by the alternative prior

1) Priors 9 and 10 are identical in the simulated dataset
2) Priors arranged by effective g-value (increasing top to bottom)

c Significance refers to the binomial p values P(X > or = z) for the given number of trials and successes; where success is 

a Median refers to the median inprovement in the score attained by the UIP compared to a given alternative prior

LPS LPS LPS

MSE MSE

CRPS

MSE

CRPS CRPS



 

2) Priors 9 and 10 are identical in the growth context

1) When priors depend on the exact model size, p k , Figure 1 approximates the prior using the 
expected model size. Priors 11 and 1 are not exact g priors, so the g value is also an 
approximation

Figure 1

Effective g-Value (Inversely related to Prior Variance)
And Number of Effective Regressors
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1) Priors 9 and 10 are identical in the growth context

Figure 2
Correlation of Posterior Inclusion Probabilities Across Parameter Priors

(Growth Dataset)



Figure 3
Regressors Included in Best Models 

a) Prior 1 (uniform model prior) b) Prior 9 (uniform model prior)

 

Priors 9 and 10 are identical in the growth context.

c) Prior 1 (prior model size = 7)
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Figure 4
Posterior Means Across Parameter Priors
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1) Priors 9 and 10 are identical in the simulated datasets
2) Priors 1 and 12 have the same g-value 
3) Priors arranged by effective g-value (increasing left to right)

Figure 5a
Effective g-Value (Inversely Related to Prior Variance)
And Number of Effective Regressors (Posterior > 50%)

Simulated Data, Model, 1 k=15, n=50

Figure 5b
Effective g-Value (Inversely Related to Prior Variance)
And Number of Effective Regressors (Posterior > 50%)

Simulated Data, Model 1, k=15, n=100

Figure 5c
Effective g-Value (Inversely Related to Prior Variance)
And Number of Effective Regressors (Posterior > 50%)

Simulated Data, Model 2, k=40, n=100
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