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Abstract 
The exact specification and motivation of the Environmental Kuznets Curve (EKC) is the subject of a vast 
literature in environmental economics.  A remarkably diverse set of econometric approaches has been 
employed to support or reject a specific relationship between environmental quality and pollution. 
Nevertheless, methods employed to date have not addressed the issue of model uncertainty, given that a 
sizable number of competing theories exist that can explain the income/pollution relationship.  

We introduce Bayesian Model Averaging to the EKC analysis to examine a) whether a sulphur dioxide 
EKC exists, and if so, b) which income/pollution specification is most strongly supported by the data. We 
find only weak support for an EKC, which disappears altogether when we address oversampling issues in 
the data. In contrast, our results highlight the relative importance of political economy and site-specific 
variables in explaining pollution outcomes. Trade is also shown to play an important indirect role. It 
moderates the influence of the composition effect on pollution. Our findings run contrary to the 
deterministic view of the income/pollution relationship that is persistent in the literature. 
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I. Introduction 

A vast empirical literature has sought to establish a robust relationship between economic 

development and environmental quality. Grossman and Krueger (1995) and Selden and Song 

(1994) examined the relationship and documented an inverted U-shaped curve between income 

and pollution that is similar to the inverted U-shaped relationship between income and inequality 

first proposed by Kuznets (1955). The early data seemed to support an “environmental Kuznets 

curve” (EKC) where initial phases of development are associated with increasing pollution while 

richer nations experience improvements in their environmental quality.   

 Subsequently, however, a large number of authors have failed to confirm the EKC – 

either in the original Grossman and Krueger dataset or in updated and expanded pollution 

datasets (see, e.g., Harbaugh et al., 2002, or Deacon and Norman, 2006). The conflicting 

empirical results have given rise to intense attempts either to formally model the EKC process 

(see e.g., Antweiler et al., 2001), or to add further control variables to reduced-form regressions 

to examine whether the EKC relationship can be resurrected and/or remain robust when the 

model is correctly specified (see, e.g., Panatayotou, 1997).  

 The EKC is a case study of extreme model uncertainty where the true model is unknown 

and several competing approaches exist to formalize the relationship between environmental 

quality and income. In light of such model uncertainty, inference procedures based on only one 

regression model overstate the precision of coefficient estimates since the uncertainty 

surrounding the validity of a theory has not been taken into account (see Doppelhofer, 2005). 

The problem is particularly prevalent in the EKC literature since a number of well-founded 

approaches exist and researchers face an abundance of possible candidate regressors.  

 Bayesian Model Averaging (BMA) allows inferences to be based on a number of 

competing models, each weighted by its quality. The procedure naturally delivers a posterior 

distribution for each candidate regressor, whose mean is a smoothed estimate derived from all 

relevant models. Hundreds of BMA papers have been published in the last decade as increases in 

computing power allow end users to trawl through thousands of models mechanically in attempts 

to address model uncertainty. In environmental economics, prominent examples of BMA 

applications include the modeling of population determinants for deer and fish in Farnsworth et 

al. (2006) and Fernandez, Ley and Steel (2002), respectively. To our knowledge, we are the first 
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to apply Bayesian Model Averaging to resolve the model uncertainty surrounding the EKC 

relationship.  

 Our strategy is to group EKC approaches into two categories. First we examine reduced-

form approaches to the EKC, where many possible determinants of pollution are tested.  Then 

we examine specific theories that have been proposed as the underlying determinants of an EKC, 

and scrutinize how strongly the data supports theory-based candidate regressors. Before we 

summarize our results, it is important to note that the updated S02 data that has been extended 

and cleaned of previous errors no longer exhibits the EKC relationship that Grossman and 

Krueger (1995) discovered (see, e.g., Harbaugh et al., 2002). Hence our results below can be 

seen as an effort to find robust evidence for an EKC in this dataset by eliminating possible 

omitted variable bias. 

 We find only limited evidence for an income/pollution relationship once we account for 

model uncertainty in the data. Instead, robust and strongly related regressors in both reduced-

form and theory-based approaches are those relating to political economy, site-specific effect,s 

and trade-induced composition effects. Societies that are more open in terms of political 

participation are shown to exhibit significantly lower air pollution.   

 The theory-based approach highlights that the exact theoretical specification of the trade 

effect on pollution matters. Following Antweiler et al. (2001), we show that the interaction 

between trade and capital intensity is of crucial importance to explain the evolution of SO2
 

concentrations across countries and time. We also show that the composition effect has a 

different impact on countries depending on their level of development.  The greater the level of 

development – as proxied by the human capital augmented capital-labor ratio – the lower the 

implied concentrations for open economies.  We also find support for pollution havens, since the 

negative coefficient implies that countries with low capital intensity and high trade orientations 

have higher pollution levels (see Birdsall and Wheeler, 1993). 

 It is important to note that the number of regressors that are robustly related to pollution 

in the BMA approach, as well as the best model identified by BMA, contains only a fraction of 

the 23 possible candidate regressors and only about one third of the 18 regressors suggested by 

the most comprehensive theoretical specification in Antweiler et al. (2001). This provides 

evidence that such a complex theory may not be necessary and alternative theories, such as the 
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Green Solow model, should not be discarded simply because they rely on only a fraction of the 

regressors that Antweiler et al. (2001) introduced (see Taylor and Brock, 2003). Not only is the 

number of robustly related regressors in BMA smaller than previous approaches suggested, 

several are also not exclusively related to economic fundamentals.  

 Nevertheless, the best model suggested by BMA, which accounts for model uncertainty, 

has an R-squared of 0.242 at the most disaggregated level, which is twice as high as Antweiler et 

al.’s (2001) preferred full fixed-effects specification (R2 = 0.15).  Indeed, the best model 

identified in our preferred specification, which also addresses the severe oversampling issues in 

the data, features an R-squared of 0.514. This implies that the significance of the large number of 

regressors in previous theory-based and reduced-form regressions may be an artifact of an 

approach that did not take into account model uncertainty.  

2)  The SO2 EKC 

2.1) Data Considerations 

Perhaps the most salient EKC relationship in the literature is between air quality and 

development.1  In this paper we focus on median sulphur dioxide (SO2) concentration data from 

the Global Environmental Monitoring System (GEMS) to search for an EKC. The data is 

updated, error-corrected and maintained by the EPA in its Aerometric Information Retrieval 

System (AIRS).2 The GEMS/AIRS data is perhaps the most widely used dataset to investigate 

the EKC, with reported SO2 concentrations from stations in up to 44 countries from 1971 to 

2006.3 However, most of the data since the early 1990s exists only for the United States.  

 Our income measure is real GDP per capita in constant 1996 dollars from the Penn World 

Tables 6.1 (Heston, Summers and Aten, 2002). In a later section when we compare results to 

Antweiler et al. (2001, subsequently referred to as ACT), we also use their GNP data as an 

income measure. We use concentration data, although emissions data is also widely available, 

                                                 
1 Alternative measures have been used. Evidence for an EKC has been found for water quality (Grossman and 
Krueger, 1995), deforestation (Cropper and Griffith, 1994; Panayotou, 1995) and water withdrawal for agriculture 
(Rock, 1998; Goklany, 2002). Some researchers have found an EKC for carbon dioxide (Roberts and Grimes, 1997) 
though others have found that CO2 increases monotonically with income (Shafik and Bandyopadhyay, 1992). 
2 Our raw GEMS/AIRS data is identical to Antweiler, Copeland and Taylor (2001), who kindly shared their data that 
includes median concentrations. 
3 See, for example, Grossman and Krueger (1995), Panayotou (1997), Torras and Boyce (1998), Barrett and Graddy 
(2000), Harbaugh et al. (2002) and Deacon and Norman (2006). 
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because it is the concentration of SO2 in the atmosphere that matters for the environmental 

impact.  

 The SO2 data is, however, highly unbalanced in two dimensions: location and time. Few 

countries report data over the entire time period, and many countries report pollution 

concentrations for less than a decade. Often entire years of data are missing between 

observations not only on the station level, but also on the city and country level. Even in 

countries with extensive locational coverage, such as the United States, the time series for each 

monitoring station is highly unbalanced. 

 The data are unbalanced in terms of location since a few countries are represented with 

large numbers of reporting stations, while many other nations feature only one. A full 38 percent 

of the original 2,555 station-level observations originate in the U.S. and Canada. The imbalance 

is exacerbated early and late in the sample as the U.S. supplies 69 percent of the data before 1974 

and after 1993. Therefore we restrict our analysis to 1994-1993, which reduces the dataset by 

219 mostly U.S. observations.  The literature has largely been concerned with documenting the 

EKC (or the absence thereof) without acknowledging the fact that the dataset is so extremely 

unbalanced.  In Section 2.2 we discuss measures to balance the sample, which require us to drop 

seven countries with a total of 128 observations because they lacked either SO2 or PWT 6.1 for 

at least two five-year periods.4 Finally, we had to drop Hong Kong (40 observations) because it 

lacked the Polity IV data described below, and Yugoslavia was dropped by ACT because it lacks 

human capital data. Figure 1 provides a breakdown of the 2168 observations by country of 

origin. 

2.2 The EKC in the Raw Income Pollution Data 

As mentioned in section 2.1, we employ the same GEMS dataset for income and sulphur dioxide 

pollution that has been used extensively in the previous literature. Starting with the very first 

paper by Grossman and Krueger (1991) and continuing on to perhaps the most prominent recent 

work on the income/pollution relationship by ACT, this dataset has been the cornerstone of EKC 

support. The first surprise for researchers using the newest version of GEMS, which has been 

purged of errors and extended to include updated data, is that it no longer provides evidence for 
                                                 
4 These countries (and their number of observations) are Austria (2), Kenya (4), Switzerland (2), Ghana (3), Czech 
Republic (21), Poland (86) and Iraq (9). Iraq and Poland are excluded only when we use GDP measures. A complete 
description of the data used in this paper is provided in the appendix. 
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the fundamental EKC relationship.  Figure 2 plots the raw data for every station in every year 

that an observation is recorded. In addition, the figure traces the predicted values from the most 

fundamental regression that includes only log SO2 concentrations as the dependent variable and 

real GDP per capita as a third-order polynomial.5 In Grossman and Krueger (1995), a similar plot 

was prominently inverted-U shaped.  

 Instead of an EKC, the updated GEMS data in Figure 2 shows a simple relationship 

between development and environmental quality that has SO2 concentrations gradually declining 

with income.  The lack of an EKC in the raw SO2 data has previously been noticed by astute 

researchers who suggested that global data masks country-level phenomena. Deacon and 

Norman (2006) provide strong evidence that the country-level experience may in fact look very 

different from the global station-level data. Since technology, factor abundance and the political 

response to interest groups are also national concepts, we aggregate the data in search of an EKC 

at the individual country level.  Figure 3 confirms Deacon and Norman’s (2006) results by 

plotting country-level SO2 concentrations over time and showing that most countries’ SO2 

concentrations do not follow an EKC path. In fact, it is difficult to discern any country in Figure 

3 that exhibits the single peak predicted by the EKC hypothesis. Indeed, Deacon and Norman 

(2006) show that diverse SO2–income relationships exist among countries; depending on the 

nation, rising income may be associated with rising, falling or stable SO2 concentrations.  

 The lack of an EKC at the station or individual country level might be an artifact of the 

extremely unbalanced time- and location-dimensions of the dataset. Since our main explanatory 

variable, real GDP per capita, is defined at the country level, oversampling in countries with 

multiple reporting stations may bias the station-level regressions severely. To balance the 

sample, we follow Selden and Song (1994) and take five-year averages that correct for much of 

the time and locational imbalances discussed in Section 2.1. In the averaged dataset, the U.S. 

prominence is reduced to 24 percent of the observations at the station-level. Therefore, averaging 

helps address our oversampling concerns, and in the country-level data the entire locational 

                                                 
5 We employ fixed-effects regressions throughout. It has been argued that the random effects EKC cannot be 
estimated consistently (Mundlak, 1978; Hsiao, 1986; Stern, 2003). Since the very premise of the EKC is that 
specific local, regional or national characteristics are crucial, the random-effects approach suffers from 
inconsistency due to omitted variables. In addition, we have no desire to imply that a possible EKC in our data holds 
beyond the countries in this sample. Hence, we take the view that countries represented are not simply random 
draws from a larger EKC country/station population. An additional advantage of the fixed-effects approach is that it 
controls for many time-invariant, site-specific and country-specific factors. 
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imbalance that leads to oversampling concerns is eliminated. Averaging data over five-year 

intervals is also common in the economic growth literature and allows us to address the error 

associated with business cycle fluctuations that are inherent in income data (see Barro, 1990). 

Nevertheless, we will continue to examine and report results for all three levels of aggregation.   

 Averaging across time and aggregating by country does not resolve the mystery of the 

missing EKC in the raw data, however. Plotting the station-level data and the predicted values 

obtained by the same method as in Figure 2, the country-level data in Figure 4 maintains the 

negative relationship between pollution and income. The monotonic decline is a bit surprising 

given past support for an EKC in the GEMS data (e.g., Shafik, 1994; Grossman and Krueger, 

1995; Torras and Boyce, 1996; Panayotou, 1997). A careful study by Harbaugh, Levinson and 

Wilson (2002) with the revised GEMS/AIRS data, however, found evidence that sulphur dioxide 

concentrations may initially decline as income rises. In addition, Perman and Stern (2003), who 

use the same data and make adjustments for previous methodological and data problems with 

appropriate statistical techniques, also found no EKC evidence. Given the heterogeneity 

observed in Figure 3, and the results of Deacon and Norman (2006), our station-level results are 

not surprising.  

3. Model Uncertainty in the Income / Environment Relationship 

 Two simple explanations can address the absence of an EKC in the raw data presented in 

Figures 2 and 4.  Either the relationship does not exist, or the model is misspecified.  By 

neglecting to include crucial covariates, the misspecification due to omitted variable bias may 

overwhelm the power of the GDP regressors. Perhaps in an effort to explore the latter line of 

reasoning, the literature features a remarkably diverse range of different model specifications to 

uncover evidence in favor of an EKC.  

 Below, we first focus on the most prominent reduced-form approaches that commonly 

include variables to sharpen the EKC model specification such as international trade, capital 

intensity, precipitation variation, temperature, population density, investment, education, 

institutions, and interaction terms. Instead of juxtaposing various versions of different 

researchers’ preferred models as is standard in robustness analysis, we use an advanced model 

selection technique to address the model uncertainty inherent in the EKC literature. Bayesian 

Model Averaging (BMA) is the most sophisticated and theoretically grounded method to address 
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model uncertainty.  The next section provides a brief abstract of the BMA method and identifies 

how the procedure resolves EKC model uncertainty. 

3.1 Addressing Model Uncertainty in the Income / Environment Relationship  

The issue of model uncertainty in general has long been recognized as a major problem in 

economics. When inferences are based on one model alone, the ambiguity involved in model 

selection dilutes information about effect sizes and predictions since “part of the evidence is 

spent to specify the model” (Leamer, 1978, page 91). It is therefore not surprising that averaging 

over all models can be proven to provide better average predictive performance than just picking 

any single model (Madigan and Raftery, 1994).  

 The basic model averaging idea originated with Jeffreys (1961) and Leamer (1978), 

whose insights were developed and operationalized by Draper (1995) and Raftery (1995). BMA 

was first introduced to economics by Fernandez, Ley and Steel (2001), with an application to 

economic growth. Here we restrict ourselves to sketching the basic BMA structure before we 

discuss the results (for an extensive discussion of BMA see Hoeting, Madigan, Raftery and 

Volinsky, 1999). Environmental applications of BMA include (among many others) Farnsworth 

et al. (2006) and Fernandez, Ley and Steel (2002). 

 Consider n  independent replications from a linear regression model. The dependent 

variable (S02 pollution) in n  countries grouped in vector γ  is regressed on an intercept α  and a 

number of explanatory variables chosen from a set of k  candidate regressors contained in a 

design matrix Z  of dimension n  x k . Assume that ( ) 1: += kZr nι , where ( )⋅r  indicates the 

rank of a matrix and nι  is an n -dimensional vector of ones. Further define β  as the full k -

dimensional vector of regression coefficients. 

 Now suppose that we have a jkn×  submatrix of variables in Z  denoted by .jZ  Then 

denote by jM  the model with regressors grouped in ,jZ  such that  

     ,σεβαι ++= jjn Zy  

where jβ  jkℜ∈  )0( kk j ≤≤  groups regression coefficients corresponding to the submatrix jZ , 

+ℜ∈σ  is a scale parameter, and ε  is a random error term that follows an n -dimensional 
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normal distribution with a zero mean and an identity covariance matrix. Exclusion of a regressor 

in a particular model implies that the corresponding element of β  is zero. Since we allow for 

any subset of variables in Z  to appear in each model, jM , there exist k2  possible sampling 

models. 

 Given this setup, BMA implies that the posterior probability of any given parameter of 

interest, ,∆  has a common interpretation across models.  It is the weighted posterior distribution 

of ∆  under each of the models, with weights given by the posterior model probabilities, or  

     ( ).|,|
1

2

| yMPPP jMy
j

y j

k

∆
=

∆ ∑=     (1) 

That is, the marginal posterior probability of including a particular regressor is the weighted sum 

of the posterior probabilities of all models that contain the regressor. The posterior model 

probability for Model Mj is given by  
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where )( jy Ml , is the marginal likelihood of model jM  given by  

  ,),,|(),(),,,|()( σβασαβσασβα dddMppMypMl jjjjjjy ∫=  

Note that ),,,|( jj Myp σβα  is the sampling model corresponding to equation (1), and ),( σαp  

and ),,|( jj Mp σαβ  are the priors of the intercept and the regressors, respectively.  

 Thus, BMA does not rely on any individual model to generate inferences, but provides a 

posterior distribution for each estimate. BMA thus bases the inference on the weighted average 

of a selection of models. The weights themselves are given by a measure of the quality of each 

individual model relative to all other models. BMA therefore constitutes an intuitively attractive 

solution to model uncertainty as it considers all possible models and generates an average that is 

dominated by models which receive the greatest support from the data.  

 Despite its theoretical rigor and power of inference, BMA has not yet become part of the 

standard data analysis tool kit. This has been due to several early difficulties in implementing 
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BMA. First, the number of terms in equation (1) can be enormous, rendering exhaustive 

summation infeasible. This problem has recently been addressed by an efficient search algorithm 

incorporated into the Raftery et al. (1997) “bic.reg” routine.6  The routine guarantees that the 

best model is found, while alternative samplers such as MC3 (Madigan et al., 1995) or the totally 

random coin flip sampler (Sala-i-Martin, Doppelhofer and Miller, 2003) do not provide such an 

efficient search.   

 Much more problematic for BMA has been the Bayesian requirement to specify prior 

distributions for all parameters in all competing models. An extensive discussion on the 

significance of priors in BMA is provided by Fernandez, Ley and Steel (2001) and in Eicher, 

Papageorgiou and Raftery (2006).  In our application of BMA below, we utilize priors that are 

among the most conservative and diffuse Bayesian priors. The unit information prior employed 

below is so diffuse and uncontroversial that it can be derived from frequentist statistics.7  

4. Reduced-Form Approaches to the EKC 

 Before we can employ BMA, we must motivate the various candidate regressors that are 

to be included alongside the GDP measures. A number of covariates have been introduced in the 

past to explain sulphur dioxide concentrations. These regressors can be grouped into five 

different categories: 1) site-specific controls, 2) political economy proxies, 3) production 

structure, 4) trade measures, and 5) technology proxies.  We discuss each one in detail below. 

 Stations from 44 countries around the world report sulfur dioxide concentrations in the 

GEMS/AIRS data. A compelling argument can be made that any analysis of the income-

pollution relationship must include regressors that control for site-specific factors. Examples of 

regional variations that may explain sulphur dioxide concentrations in the vicinity of a measuring 

station would be specific weather conditions (temperature and precipitation) or topographical 

features. Such regional differences affect nature’s ability to cleanse sulphur dioxide from the 

atmosphere. While variables such as Temperature, Precipitation Variation, and topographic 

features are unlikely to be correlated with our economic variables, their inclusion is standard in 

the literature and meant to improve the accuracy of the estimates. Our site-specific controls are 

                                                 
6 The software can be freely obtained from http://www.research.att.com/~volinsky/software/bicreg. 
7 The unit information prior is a multivariate normal prior with mean at the maximum likelihood estimate and 
variance equal to the expected information matrix for one observation (Kass and Wasserman, 1995). It can be 
thought of as a prior distribution that contains the same amount of information as a single, typical observation. 
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obtained from ACT, who include average monthly temperatures for each reporting station to 

capture seasonal influences on the demand for fuels (and hence SO2 concentrations), and to 

account for the fact that higher temperatures allow SO2 to dissipate pollution more rapidly. We 

also include the variation in precipitation at each site from ACT since seasonally-concentrated 

rainfall reduces the region’s ability to dissipate SO2 over the year.  In addition, we add a dummy 

for nations who signed the 1985 Helsinki Protocol, which aimed to reduce sulphur emissions by 

at least 30 per cent.8  

 Before we turn to economic covariates, we must also control for common-to-world but 

nevertheless time-varying components. Such components are included to reflect secular changes 

in global awareness of environmental problems, innovations and diffusion of abatement 

technology, and the evolution of world prices. We follow the standard practice in the literature 

and seek to capture such common components with a linear time trend. 

 A number of studies have extended the pure EKC specification to include additional 

explanatory variables that may be tied to both pollution and economic development. Clearly 

income alone does not create pressure to improve environmental outcomes; the democratic fabric 

of a society that allows political participation and threatens consequences to polluting dictators is 

also seen as an important determinant. Hence the past literature introduced variables to account 

for the fact that more open and democratic societies may have different attitudes towards the 

environment. The conjecture is that for a given level of income, more open societies experience 

less pollution.  

 Many specific mechanisms for this to take place have been identified in the literature. 

Torras and Boyce (1998) posit that richer individuals gain “power” to demand better overall 

environmental quality. Likewise, Barrett and Graddy (2000) propose that wealthier citizens 

demand an increase in the non-material aspects of their standard of living. The degree to which 

policy responds to such desires is closely linked to the ability of individuals to assemble, 

organize and voice their concerns. In the same vain, Panatayotou (1997) provides evidence that 

strong property rights “flatten” the EKC by generating less pollution for any given income level.  

                                                 
8 Much of the previous research, starting with Grossman and Krueger (1993, 1995), also includes site-geography 
variables such as proximity to oceans or deserts. Our fixed-effects regressions account for these implicitly.  
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 Several different measures of political rights and civil liberties have been used in the 

literature. Some authors have employed the Freedom House indices (e.g., Shafik and 

Bandyopadhyay, 1992; Torras and Boyce, 1998; Barrett and Graddy, 2000) while others such as 

Panayotou (1997) use “Respect/Enforcement of Contracts” from Knack and Keefer (1995). More 

recently Harbaugh et al. (2002) use an index of democratization from the Jaggers and Gurr 

(1995) Polity III dataset. Alternatively, Leitão (2006) introduces measures of corruption to 

examine how diversion activities may affect an EKC. The institutions and growth literature has 

since established the use of the “Constraint on Executive” variable from the updated  Marshall 

and Jaggers (2003) Polity IV database as perhaps the best measure to capture the above 

mentioned effects. Acemoglu et al. (2001) have shown convincingly that the degree of constraint 

on the executive is a fundamental determinant of all political rights. We thus choose this measure 

as our political rights proxy.9  

 International trade has also been associated with the EKC relationship. Taylor and Brock 

(2004) survey the literature, highlighting an early contention by Arrow et al. (1995) and Stern et 

al. (1996) that an EKC might be partly or largely due to trade and its implied global distribution 

of polluting industries. Following the Heckscher-Ohlin model, the authors hypothesized that free 

trade allows developing countries to specialize in goods that are intensive in their relatively 

abundant factors: labor and natural resources. Developed countries, in turn, are likely to 

specialize in human capital and capital intensive goods. Following ACT, we use trade volume 

(exports plus imports) as a percent of GDP as our measure of openness to trade. 

 In contrast, Shafik and Bandyopadhyay (1992) point out that trade might exert two 

contrasting influences on developing countries. First, there exists the above effect where 

developing countries have an environmental comparative advantage due to low environmental 

protection costs, which leads to the intense manufacture and export of pollution-intensive goods. 

On the other hand, increased openness may lead to increased competition, which could cause 

more investment in efficient and cleaner technologies that meet the environmental standards of 

developed nations. To control for potentially opposing forces, we follow Harbaugh et al. (2002) 

and include not only trade, but also a measure of investment in our analysis. To the extent that a 

portion of investment leads to cleaner manufacturing processes, including investment should 
                                                 
9 Note that the literature has clearly established the absence of a direct democracy/income relationship (Acemoglu et 
al., 2005). Hence we do not interpret our political economy measure as a proxy for income.  
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help control for the role of technological change in explaining the EKC. Alternatively, trade-

induced dynamic comparative advantage has also been closely tied to the composition of output 

at different stages of development. This composition effect was proxied by Panayotou et al. 

(2000) with a capital intensity variable. Here we use an improved version of the capital intensity 

proxy from ACT who introduced a human capital adjusted capital-labor ratio.  

 Since a key hypothesis central to the EKC is that political pressure builds as richer agents 

demand greater environmental quality, education is also seen as a major factor in the 

pollution/development relationship. Torras and Boyce (1998) include adult literacy rates in their 

search for the EKC, noting that literacy allows greater informational access and a more even 

distribution of power within society. Our measure of education is years of education from Barro 

and Lee (2000). Years of education should be a better proxy for access to information since basic 

literacy only implies knowledge of rudimentary reading and writing skills. We use average years 

of education over the prior three years to account for the fact that it takes some time to translate 

educational achievement into environmental activism. 

 Another important covariate often included in the literature is population density 

(Grossman and Krueger, 1995; Panayotou, 1997; Barrett and Grady, 2000; ACT; Harbaugh et 

al., 2002). Panayotou argues that population density may have an ambiguous effect since more 

dense areas can expect greater use of coal and non-commercial fuels, but densely populated 

countries may also be more concerned about lowering pollution concentrations. We follow 

Harbaugh et al. (2002) and include national population density in order to have a relatively 

accurate time-series measure of population density for both developed and developing countries. 

4.1  Reduced-Form BMA EKC Results 

 In Tables 1-3 we report the results from our BMA analysis which includes all variables 

that have been motivated by reduced-forms as described in the previous section. The results in 

the tables are robust to specifications of GDP in logs, different GDP lag structures (up to 10-year 

averaged lags) and alternative “U-curve” specifications such as Anand and Kanbur’s (1993) 

specifications based on inverse GDP. The tables report results at the station, city and country 

level (Tables 1, 2 and 3 respectively). As is common in the literature, we include GDP and 

lagged GDP with linear and non-linear terms (see Grossman and Krueger, 1995, for example). In 

contrast to simple fixed- and random-effects regressions where collinearity between GDP and 
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lagged GDP variables might compromise the explanatory power of either variable, BMA 

averages across relevant models and thus potentially mitigates the effects of collinearity. 

 The first column of each table reports the posterior inclusion probability, P, which 

indicates the probability that the coefficient estimate is different from zero.10 P ≠ 0 is thus a 

measure of confidence of including a candidate regressor with non-zero coefficient in the true 

regression model. The posterior inclusion probability has the additional advantage that it is a 

scale-free probability measure of the relative importance of the variables, which can therefore be 

transparently applied for policy decisions and inference, in addition to the posterior mean and 

standard deviation.  Jeffries (1961) and Raftery (1995) add the additional interpretational 

refinement that P ≠ 0 > 50 percent suggests that the data provides weak evidence that the 

regressor is included in the true model; P ≠ 0 > 75 percent implies positive evidence; P ≠ 0 > 95 

percent provides strong evidence; and P ≠ 0 > 99 percent gives very strong evidence. Inclusion 

probabilities close to 100 percent signal that the particular regressor is included in almost all 

good models, and that it contributes prominently to explaining the dependent variable even in the 

presence of significant model uncertainty. 

 Overall, we find only limited support for income as a key driver of SO2 concentrations. 

Only the highly unbalanced datasets at the station and city level (Tables 1 and 2) report positive 

evidence of an EKC relationship between income and SO2 concentrations (the GDP data is in 

$10,000). Table 1 shows that lagged GDP has a much higher inclusion probability than current 

GDP, implying that contemporaneous economic activity is much less important in determining 

SO2 concentrations than the indirect effects of rising income over time that may proxy for 

changes in technology. Nevertheless, fundamental variables, not income, are the most relevant 

for explaining pollution levels. Precipitation Variation and Executive Constraints both have 100 

percent inclusion probabilities, while the income polynomials range around 80 percent. We find 

that less variation in precipitation, increased temperatures, and greater constraints on the 

country’s chief executive reduce sulphur dioxide concentrations. The only economic variable 

that registers as significant in the reduced-form station level results is Trade Intensity. Here the 

evidence is decisive that trade reduces pollution.  
                                                 
10 In contrast to frequentist statistics, where one null and one alternative model is implied, BMA considers all 
possible models, hence simple t-values are not appropriate.  Indeed, Raftery (1995) notes that the theory of t-values 
was developed for the comparison of two nested models and in a typical structural equation model application, such 
as the EKC, there may be many substantively meaningful models (many of them non-nested).   
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 The best single regression model selected by BMA at the station level has an R2 of 0.249, 

containing all eight variables that exhibit at least weak evidence in terms of inclusion 

probabilities. The city-level results in Table 2 are just about identical to those at the station level 

except that the previously weakly significant temperature variable is no longer relevant.  

Although the best model at the city-level is based on fewer regressors and less observations, its 

R2 increases to 0.319. We surmise that the improvement in explanatory power results from the 

fact that the aggregated dataset is less prone to oversampling. 

 The major change in the results occurs when we aggregate the data to the country level.  

Table 3 no longer provides evidence that income has an influence on pollution. None of the GDP 

variables matter, perhaps because oversampling has eliminated the location bias and the dataset 

is balanced in terms of its time dimension. Nevertheless, all other variables that have been shown 

to be robustly related to pollution remain strongly significant and their posterior means are 

surprisingly stable. Political freedom, Trade, and local weather variations explain a large part of 

the pollution variability.  Interestingly, at the country level, Education and technology (proxied 

by the Year variable) now have high inclusion probabilities, providing strong evidence that these 

candidate regressors belong to the true model. As we aggregate from the station to the city and 

finally to the country level, the R2 of the best model systematically increases (although the 

number of observations drops from 623 to 109).  While the R2 is only 0.249 for the best model 

with station-level data, it rises to 0.475 at the country level. 

 In summary, after sorting through a wide range of models that have been proposed as 

reduced-form approaches to the EKC, including all permutations on these models, BMA returns 

strong evidence that trade, political economy and site-specific factors are the main determinants 

of sulphur dioxide pollution. In all of the BMA analyses these variables are included with the 

expected sign. There is some evidence that SO2 concentrations are influenced by past income at 

the station and city levels, but this influence vanishes once we correct for oversampling. So far 

we have simply included variables without any specific theoretical support as to the overall 

model structure. In the next section we investigate if theory-specified functional forms and 

interactions may indeed lead to a specification that provides support for an EKC relationship.  

5. Theory-Motivated EKC Regressors 



 16

 Second-generation EKC models include not only variables motivated by heuristic, 

reduced-forms, but also fully specified models that yield precise, testable EKC implications and 

relationships. The essential features of the models include the determinants of scale, 

composition, and technique effects outlined by Panayotou (1997) and discussed in extensive 

detail by Taylor and Brock (2004).  Prominent theoretical precursors that have led to the state of 

the art, fully specified, open-economy EKC model in ACT are Stokey (1998) (endogenous 

abatement), Bovenberg and Smulders (1995) and Aghion and Howitt (1998) (endogenous 

growth/technique), and  Jones and Manuelli (2001) (endogenous policy). We direct the interested 

reader to the excellent Taylor and Brock survey and address only cornerstones of the theoretical 

EKC models that are relevant to empirical investigation.  

 All models that examine the development/pollution relationship make implicit 

assumptions regarding the strength of three different (and potentially offsetting) effects. First, 

development causes a positive scale effect since increased output per unit of capital leads to 

increased pollution. To account for the scale effect we follow ACT and employ a measure of 

city-level economic intensity (national GDP per capita times city population density).  It is 

generally held that in rapidly growing middle-income countries pollution due to the scale effect 

might be the dominant EKC force (Perman and Stern 2003). 

 Second, a technique effect diminishes the scale effect as technological progress permits a 

lowering of emissions per unit of output. Lagged per capita income is used to proxy for the 

technique effect since countries with higher incomes in the past should be able to afford better 

technology today (see ACT). Diffusion of technology itself motivates the idea that time-related 

effects reduce environmental impacts in countries at all levels of development (Aghion and 

Howitt, 1998, Perman and Stern, 2003). These effects are usually proxied with a year dummy. 

 To isolate either the scale or technique effect, we must control for changes in the 

composition of output. A change in output composition can mitigate the scale effect further if the 

share of less pollution-intensive industries rises as income increases. This occurs when 

development and human capital accumulation generate shifts toward cleaner industries (services 

or information technology) and an ensuing change in the composition of output that then reduces 

environmental degradation (Panayotou, 1993). A specific model was first presented by Copeland 

and Taylor (2003), who showed that the reliance on capital accumulation in early stages of 
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development, as opposed to human capital accumulation in later stages, can also generate an 

EKC.  We capture the composition effect by controlling for differences in the capital-labor ratio 

that is adjusted for human capital, following ACT.  In the absence of such controls, the pollution-

income relationship is a mixture of scale, composition, and technique effects, which is hard to 

interpret.  

 In addition to a simple income/output-induced composition effect, ACT also take into 

account a trade-induced composition effect. As discussed in the reduced-form literature, the 

effect of trade on pollution can be ambiguous. In ACT the trade-induced composition effect 

depends on the country’s comparative advantage, which in turn is determined by income per 

capita and capital abundance. In moving from theory to practice, ACT suggest interacting the 

trade measure with determinants of comparative advantage (the capital-labor ratio and income 

per capita). Since comparative advantage is a relative concept, these are measured relative to the 

corresponding world averages. Since theory cannot identify a turning point (at what level of 

endowment trade causes a switch from exporting to importing pollution-intensive products), we 

adopt the flexible approach of ACT by estimating interactions with different functional forms.  

 To allow BMA to replicate the ACT results, we include a site-specific dummy for 

communist regimes which we interact with income per capita. This allows for a unique 

pollution-income dynamic in communist nations where political participation is extremely low. 

We can then test whether communist regimes are inherently disinterested in a public desire for a 

cleaner environment.  Essentially we have already introduced a variable that proxies for the 

political economy effects with Executive Constraints, but BMA is exactly the appropriate 

statistical framework to elicit which one (if any) of these proxies influences pollution.  

 It is important to note that theory does not necessarily imply such an elaborate structure. 

As mentioned in the introduction, Taylor and Brock (2004) meticulously outline that the EKC is 

compatible with many different underlying mechanisms and theories.  The simplest of all is 

perhaps the environment augmented “Green Solow model” where pollution policy remains 

unchanged throughout the development process and where transitional dynamics alone suffice to 

generate an EKC.  The Green Solow model exhibits no composition effects, no changes in 

pollution abatement, no evolution of the political process and no international trade. Hence the 

Green Solow model is compatible with no change in trade or pollution policy as the country 
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experiences positive growth.  BMA is the natural statistical tool to examine the validity of the 

competing theories, and to address the inherent model uncertainty. 

5.1 Theory-Based BMA EKC Results  

 The results in Table 4 contain theory-based candidate regressors (e.g., scale, composition, 

and technique effects) as well as proxies motivated by empirical implementations of reduced-

form hypotheses. Given that ACT’s approach represents the most extensive, theory-based 

empirical implementation of the EKC hypothesis, we choose their results as a benchmark.11 It is 

comforting to see that the BMA results share a number of similarities with ACT. On the other 

hand, BMA also produces a number of surprises.  

 Different levels of aggregation (and hence different degrees of oversampling) generate 

remarkably stable outcomes in terms of posterior inclusion probabilities and posterior means. 

Table 4 shows that BMA identifies between four (city-level) and seven (country-level) candidate 

regressors with weak to decisive evidence of a non-zero impact on pollution. Common across all 

levels of aggregation is that there exists no evidence of an EKC. Instead, the prominence of site- 

specific and political economy variables carries over from our structural results at all levels of 

aggregation. There is strong and decisive evidence that non-economic factors, such as 

Temperature, Precipitation, and Executive Constraints, affect pollution in the same fashion as in 

the reduced-form BMA Tables 1-3.   

 Of all variables that receive positive evidence in Table 4, only Executive Constraints does 

not appear in the theory-specified ACT model. Recall that ACT included the “Communist” 

variable to capture political economy effects, which was highly significant in their specification 

(although not in BMA).12 Executive Constraints thus remains highly significant not only in the 

reduced-form, but also in the structural analysis. This provides strong support for the Jones and 

Manuelli (2001) approach to pollution that emphasizes the political process, not income, as the 

driving force in the development/pollution relationship. 

 The major difference between the reduced-form specifications and the theory-based 

results is that Trade Intensity loses its significance entirely. While it does register as significant 

in the ACT model, BMA provides no evidence that Trade carries any explanatory power at the 

                                                 
11 ACT do not report results for city or country level data. 
12 The correlation between Communist/Income interaction used by ACT and Executive Constraints is -0.48. 
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station, city or country level. Nevertheless, the BMA results do suggest that Trade plays an 

important indirect role in determining pollution. The correct specification of the trade effect as 

outlined by the ACT theory is crucial.  Here BMA reveals that the importance of Trade lies in its 

power to moderate the composition effect.  

 ACT find that Trade moderates the pure EKC effect as the trade/income interactions in 

their regression are highly significant. In the BMA approach, in contrast, this is income effect is 

confirmed only at the station level (ACT’s level of aggregation).  In the less unbalanced city- and 

country-level datasets, BMA indicates that Trade’s sole role is to moderate the composition 

effect. The interaction between Trade and Capital Intensity shows that the composition effect has 

a different impact on countries depending on their level of development.  The greater the level of 

development – as proxied by the human capital augmented capital-labor ratio – the lower the 

implied concentrations for open economies.  The capital intensity variable has been included in 

the past to control for development-contingent shifts towards cleaner technologies; while it 

exhibited the same sign in ACT, it was statistically insignificant.  The variable also provides 

support for pollution havens, since the negative coefficient implies that countries with low 

capital intensity and high trade orientations have higher pollution levels. 

 The second trade-related variable that receives strong support in BMA at all levels of 

aggregation is the interaction between Trade, GDP, and Capital Intensity.  Interestingly, this 

variable is the one regressor that is estimated with just about the same coefficients and high level 

of significance in ACT as in BMA. The positive estimate throughout thus provides strong 

evidence that more human/physical-capital-intensive countries have higher sulphur dioxide 

concentrations, even after we control for trade and income effects. This is because the three-way 

interaction between Trade, GDP, and the Human Capital adjusted capital-labor ratio has a 

positive posterior mean. The relatively large role of the composition effect and the trade-based 

interactions suggests that countries do not follow a deterministic income-pollution path. Recall 

that Figure 3 highlights the variety of country-specific pollution paths as incomes rise. 

 In contrast to ACT, BMA does not find evidence for a pure composition effect as capital 

intensity alone cannot be shown to affect pollution. In addition, despite our efforts to control for 

possible contamination of the scale effect, BMA provides no evidence that scale effects matter at 

the station level (the scale effect was only mildly significant in ACT’s work). Oversampling does 
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influence the strength of the technique effect (proxied by Year), as BMA provides strong 

evidence that a technique effect reduces pollution at the country level. A similar pattern was 

observed in our reduced-form analysis, where the same variable gained explanatory power only 

at higher levels of aggregation. These findings are in line with Stern and Common (2001) and 

Stern (2002) who find evidence for the important role of negative time effects in explaining 

declining SO2 concentrations.  

 It is important to note that the best model chosen by BMA contains about a quarter of the 

23 candidate regressors that have been motivated by the literature.  At the station level, six 

highly significant regressors account for about twice the variation in the dependent variable (R2 = 

0.242) as the 18 regressors (13 significant) suggested by the ACT specification (R2 = 0.15). This 

could imply that a number of regressors identified by ACT may be significant only because the 

empirical strategy did not account for model uncertainty.  The estimates at different levels of 

aggregation are surprisingly stable, however, and their R2 increases steadily from station, city, to 

country levels, from 0.24 to 0.34 to 0.51, respectively.  Also, the relevant regressors at the city 

and station level are just about identical, although the country-level results do feature two 

additional regressors to explain pollution (Year and Education).  The coefficient on Education is 

counterintuitive just as in the reduced-form BMA results. It is supposed to proxy for the 

hypothesis that better-educated citizens demand better environmental quality.  However, 

measures of education have been shown to be fragile in both growth regressions and in 

development accounting (see Krueger and Lindahl, 2001). Perhaps the same issues contaminate 

the effect of the regressors here.  

VI. Conclusion 

 This paper reexamines the evidence for an environmental Kuznets curve using the most 

recent EPA data on SO2 concentrations.  The literature on the income-pollution relationship is 

vast and characterized by unusual model uncertainty as both the number of proposed theories and 

the range of possible candidate regressors is massive when it comes to empirical validation. We 

apply a theoretically founded method to address model uncertainty. Bayesian Model Averaging 

examines all models, weighs them by their relative quality, and then generates a probability that 

a candidate regressor is related to the dependent variable.   
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 Our results are presented at three levels of aggregation.  The station-level results are 

subject to severe oversampling as pollution from thousands of observations from local stations 

are linked to one and the same measure of income in a country. Hence we also aggregate the data 

to the city and country level.  The results are remarkably robust. Political economy and site- 

specific variables explain a large share of the observed pollution. International trade is also 

shown again and again to be robustly related to pollution. In our reduced-form analysis, trade is 

found to lower pollution. When the model is specified using full-fledged theory, we show that 

trade has no direct effect, but that it moderates the composition effect. As countries become 

richer and increase their physical and human capital, trade leads to cleaner environments. It 

unfortunately also implies that poor, labor-intensive, open economies experience increasing 

pollution levels.   

 Overall, we find only weak evidence for an EKC, which disappears when we address 

oversampling of the data or move to a theory-based analysis. There may be several reasons the 

EKC fails to hold up in our work. The foremost, perhaps, is that many countries in the time 

period covered by the GEMS/AIRS data may already be on the flat or the downward sloping 

portion of the EKC during the sample period. Smulders, Bretschger and Egli (2005) label these 

portions of the EKC the “alarm phase” and the “cleaning-up phase” that indicate government 

response to public concerns. Given that the rate of emissions reduction may also be based on 

governments reacting to their citizens’ demands, it is not surprising that we find that policy 

variables such as Executive Constraints play a crucial role in determining pollution levels. 
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APPENDIX 

Table A-1: Summary Statistics 

Variable # of Observations Mean S.D. Min. Max. 
Log of median SO2 653 -4.883 1.052 -6.908 -2.181 
GDP 623 1.328 0.848 0.108 2.673 
GDPt-3 623 1.279 0.819 0.104 2.626 
City-GDP/km2 653 6.666 8.061 0.103 57.565 
GNPt-3 653 1.236 0.803 0.112 2.635 
Executive Constraints 653 5.689 2.003 1.000 7.000 
Investment 653 22.074 5.613 4.300 41.200 
Trade 653 0.404 0.264 0.129 1.484 
Capital intensity (H*K/L) 653 5.406 2.613 1.221 16.974 
National Population Density 653 0.236 0.265 0.005 1.187 
Education t-3 653 7.758 3.041 1.222 11.806 
Communist * GNP 653 0.038 0.125 0.000 0.716 
Helsinki 653 0.031 0.153 0.000 1.000 
Temperature 653 15.204 6.011 3.342 28.751 
Precipitation Variation 653 0.012 0.006 0.002 0.043 

 
Table A-2: Correlations 
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National Population Density 0.30 -0.24 0.28 -0.28 0.00 0.26 0.25 -0.03 1.00     

Education t-3 -0.27 0.92 0.34 0.91 0.62 0.26 -0.03 0.36 -0.25 1.00    

Communist * GNP 0.16 -0.45 -0.20 -0.45 -0.48 0.03 -0.21 -0.46 0.08 -0.29 1.00   

Helsinki -0.11 0.18 0.04 0.17 0.13 0.15 0.16 0.21 -0.09 0.18 -0.07 1.00  

Temperature -0.16 -0.47 -0.17 -0.49 -0.30 -0.31 -0.23 -0.43 0.13 -0.49 -0.04 -0.25 1.00 

Precipitation Variation -0.02 -0.57 -0.31 -0.57 -0.36 -0.42 -0.10 -0.52 0.18 -0.53 0.17 -0.21 0.44 
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Figure 1 
Distribution of SO2/Observations in GEMS/AIRS Data 

1974-1993 
 

Country Obs. 
 

% 
 

United States 620 28.6 
China 212 9.8 
Canada 187 8.6 
Japan 135 6.2 
Brazil 71 3.3 
India 69 3.2 

 

New Zealand 68 3.1 
Spain 54 2.5 
Iran 53 2.4 
UK 52 2.4 
Belgium 47 2.2 
Australia 43 2.0 
Colombia 39 1.8 
Ireland 39 1.8 
Netherlands 37 1.7 
Egypt 36 1.7 
Germany 36 1.7 
Israel 33 1.5 
Portugal 32 1.5 
Philippines 31 1.4 
Argentina 27 1.2 
Finland 25 1.2 
Sweden 25 1.2 
Chile 22 1.0 
France 22 1.0 
Denmark 21 1.0 
Greece 20 0.9 
Italy 20 0.9 
Thailand 20 0.9 
Venezuela 20 0.9 
Malaysia 15 0.7 
Indonesia 13 0.6 
Korea, South 12 0.6 
Peru 10 0.5 
Pakistan 2 0.1 

United States
29%

Japan
6%

Ireland
2%

Netherlands
2%

Egypt
2%

Israel
2%

Portugal
1%

Philippines
1%

Obs 21-30
10%

China
10%

Germany
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Belgium
2%

United Kingdom
2%

Obs <  20
2%

Iran
2%

Spain
2%

New Zealand
3%

India
3%

Brazil
3%

Canada
9%

 

Total 2,168 100%  
 
Source: US-EPA maintained GEMS/AIRS dataset http://www.epa.gov/airs/aexec.html 



 28

Figure 2 
Relationship between Median SO2 Concentrations and Income (By Measuring Station) 

1974-1993 
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Source: US-EPA maintained GEMS/AIRS dataset http://www.epa.gov/airs/aexec.html 
Note: Fitted values are fixed-effects regression εγδβα ++++= 32
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Figure 4 
Global Relationship between Median SO2 Concentrations and Income 

1974 – 1993 
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Source: US-EPA maintained GEMS/AIRS dataset http://www.epa.gov/airs/aexec.html 
Note: Five-year SO2 concentration averages, aggregated from the station to the country level. 
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Table 1 
Reduced-Form BMA Results (By Station) 

 
 Dependent Variable: Log median SO2 concentrations, 5-year averages 

  P ≠ 0 
Posterior Mean 

(S.D.) 
Best Model Mean 

(S.D.) 
Intercept 100.0 -2.6584 

(3.1423) 
-2.4109* 
(1.3776) 

Precipitation Variation 100.0 45.2092 
(8.6828) 

45.1435*** 
(10.6779) 

Trade Intensity 100.0 -2.9292 
(0.4049) 

-2.9285*** 
(0.4922) 

Executive Constraints 100.0 -0.1932 
(0.0306) 

-0.1972*** 
(0.0380) 

(GDPt-3)2 82.1 -2.9432 
(1.5643) 

-3.4595*** 
(0.9308) 

GDPt-3 81.9 4.6092 
(2.4945) 

5.5128*** 
(1.6123) 

(GDPt-3)3 81.9 0.5505 
(0.2948) 

0.6416*** 
(0.1790) 

Temperature 77.1 -0.1365 
(0.0914) 

-0.1799** 
(0.0785) 

Investment 46.3 -0.0090 
(0.0111) 

. 

(GDP)2 20.8 -0.5119 
(1.1911) 

. 

(GDP)3 20.8 0.0886 
(0.2136) 

. 

GDP 19.4 0.8345 
(1.9899) 

. 

Capital Intensity, H*K/L 10.7 0.0096 
(0.0338) 

. 

(Capital Intensity, H*K/L)2 9.4 0.0004 
(0.0017) 

. 

Educationt-3 6.0 0.0039 
(0.0215) 

. 

Helsinki 4.2 -0.0058 
(0.0456) 

. 

Year 3.4 -0.0001 
(0.0014) 

. 

National Population Density 2.6 0.0010 
(0.0516) 

. 

Observations   623 
R2   0.249 

      Note: P ≠ 0 is the posterior inclusion probability that a regressor’s posterior mean is different  
     from zero. *, **, ***, indicate 90, 95, 99 percent significance levels.  
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Table 2 
Reduced-Form BMA Results (By City) 

 
 Dependent Variable: Log median SO2 concentrations, 5-year averages 

  P ≠ 0 
Posterior Mean 

(S.D.) 
Best Model Mean 

(S.D.) 
Intercept 100.0 15.8235 

(27.8085) 
-4.5770*** 

(1.1233) 
Trade 96.5 -2.1790 

(0.8050) 
-2.5691*** 

(0.7329) 
Executive Constraints 92.5 -0.1626 

(0.0691) 
-0.1916*** 

(0.0601) 
Precipitation Variation 92.0 42.6770 

(18.5787) 
51.0975*** 
(15.1028) 

(GDP t-3)2 81.4 -2.8631 
(2.1788) 

-3.8403*** 
(1.2763) 

(GDP t-3)3 81.0 0.5922 
(0.4306) 

0.7824*** 
(0.2412) 

GDP t-3 66.2 3.5128 
(3.3483) 

4.9447** 
(2.2508) 

Year 40.9 -0.0102 
(0.0144) 

. 

Education t-3 19.6 0.0318 
(0.0771) 

. 

Investment 19.3 -0.0038 
(0.0092) 

. 

Helsinki 10.9 0.0306 
(0.1114) 

. 

(GDP)2 7.3 0.0317 
(0.9982) 

. 

(GDP)3 6.9 -0.0049 
(0.1987) 

. 

GDP 6.7 -0.0526 
(1.4550) 

. 

Capital Intensity, H*K/L 6.2 0.0041 
(0.0328) 

. 

(Capital Intensity, H*K/L)2 5.0 -0.0001 
(0.0013) 

. 

Temperature 3.7 -0.0013 
(0.0167) 

. 

National Population Density 3.3 0.0027 
(0.1190) 

. 

Observations   263 
R2   0.319 

      Note: P ≠ 0 is the posterior inclusion probability that a regressor’s posterior mean is different 
     from zero. *, **, ***, indicate 90, 95, 99 percent significance levels.  
 



 33

Table 3 
Reduced-Form BMA Results (By Country) 

 
 Dependent Variable: Log median SO2 concentrations, 5-year averages 

  P ≠ 0 Posterior Mean Best Model Mean 
Intercept 100.0 68.7436 

(37.1783) 
87.6426*** 
(28.8034) 

Executive Constraints 99.9 -0.2090 
(0.0503) 

-0.1977*** 
(0.0585) 

Precipitation Variation 99.8 59.4164 
(14.9510) 

59.0806*** 
(17.5418) 

Temperature 98.4 -0.3317 
(0.1022) 

-0.3732*** 
(0.1010) 

Trade 96.9 -1.7149 
(0.6302) 

-1.6653*** 
(0.6428) 

Education t-3 96.0 0.4405 
(0.1659) 

0.4757*** 
(0.1499) 

Year 86.7 -0.0352 
(0.0190) 

-0.0446*** 
(0.0149) 

(GDP t-3)2 32.8 -0.2129 
(0.6308) 

. 

(GDP t-3)3 18.3 0.0159 
(0.1381) 

. 

GDP t-3 14.0 -0.0003 
(0.7992) 

. 

GDP 13.7 0.1433 
(0.6564) 

. 

Helsinki 12.2 -0.0370 
(0.1389) 

. 

(GDP)2 10.9 0.0122 
(0.2817) 

. 

(GDP)3 10.7 0.0046 
(0.0724) 

. 

Investment 6.4 -0.0006 
(0.0039) 

. 

National Population Density 5.7 0.0207 
(0.1726) 

. 

Capital Intensity, H*K/L 5.4 0.0005 
(0.0172) 

. 

(Capital Intensity, H*K/L)2 5.2 -0.0001 
(0.0008) 

. 

Observations   109 
R2   0.475 

      Note: P ≠ 0 is the posterior inclusion probability that a regressor’s posterior mean is different 
     from zero. *, **, ***, indicate 90, 95, 99 percent significance levels.  
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Table 4 – Structural BMA Results 
 Station City Country 

  

Antweiler et. 
al.. (2001)  

Mean 

 
P ≠ 0 

Posterior 
Mean 
(S.D.) 

Best Model 
Mean 
(S.D.) 

 
P ≠ 0 

Posterior 
Mean 
(S.D.) 

Best Model 
Mean 
(S.D.) 

 
P ≠ 0 

Posterior 
Mean 
(S.D.) 

Best Model 
Mean 
(S.D.) 

Intercept -4.299*** 100.0 0.3222 
(1.6399) 

-0.4609 
(1.0392) 

100.0 13.2930 
(22.3105) 

3.4359*** 
(0.6951) 

100.0 68.0096 
(32.8857) 

80.1687** 
(26.7007) 

Executive Constraints  100.0 -0.1756 
(0.0289) 

-0.1796*** 
(0.0362) 

99.8 -0.1918 
(0.0480) 

-0.2068*** 
(0.0555) 

100.0 -0.2256 
(0.0485) 

-0.2204*** 
(0.0555) 

Precipitation Variation 10.716* 100.0 34.8079 
(7.2113) 

37.3753*** 
(8.5395) 

99.0 43.0722 
(12.0933) 

50.0824*** 
(11.7568) 

99.9 61.6432 
(14.0204) 

60.9896*** 
(16.4076) 

Temperature -0.056* 97.9 -0.1982 
(0.0632) 

-0.2211*** 
(0.0640) 

8.3 -0.0090 
(0.0360) 

. 99.0 -0.2703 
(0.0811) 

-0.2584** 
(0.0908) 

Education t-3  3.5 0.0021 
(0.0146) 

. 18.4 0.0286 
(0.0691) 

. 97.3 0.4299 
(0.1434) 

0.4402** 
(0.1407) 

Trade * Relative GNP * 
Relative H*K/L 

0.924** 99.1 1.0575 
(0.1911) 

1.0328*** 
(0.1565) 

100.0 1.2278 
(0.2025) 

1.3341*** 
(0.1824) 

95.8 0.9502 
(0.2965) 

0.9269*** 
(0.2299) 

Trade * Relative H*K/L -2.121 96.7 -1.9773 
(0.5573) 

-2.0177*** 
(0.3687) 

100.0 -2.6672 
(0.4542) 

-2.8994*** 
(0.4822) 

93.3 -2.2308 
(0.7765) 

-2.3297*** 
(0.5214) 

Year  1.0 -0.00003 
(0.0006) 

. 43.7 -0.0086 
(0.0116) 

. 90.1 -0.0357 
(0.0171) 

-0.0420** 
(0.0137) 

(Capital Intensity, 
H*K/L)2 

0.008 4.6 -0.0002 
(0.0008) 

. 4.5 -0.0003 
(0.0017) 

. 25.8 -0.0039 
(0.0083) 

. 

H*K/L * GNPt-3 -0.386*** 13.8 -0.0049 
(0.0145) 

. 12.7 -0.0066 
(0.0206) 

. 21.7 -0.0132 
(0.0309) 

. 

Capital Intensity, H*K/L 0.437* 2.4 -0.0004 
(0.0113) 

. 1.9 0.0028 
(0.0326) 

. 21.3 0.0654 
(0.1580) 

. 

GNPt-3 -0.228 41.2 -1.5901 
(2.1203) 

. 41.2 -0.8097 
(1.4544) 

-0.8371* 
(0.4076) 

16.7 -0.1733 
(0.5087) 

. 

(City-GDP/km2)2/1,000 -0.340 3.9 0.0068 
(0.0444) 

. 5.0 0.0132 
(0.0766) 

. 15.9 0.0837 
(0.2400) 

. 

Trade -3.216** 4.7 0.0396 
(0.2827) 

. 2.2 -0.0127 
(0.1538) 

. 12.0 -0.2080 
(0.7086) 

. 

Investment  31.3 -0.0051 
(0.0085) 

. 5.3 -0.0008 
(0.0041) 

. 11.7 -0.0021 
(0.0072) 

. 

(GNPt-3)2 0.578*** 38.6 0.3364 
(0.4636) 

. 20.1 0.1195 
(0.3171) 

. 9.5 -0.0266 
(0.1456) 

. 

City-GDP/km2 -0.089* 3.9 0.0007 
(0.0043) 

. 4.8 0.0013 
(0.0072) 

. 7.9 0.0023 
(0.0113) 

. 

(Trade * Relative GNP)2 -0.584** 7.2 0.0046 
(0.0735) 

. 14.8 -0.0240 
(0.0656) 

. 7.5 0.0265 
(0.1405) 

. 

Trade * Relative GNP 2.614*** 72.5 -0.6694 
(0.5268) 

-0.8745*** 
(0.2275) 

7.4 -0.0359 
(0.1484) 

. 5.4 -0.0496 
(0.3410) 

. 

National Population 
Density 

 1.4 0.0033 
(0.0473) 

 0.3 0.0006 
(0.0372) 

. 4.9 0.0246 
(0.1703) 

. 

Trade * (Relative 
H*K/L)2 

-0.176 7.1 -0.0174 
(0.0770) 

. 2.0 -0.0031 
(0.0315) 

. 4.1 -0.0030 
(0.0438) 

. 

(Communist * GNP)2 -8.806** 9.5 0.2867 
(1.2680) 

. 3.8 0.1840 
(1.1342) 

. 4.0 -1.2251 
(15.8062) 

. 

Communist * GNP 9.639** 29.4 1.5302 
(2.7148) 

. 6.9 0.4436 
(1.9749) 

. 3.6 1.1847 
(19.7346) 

. 

Helsinki 0.016 1.2 -0.0015 
(0.0226) 

. 9.4 0.0311 
(0.1179) 

. 2.7 0.0027 
(0.0538) 

. 

Observations 2,555   653   273   115 

Number of regressors 18   6   5   7 

R2 0.15   .242   .341   .514 
Note: P ≠ 0 is the posterior inclusion probability that a regressor’s posterior mean is different from zero. *,**, ***, indicate 95, 99, 99.9 
percent significance levels. Antweiler et al. (2001) do not report standard errors 


