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Abstract
This paper examines the mechanics of technological change – arguably the key

factor of any sustained economic growth process.  I discuss how technical change can be
integrated into a growth model using a formal search process to contrast the agnostic
“technology production function” approach.   Here I suggest a research sector that
generates and manages an ever-changing universe of ideas to create new blueprints.

The microfoundations to research that I propose are based on a set of evolutionary
learning instructions that have found widespread application in the (social) sciences.  The
evolutionary algorithm provides foundations to a research sector that continuously trades-
off quality for diversity, as researchers experiment and imitate ideas.  In this sense the
paper suggests a mechanism that could be used to formalize the research function that is
at the heart of R&D based growth models.

*I thank Klaas Van 't Veld, Christiane Clemens, Eric Zivot, Cecilia García Peñalosa and Uwe Walz for
early discussions on the topic and for helpful comments on this version; any errors are my own.
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1) Introduction

This paper discusses microfoundations of technological change in order to

systematically integrate the production of new technology into the study of economic

growth.  The issue is not whether technology is generated endogenously or exogenously,

but rather the task is to describe plausible mechanics of the research process.

Technical change has been an integral part of the economic growth literature from

the very beginning.  The most prominent examples might be Smith’s pin factory,

Ricardo’s discussion of labor augmenting technical change and its effects on growth and

distribution.  However, the salient feature of technology in the discussion of economic

growth has been the researchers willingness to treat the mechanics of technical change

itself as exogenous.

Even the earliest reference of the impact of technical change on growth lack

specifics, for example, Adam Smith thought that technological innovations simply arise

from workmen who become specialists without any clear notion of the actual process of

innovation, i.e., whether it is due to learning by doing, to apprenticeship programs, or

formal education.  This tradition continued to the Solow model which takes an even more

agnostic stand – casually labeling the “residual” (the 87.5 percent of growth not

explained by the model, Solow 1957) “technical change.”  The mechanics of technical

change were not nearly as important to the classical and neoclassical growth theorists as

the study of the comparative statics effects of technical change.

It is easy to argue that the study of the effects of technical change are natural

starting point – but that does not explain satisfactorily why the mechanics of new

technology development were never tackled in a formal manner.   How detrimental the

absence endogenous technical change can be to the validity of the implications of the

model has been proven many times over, most notably by Thomas Malthus.

In this sense the new growth theory – commencing with Romer 1983 deserves its

name - it is not an immediate extension of any previous branch of the growth literature as

it incorporates a fundamental break with the past with its emphasis on the exact

properties and characteristics of endogenous technological change.  Key to understanding

the innovations contained in R&D based growth models is an appreciation of the
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differences between technology and human capital on the one hand, and labor and

physical capital on the other.

The earlier discussions of growth models from Smith and Ricardo to the formal

models of Harrod (1939), Domar (1947), and Solow (1956), share their focus on capital

accumulation and as the engine of per capita growth.  Unfortunately, the notion of

“capital” was often a loosely defined concept that usually referred to physical capital, but

which could also include knowledge, human capital or technology at times.  Solow

(1957) tested the historical approach, which postulated that growth was driven by

physical capital deepening.  In a stunning find he discovered that only 12.5 percent of

U.S. growth in output between 1909 and 1949, could be attributed to physical capital

accumulation and population growth.

Leaving such a large share of growth unexplained implicitly assigned a large role

to technological progress to account for US growth.  Today it seems obvious that the

prime candidate to fill the void would be technological change.  Grossman and Helpman

(1991) point out that economists did not necessarily consider the evolution of technology

as part of economic analysis.  State of the art were pure growth accounting exercises that

sought to simply measure the unexplained residual, which would then be labeled

technological change.  Kaldor (1957) countered the residual approach to technology by

introducing a Technical Progress Function where productivity growth is related to gross

investment, much like Arrow (1962).  While Kaldor and Arrow emphasize the

importance of integrating technology as part of a fully specified economic model, their

mechanics of technical change do not recognize that technology might be a

fundamentally different factor, as its accumulation is specified to be largely a by-product

of physical capital investment.  Shell (1967) introduced a formal technology sector,

however, the decision to innovate is taken by a planner, without formal structure to

decentralize the innovation decision.

On a simple technical level there were seemingly insurmountable modeling

obstacles to introducing intentional R&D into a model with perfect competition and

constant returns to scale.  Solow spent years collaborating with the GM research and

development team to study the mechanics of technical change, but finally concluded that

he could not meaningfully discuss the subject.
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Eventually growth theory became increasingly technical, some suggest it lost

touch with the empirical applications (Barro and Sala I Martin, 1995 p. 12).  The oil

shocks of the 1970’s certainly altered the focus from long run growth to short run

fluctuations, and from infinite, balanced growth to the study of exhaustible resources and

business cycles.  To address the shortcomings of the purely capital/investment based

approach to economic growth, an alternative was sought that was to be based explicitly

on a well-specified process of technical change, determined within the model, by profit

maximizing agents.  Romer (1987, 1990), Grossman and Helpman (1990, 1991),

Segerstrom et al (1990) and Aghion and Howitt (1988, 1992) developed similar

approaches to endogenize technology in a growth model.  The break with the past was

drastic.  Leaving constant returns and perfect competition behind, the new models rely on

monopolies, oligopolistic competition, or monopolistic competition to allow firms to

recapture research outlays.  Instead of relying on population growth or exogenous

technology parameters, the growth rate of the models is now determined by research

effort and the determinants of success in R&D.

Fundamental to the development of the new class of R&D based growth models

was the insight that the characteristics of technology and physical capital differ

profoundly.  First, technology has a distinct, non-rival nature, which implies that its use

in one activity does not necessarily preclude its utilization in another.  Second,

technology may also be to some degree non-excludable, since the owners of patents

usually face great difficulties preventing competitors from also using the technology (i.e.,

to discover even better technologies).  Third, there is ample reason to justify the existence

of positive long run growth rates based on innovation.  Knowledge is neither an

exhaustible resource, nor does it face the same obvious limits to accumulation as physical

capital.

Within the literature of R&D based growth models, two approaches resulted.

First, Judd (1985), Romer (1986) and Grossman and Helpman (1991) developed models

based on increasing product varieties, then followed the quality ladder models of Aghion

and Howitt (1988, 1992) and Segerstrom et al. (1990).  Models based on product variety

assume agents’ love of variety, so that continuous innovations of new product varieties

sustain growth in the long run.  A powerful interpretation of the product variety approach
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is that it formalizes the idea that continued specialization of labor across different

varieties of activities generates economic benefits.  Aghion and Howitt (1998) instead

focus exclusively on quality ladder models, which they label The Schumpeterian

Approach.  In quality ladder models, ever-new technology improvements generate

positive growth rates of income and consumption.  The strands of the literature have been

unified recently and the current state of the art is an amalgam of the product variety and

quality ladder approach, where products experience not only increases in varieties, but

also changes in production costs, or qualities, see Young (1998), Howitt (1999) and

Eicher and Kim (1998).

The fundamental draw back of this new growth literature is that – while

technology is endogenous –only residual interest focuses on the actual process of

technology creation and evolution.  Consequently technology is customarily modeled

much like any other factor of production.  Research functions in R&D based growth

models are thus at best reduced forms that focus on blueprint accumulation by simply

mapping input quantities into blueprints, instead of representing a process of technology

creation that takes into account how do new technologies come about.  Weitzman (1998)

criticizes this approach as "technological progress in a black box," lamenting that "'new

ideas' are simply taken to be some exogenously function of 'research effort' in the spirit of

a humdrum conventional relationship between inputs and outputs."

Unconstrained by modeling limitations, the descriptive literature on the nature of

the invention process extends far beyond a list of determinants of blue print

accumulation.  Real world observations emphasize the stochastic, trial-and-error nature of

generating and managing new ideas.  In this paper I see to suggest a structure of the

actual research process.  To endogenize research productivity, I describe an evolutionary

search algorithm that has found widespread applications in the (social) sciences.  Based

on the principle of the survival of the fittest, Holland (1970) developed this algorithm to

emulate biological search and selection processes.  It can be interpreted as a variant of

adaptive learning, or as an augmented combinatorial optimization process.  Due to its

origins in evolutionary biology, it was originally entitled genetic algorithm.

The novel implications that result from the application of the evolutionary search

algorithm are pertain to the determinants of economic growth.  Aside from the parameters
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that determine the growth rate in previous R&D based growth models, I show that the

mechanics and efficiency of the search process now influence the growth rate.  The new

research specification is shown to generate distinct research productivities among

parametrically identical countries – productivities that signify the trials and errors

involved in learning and managing new ideas.  This model allows also for convergence

and leapfrogging due to an international exchange of ideas between high and low growth

countries.  Finally, evolutionary search breaks the direct relationship between scale and

growth, since the share of the factor allocated to R&D is now a function of endogenous

research productivity.

2) The Evolutionary Approach

The evolutionary approach to search in research can be seen as a formalization

and extension of Romer's (1993) toy model, a first attempt to highlight the complexity of

the search problem researchers face.  Below technology is created by two types of inputs

( i ) the usual factor of production (labor), and ( ii ) ideas.  Instead of the constant and

exogenous research productivity in previous growth models, I assume researchers

manipulate the universe of ideas according to the evolutionary search algorithm to alter

the research productivity.

Ideas and researchers interact.  As time and research progress, and as researchers

select relatively more successful ideas more often (selection), proven ideas become more

prevalent over time as they are imitated with increasing frequency (reproduction).1

Researchers also experiment by combining elements of different ideas to generate

completely new ideas (crossover or recombination) in a manner that has been shown to

mimic human behavior.  Experimentation provides structure to the process by which an

individual idea might initially not be the most productive, but in combination with

another idea it may generate extremely high research productivity.  Over time, the

universe of ideas changes as the experimentation, selection and reproduction criteria

generate an increased uniformity of ideas, until all researchers adopt the same way of

thinking.  At this point the algorithm (and research productivity) achieves a steady state.

The evolution of a universe of ideas takes place within a multimodal search space

(or, landscape, see Krugman 1994).  This contrasts sharply with the well behaved, single-

                                                            
1 The terms in brackets show the algorithms roots in evolution and natural genetics.
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peaked research functions in the common R&D based growth model.  The fundamental

advantage of the evolutionary search algorithm is its ability to allow for a vast diversity

of ideas at initial stages of development, as well as its capability to manage an increased

dominance of highly productive ideas via experimentation and learning on the part of the

researchers.

Versions of the evolutionary algorithm have been used extensively in the social

sciences in general and in economics in specific.  A Survey of seminal papers are is

provided by Riechmann (1999) and Clemens and Riechmann (1996).  However, previous

applications have been limited to utilizing the algorithm's excellent search properties in

selecting optimal numerical solutions among alternative rational expectation equilibria, as

for example in cases of indeterminacy (e.g. Marimon, McGrattan and Sargent, 1990), or

to optimize functions in econometrics.  I do not employ the algorithm in order to aid an

optimization process, but to provide structure to the process by which ideas are produced

and selected in research.  Much like Vriend (1995), who uses such an evolutionary

algorithm to explain self-organizations of markets, I employ the algorithm to provide

microfoundations to search in research.2  Birchenhall (1995) used evolutionary

algorithms to examine the economic implications of "modular technology" where the

production function depends on a number of ideas or technologies that are distributed

across an economic population; evolutionary learning is then a process of population

learning.

Previous models of endogenous technical change that allow for stochastic

innovation are for the most part based on a Poisson process to permit analytical

tractability rather than to reflect realism (see Aghion and Howitt, 1992).3  In equilibrium,

deterministic and Poisson innovation processes generate largely identical implications for

the determinants of growth rates.  Hence experimentation, guessing, creative exploring,

and imitating has not been an explicit part of the research modeling.4

                                                            
2 Further introductions of life sciences algorithms into economics can be found in the resource/growth
literature, where natural resource regeneration is modeled according to biological regeneration functions
Copeland and Taylor (1995), and in the financial markets literature, which uses epidemiologists' contagion
models Shiller and Pound (1989).
3 There is no evidence that innovations evolve according to Poisson distributions.
4 More sophisticated research processes have been introduced by models of General Purpose Technology,
see Helpman (1998) and by Aghion and Howitt's (1995) model of basic and applied research.  These
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Most similar to my approach to search in research is the combinatorial approach

of Weitzman (1998) and the adaptive learning featured in Jovanovic and Nyarko (1996).

Jovanovic and Nyarko rely on Baysian learning to provide structure to learning by doing,

where agents do not know the true productivity of an existing technology, but where

continued usage reveals further information.  Analogously, the evolutionary search

algorithm I employ below provides structure to the research process that generates

technical change, since I allow for completely new ideas to be introduced as part of the

research process.  Weitzman (1998) also provides microfoundations to the knowledge

producing function in the R&D based growth model, to investigate the resulting

properties of growth rates.  His Recombinant Growth model relies on reconfigured old

ideas, the selection and reproduction properties of the evolutionary algorithm employed

below are absent.  Hence the management of diversity and becomes the limiting factor in

growth in his model as recombinant growth in ideas may even exceed exponential

growth.  The result confirms Weitzman's (1992) earlier result that there may exist optimal

levels of diversity.  The mechanics of the evolutionary algorithm introduced below have

been shown to efficiently manage the trade off between recombination and diversity.

Reaching equilibrium on a local maximum is a distinct possibility in evolution as

well as in the economy described below, as the algorithm trades diversity for quality over

time.  Each time a low quality idea is discarded and lost, as a higher quality idea is

imitated, the lost diversity limits the future scope of experimentation.  Hence the ideas

needed to propel the research effort to global maxima may have either never been

discovered, or their individual quality or prevalence at the time of discovery was initially

comparatively small.  Thus ideas may be washed out by the strong prevalence of initially

more successful ideas.  The Brazilian rainforests motivates a good example, where the

current destruction of biodiversity to satisfy present day manufacturing may limit future

welfare, as important but undiscovered chemical compounds may be destroyed forever.

As a consequence of the tradeoff between quality and variety, parametrically

identical countries may not converge to identical growth rates.  The intuition relies on the

well known result that, when as technical change is no longer assumed to be

                                                                                                                                                                                    
models are primarily interested how the different natures of technologies (basic, applied, process, product)
affect growth rather than how innovations come about, which is the topic in this paper.
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deterministic, it is also no longer guaranteed that the research process converges quickly

to a maximum (see Aghion and Howitt, 1995).  Most interesting are the implications for

cross-country convergence.  If a high and low growth country (A and B respectively)

have not attained the most effective idea in research, they may well benefit from

globalization, the worldwide exchange of ideas.  Even if Country B uses ideas that

exhibit lower productivity in research than Country A, the high growth country may still

gain from the exchange of ideas because of increased diversity.  This is because less

productive ideas from Country A at time t might generate improved research productivity

in the high growth country via experimentation, as parts of ideas from both countries are

combined.  Such search dynamics may lead to convergence or overtaking, if the laggard

actually gains more from the leader's idea than vice versa.5  The alternative may,

however, also be true, in that ideas promulgated by globalization might also lower the

growth rate.  Immizerizing globalization occurs when foreign ideas do not combine well

with the domestic ideas.  In this case unusually prevalent foreign ideas may slowly

extinguish the domestic best practice.

Divergence due to globalization is quite common in the trade and growth

literature, where it is usually due to trade induced reduction of one country's production

of the high learning (growth) content good.  Convergence can be achieved through

international spillovers (see, for example, Howitt 2000), but overtaking is much rarer.  In

Jovanovic and Nyarko (1996) the possibility of overtaking also exists, and Xie (1994)

also features overtaking in the Lucas model, but has to rely on complex dynamics.

Brezis, Krugman and Tsiddon (1993) actually allow for leapfrogging, a more dramatic

form of overtaking.  Their model shows that Ricardian technology, together with

differential technology adoption costs can even lead to cycles in technological leadership.

In the model below the origin of overtaking (and divergence) is simply the exchange of

ideas and the differential gain in productivity's achieved by differential degrees of

complementary of ideas, and because of the inherent randomness of the search process.

3) The Model

                                                            
5 An analogy would be the manufacturing developments in the 1980's where West (assembly plant
production) met East (teamwork) and both sides flourished adopting some principle ideas from the other.
Even the Ford Motor Company, the quintessential inventor of the assembly line that propelled western
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3.1) Foundations

Without exception, R&D based growth models represent technical change with

increased product quality or variety (or both).  At the same time, however, this class of

models is largely agnostic about the determinants of research productivity, or of the

invention process.  Hence research productivity is assumed to be exogenous and constant.

To highlight the impact of this assumed exogeneity I present the bare bones of a standard

growth model first, together with the determinants of equilibrium growth.  Then I

introduce the evolutionary search algorithm to provide microfoundations to the research

process in a model and in simulations.  The novel implications regarding the resulting

growth rate and the effects of openness to foreign ideas can then be discussed.

I introduce evolutionary search into a Schumpeterian model of economic growth.

The starting point is a simple quality ladder model of technical change.  The economy

produces one final good that uses technology and an intermediate good.  New technology

is developed by the fraction of the population devoted to research, and a successful

innovation together with one unit of labor generates a higher quality intermediate good.

Economic growth is thus the result of a sequence of quality improving innovations.

Details and extensions of the basic quality ladder model can be obtained from the original

Aghion and Howitt (1992) paper; and real world realism can (and has been) added to

extend the base model in multiple dimensions (for a summary, see Aghion and Howitt

1995).  None of these extensions alter the impact of evolutionary search on economic

growth; all the qualitative results reported below are robust.

3.1.1. Bare Bones

We abstract from capital formation, and assume a constant labor force, L.  At time

τ, infinitely lived households maximize utility

[ ] ττ
τ

τ dyeyU r∫
∞ −=
0

, (1)

Output of a consumption good, y, is produced in a competitive sector with technology, A,

and an intermediate input, x,

axAy τττ = , 1<α . (2)

                                                                                                                                                                                    
manufacturing into a new era, did import Japanese managers to improve efficiency with teamwork
concepts.
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The production of a unit of x requires one unit of labor.  Whenever a better quality

intermediate good becomes available, it replaces the old and raises the technological

efficiency, A, by a constant amount g.6  If n units of labor are devoted to research, na ⋅

innovations result, where a > 0 is the productivity parameter of labor in research.7  It is

this productivity parameter, which will be endogenized below with the aid of an

evolutionary search algorithm.

When a firm invents a new technology, it obtains an infinitely lived patent to

become the monopoly supplier of the intermediate good.  Given the labor constraint

ττ nxL += , (3)

the amount of labor devoted to research is determined by the incentive condition that, at

the margin, the discounted expected value of a future innovation, Vt+1, must equal today’s

unit cost of research, wt

1+= tt aVw . (4)

To simplify matters, we add notation; while τ above represents real time, t now represents

the duration between innovations.  We unify the representation in terms of real time when

we discuss the growth rate below.

The expected value of an innovation depends on the discounted monopoly profits

derived from manufacturing the intermediate good minus the discounted expected capital

loss.  The latter is given by the probability that more sophisticated inputs fully destruct

the current monopolist supplier’s profits

( )
r

Van
V ttt

t
111

1
+++

+
−= π

. (5)

Profit maximization for the monopolist is entirely standard.  Given the demand curve

derived from the final goods, the optimal quantity of the intermediate input can be written

in terms of the productivity adjusted wage, Aw≡ω ,

( ) ( )αωα −= 112
ttx , (6)

                                                            
6 The constancy of g implies that the research does not actually alter the incremental increase in
technology; rather that research changes the time interval at which new blueprints arrive.  It is possible to
endogenize the incremental increase in technology, g, as shown by Aghion and Howitt (1992).  None of the
results below would change.
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which implies a level of profits

( )11 −= −απ ttt xw , (7)

Equations (6 and 7) express the common result that the volume of intermediate good

production and profits are a decreasing function of the productivity-adjusted wage as.

Higher demand for future labor, generated by a more productive blueprint decreases the

profit flow of future innovators.

3.1.2. Stationary Equilibrium

I focus on the stationary state where **, 11 nnn tttt ==== ++ ωωω .8  Equations (5)

and (7) can be substituted into the incentive and labor constraints to yield the steady state

wage and the share of labor in research.  Placing these values into the production function

renders the average growth rate, β , determined by

gan ln*=β (8)

The determinants of the growth rate imply that the performance of countries varies

according to (i) their exogenous productivity in research, (ii) their exogenous incremental

increase in technology when new innovations arrive, and (iii) the share of labor in R&D.

The latter quantity is endogenously determined by the interest rate, the elasticity of

demand, the size of the population, and by the productivity in research.

The point of this paper is not to outline the exact parameters that determine

growth rates, these are in part dependent on the exact microfoundations of the model, as

Aghion and Howitt (1995) and Jones and Williams (1998) amply lay out.  The purpose is

to attract attention to the implications that are directly contingent on the reduced form of

the research function and on the exogeneity of the research productivity, a.  Once

exogenous differences in preferences and in the underlying parameters (in the simple case

above, ),, Lrg  are accounted for, R&D based growth models predict that all countries

grow at the same steady state rate.  In this case, the absence of some basic understanding

of the determinants of research productivity voids any chance of explaining cross-country

variations in terms of research or total factor productivity growth.

                                                                                                                                                                                    
7  Aghion and Howitt (1992) assume a Poisson arrival rate to proxy uncertainty in the innovation process.
As mentioned in the introduction, the qualitative results are identical to assuming exogenous, constant
innovation.
8 The dynamics are analyzed in Aghion and Howitt (1992).
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More dramatic are the implications for international flow of knowledge.  The

evidence strongly suggests significant spillovers between countries, although the impact

of such spillovers varies across countries (Eaton and Kortum, 1997).  When a country

opens to the outside world of ideas, the mechanism by which ideas are incorporated,

developed and propagated becomes a crucial factor.  While models of endogenous

technical change allow for endogenous growth, they provide no insight how exactly the

exchange of ideas across countries may or may not be beneficial.

Specifically, the model predicts that when two identical countries, (A, B), open up

to the ideas of the outside world, the growth rate simply doubles in both countries

(assuming away duplication etc.)

( ) gnagnna BABA ln2ln ***
, =+=β . (8')

From (8') it is easily to read off the common conclusion of the endogenous growth

literature that even parametrically distinct countries, with very different growth rates will

both gain from opening to the world of ideas, if both continue to conduct research.9

While the change in the growth rates does not necessarily have to be identical (depending

on how countries differ in the underlying parameters), overtaking is, in general,

impossible in this setup.10

These properties of the growth rate highlight that the reduced form of the R&D

function leaves much room for interpretation, which does not increase but limit the

generality of the models.  For example, the returns to scale in the research sector are

dictated by the assumption whether or not the factors in R&D are modeled endogenously

or not (see Jones 1995).  The absence of substance in the R&D sector that would explain

how international ideas are integrated into domestic thinking, is not due to sloppy

modeling, however.  The descriptive literature is vast and empirical guidance to judge the

relative importance of the different approaches, for different levels of aggregation is

scant.

The key problem in the empirical work has been how to measure R&D outputs

and inputs.  Hence without comprehensive guidance from the empirical literature,

                                                            
9 Exceptions to these general results have prominently been discussed in Rivera Batiz and Romer (1994),
and in Feenstra (1996).
10 Exceptions are discussed in the introduction.
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constant productivity may simply be an acceptable first approximation.11  It is important

to keep in mind, however, that the assumption of constant productivity in research drives

important conclusions of the model, the convergence implication in particular.

The alternative to employing an agnostic approach to modeling research is to

apply search algorithms that have been proven to be efficient, relevant and applicable in a

wide range of areas in the social sciences.  Indeed the evolutionary algorithm below was

developed to replicate the genetic selection process and soon found widespread

application as a search process in the social sciences, too.

4) Endogenous Productivity in Research

In this section I introduce the mechanics of the evolutionary search algorithm.  To

preserve maximum simplicity while integrating endogenous search into the above model

of endogenous technical change, I adopt the same model as above with the modification

that research productivity, now a(t), is endogenously determined by the search algorithm.

Without loss of generality, the algorithm outlined below is stripped of all unnecessary

layers of complexities that have been added to in the literature.

The evolutionary algorithm describes the means by which one universe (or set) of

ideas is transformed into another as time progresses.  To achieve this transformation the

algorithm dictates researchers a set of rules based on learning/imitation and

experimentation.

4.1 Formal Definitions of the Evolutionary Algorithm

An idea, i , is represented by a bit string of length q, which contains an array of

information, for example, a list of rules.12  I adopt a binary representation, which Holland

(1975) argues to be the most general.  Let the value of a binary number, ( )ti,γ , determine

the quality of idea i  in term of productivity in research at time t.13  Given the choice of a

binary representation, the set of all possible different ideas of length q is then given by

{ } qS 1,0∈ , which implies that there are at most 
qNS 2=≡  different ideas.

                                                            
11 The empirical literature is marred by data problems related to measuring technical change and
determining the factors that influence technical change.  The best approximation seems to be Caballero and
Jaffe (1993).
12 The formalization of the algorithm here follows Riechmann (1998).
13 Complications that reflect more complex mappings from the value of the binary number into research
productivity would not alter the results.
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I assume that the universe of ideas available to any particular research sector is of

size Z, which may or may not exceed N, since Z may contain several identical ideas in

contrast to N.  I also assume ∞<Z , which implicitly imposes a resource constraint.  A

simple way to motivate a limited the number of ideas in the universe at each time t, is to

assume that each researcher can only manage ξ  ideas in each period so that Z = ξ n.

Such an assumption would however, only complicate the simulations, not the quality of

the results.

The absolute frequency of ideas of type i  at time t is denoted by ( )tim , , which

allows us to represent the universe of ideas as a vector, ( ) ( ) ( )( )tNmtmtm ,,...,,1= .  I

assume that the research productivity is a function of the average quality of the ideas

circulating in research:

Za
Z

i

i
tt ∑= γ , (9)

where ta  now reflects the mechanics of search, the efficiency of search, and the size and

properties of the search space.  Since the output of the research activity is new blueprints,

researchers are paid according to their productivity in terms of blue prints generated.  The

marginal product of researchers is thus ta , which rewards researchers for their sorting

and experimentation efforts that result in ttna  innovations.

4.2 Learning by Imitation

To provide a mechanism for "natural selection" among ideas, the evolutionary

algorithm offers several methods of learning.  We start with the simplest method in which

unproductive ideas are de-emphasized and eventually discarded, while successful ideas

are increasingly imitated.  Learning by imitation determines whether a specific idea is

used again in the future (reproduction), and how widespread its usage should be

(selection).14

Through imitation the old universe of ideas is transformed into a new one from

period t to t+1.  Essentially imitation is the process by which researchers select relatively

more productive ideas more frequently over time.  Formally, imitation is characterized by

"drawing" ideas (with replacement) from the old universe of ideas for use in the next

                                                            
14 A step by step scheme of search in research is given the appendix.
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period.  The chance of any one idea in ( )1−tm  to be imitated, ( )( )1|1 −tmiP , to be part

of the universe of ideas at time t is

( )( ) ( ) ( )
( ) ( )∑ ∈

−−
−−=−

NSj
tjtjm

titim
tmiP

1,1,
1,1,

1|1 γ
γ

(10)

Hence the likelihood that any given idea being imitated is a function of the ideas relative

quality and frequency.  In terms of research, this process can be interpreted as researchers

discarding ideas that produce relatively low research productivity, and imitating ideas

that are relatively more successful.  Note that this specification does permit propagation

of a bad idea, especially if by some strange fluke the use of that type of idea was frequent

or widespread in the past.

The evolution of the universe of ideas from t-1 to t can be represented by the

transition probability of a transition matrix describing the algorithm as a Markov process:

( ) ( )( ) ( ){ } ( )( ) ( )∏∏ ∈
−

∈

−
−

=−
Si

tim

Si

timiP
tim

Z
tmtmP 1,

11 1,|
! 1,

! 
1| (11)

Essentially (11) gives the probability of each possible outcome of a multinomial

distribution.  The equation specifies how a new universe of ideas is formed from the ideas

that are imitated.  Drawing from the pool of imitated ideas with replacement,

( ) ( )( )1|1 −tmtmP  gives the probability that any vector ( )tm  will result.

The research process reaches its steady state as relatively unproductive and

infrequently used ideas are continuously discarded, while relatively better and prevalent

ideas become more frequently used.  In the steady state, one idea, *i , establishes itself as

the best practice.  Every universe that consists of only one type of an idea is a steady

state, and since there is a total of q2  possible different ideas, there are at most that many

possible steady states.  Since every steady state can be reached from at least one of the

remaining transient states, the Markov process will inevitably end up in one steady state.

The evolutionary algorithm thus always leads to a uniform universe of ideas, Zim =*)( ,

with constant R&D productivity, ( )** ia γ= .

The fact that not only quality but also frequency counts implies that researchers

may not find the most productive idea.  In effect this simplest version of the evolutionary

search algorithm may be stuck in a local maximum, since the best idea may not have
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been prevalent enough in the early stages of development.  An additional drawback is

that the search is constrained by the set of initially available ideas, Z, which may not

contain the entire possible best of ideas, N.  Hence in this version of the algorithm no

truly new discoveries are made, and researchers are only provided with a mechanism for

achieving a best practice.  The natural extension of this simple evolutionary search

algorithm for the research sector is thus to allow for experimentation.

4.3 Learning by imitation and experimentation

Experimentation allows for a meaningful exchange of ideas among researchers

within a lab or a country (and even between countries, as discussed below).  Weitzman

(1998) previously introduced experimentation via recombination, where two old ideas

form a new hybrid.  The evolutionary algorithm is more general, since it allows

researchers to take any part of one idea and combine it with some part of another idea to

create an entirely new idea.  The share of each old idea that forms any new idea is, for

simplicity, assumed to be random.15  In addition, after experimentation the algorithm

provides a procedure to examine the quality of the new idea and thus its ability to be

imitated in the future.

Formally, experimentation in the evolutionary search algorithm can be expressed

as a function, [ ]pkjiI ,,, , which returns the value 0 or 1.  The ideas chosen as inputs for

the experimentation process are ji  and  , respectively, and k identifies the resulting new

idea.  How much of each old idea becomes be part of the new idea k is determined by

[ ]1,...,2,1 −∈ qp .  In the bit string formulation of evolutionary algorithms, p, is the

crossover point that indicates the length of the first (second) part of i  and the second

(first) part of j if I[.] returns 1 (0).  Appendix 1 provides an example.  Important is that

experimentation combines two parts of two ideas, but the productivity of the new idea

may be related to neither parent.  Experimentation thus allows that new ideas are more

than the combined total of the previous ideas.  A new idea may actually break entirely

new ground and be many times more successful (or worse) than either one of its

predecessors.

                                                            
15 Directed learning would only improve the efficiency of the algorithm but not the qualitative nature of the
results.
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The probability of any one idea being chosen for experimentation is χ , and the

probability of obtaining an idea k from a palette of ideas via imitation and

experimentation is

( )( )

( ) ( )( ) ( )( ) ( )( )
[ ]

,
1

,,,
1|1|1|1

1|
1

1
111

2

−
−−+−−

=−

∑∑ ∑
−

=
∈ ∈ q

pkjiI
tmjPtmiPtmkP

tmkP
q

p

Si Sj

vvv

v

χχ
(12)

which is the probability that an idea is not chosen for experimentation but still selected

for imitation, plus the probability that an idea that is the product of experimentation is

chosen for imitation.  Similar as in the case of pure imitation, the probability of any

universe of ideas ( )1+tm  to become the successor of the universe ( )tm  by reproduction

and selection is given the transition probability

( ) ( )( ) ( ) ( )( ) ( )∏∏ ∈
−

∈

−
−

=−
Si

tim

Si

timiP
tim

Z
tmtmP 1,

22 1,|
!1,

!
1| (13)

Managing the multimodal search space with this evolutionary algorithm is often

compared to a hill climbing exercise, as the topographic representation of the search

space resembles a rugged mountain terrain.  The highest peak is the global maximum of

the research productivity.  Given the evolutionary search process outlined above, even

with experimentation it is still possible that the search stops prematurely, at a local

maximum.  Local maxima may now occur for two reasons.  First, as in the case of pure

imitation, the best idea may not be frequent enough at the crucial stage of development.

Second, and more importantly, as old and unproductive ideas are de-emphasized and

eventually discarded, the pool of ideas looses precious diversity.  Only sufficient

diversity allows for the possibility that future experimentation leads down form a local

maximum and towards more efficient ideas.  For example, an idea may not have been the

most productive at the time it is discovered, but it may have held information that could,

in combination with another idea, generate the most productive idea of all.  Hence, the

drive towards a best practice idea comes at the cost of forgone diversity and potential

future productivity, as in the case of the Brazilian Rainforest mentioned above.16

                                                            
16 I excluded the possibility of completely random accidents (mutation).  If random accidents dominate the
algorithm to affect the results, the structure of research as presented above looses its substantive
interpretation, since random effects then drive productivity.  Mutations do not necessarily lead to the global
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In terms of the equilibrium properties, experimentation does not change the

qualitative implication of the algorithm; the system still attains one unique stationary

state that is characterized by a homogeneous set of ideas.  Experimentation does allow,

however, for inventions of new ideas that potentially expand the initial pool of ideas

significantly, hence it extends the search time and space relative to the pure imitation-

based search algorithm.  Hence experimentation generates a higher expected productivity

of the equilibrium best practice.  With endogenous research productivity, the new growth

rate of a country is now

( ) gni ln**γβ =

where ( )*iγ  is the quality of the best practice idea and the efficiency in research as

determined by the evolutionary algorithm.

5. Implications

The search algorithm augments the previous results of the literature.  The growth

rate is constant along the balanced growth path, and determined by the underlying

economic parameters outlined above.  New is that the endogeneity of the research

productivity affects the growth rate not only directly, but also through n*, which now

depends positively on a* (given (3)-(7) and (9)).  New is also that even parametrically

identical countries may exhibit different growth rates, if their productivities in research

differ due to different outcomes in their evolutionary optimization.  This result follows in

part from the rugged search space, and also from the character of the search activity,

which trades diversity for quality.  Not reaching the global maximum is however, never

the result of bounded rationality, or sub-optimal search.  Instead local maxima reflect the

trade off between diversity (maintaining a large set of different ideas for experimentation)

and uniformity (selecting higher quality ideas more frequently) to develop the most

efficient common practice in research.

These results highlight that fast convergence to the eventual steady state is not

necessarily an advantageous characteristic of an economy, because it implies that the

country quickly trades diversity for quality of ideas.  If the quality level chosen is a local

                                                                                                                                                                                    
maximum and lead to a constant probability distribution, a "corridor of social behavioral patterns"
(Riechmann, 1999) instead of one best practice.
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minimum, the country is no better off than a country that searches for a long time and

maintains diversity and climbs slowly to the global maximum.

Finally, it is noteworthy to point out that while globalization raises n* in the basic

Aghion and Howitt model, simply because the size of the market increases.  Here, the

share of factors allocated to the R&D sector is a positive function of the average

productivity of in research, hence an increase in n* is no longer guaranteed.  Certainly the

size of the market will again have a positive influence on n*, but we now must also

consider the direct effect of the research productivity, which may be negative as pointed

out above.  Hence the direct relation between size and growth rate is severed and it is

now dominated by the relative quality and by the interaction between domestic and

foreign ideas.

6. Conclusion

The paper seeks to illuminate part of the black box that is commonly associated

with the formal modeling of technical change.  Instead of specifying a simple input-

output relationship between researchers and new technologies, I introduce an

evolutionary algorithm as a search procedure for researchers to manage the universe of

ideas.  In that sense the model provides additional structure or microfoundations to the

innovation process.

The introduction of the search algorithm to research has two distinct advantages.

First, it introduces a truly stochastic nature to the search process, a process in which

diversity of ideas matters as much as continued selection and imitation of higher quality

ideas.  Secondly, it allows for gains form informational exchange between countries, as

the exchange of ideas may be beneficial to both leader and laggard countries.  Most

interesting is the interaction of the ideas and the role that the information exchange plays.

In essence opening to another economies world of ideas increases the diversity of ideas

and allows for more fruitful experimentation and possible the development of higher

quality ideas.

The application of the algorithm to search is not limited to explaining worker

productivity.  Once can easily imagine that alternatively the size of the innovation, or the

productivity of a blue print in output could be explained by the algorithm.  Only the

interpretation, but none of the results would change.  This highlights that the range of
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application of the algorithm is quite wide, and that I have chosen in this paper to provide

only one example, one in which research productivity is endogenized.  I judge this

example to be the most natural one, but by no means the only application of the algorithm

to economic growth.
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Appendix

The Evolutionary Research Algorithm Instructions

1) Create a new universe of ideas (draw ideas from the past universe, given (11) or (13))

2) Evaluate universe of ideas (establish the quality of each idea)

3) Experiment with ideas (choose any pair of ideas with probability χ )

4) Imitate ideas (replicate ideas that have proven successful given (10) or (12))

5) Evaluate the universe of ideas

6) Find the average quality, ta

7) Produce a blueprint
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