DeptBio UofW rainier_moon
home research publications publications people links

Jump to publications:
Kinetochore | FRET and Localization | Yeast Resource Center | Reviews and Methods
Fork Head Proteins | Myosin | Calmodulin

Spindle Pole Body and Centrosome
  • Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA. Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 2010 Aug 12;466(7308):879-82
  • Choy RM, Kollman JM, Zelter A, Davis TN, Agard DA. Localization and orientation of the gamma-tubulin small complex components using protein tags as labels for single particle EM. J Struct Biol. 2009 Dec;168(3):571-4 [PDF]
  • Kollman JM, Zelter A, Muller EG, Fox B, Rice LM, Davis TN, Agard DA.The structure of the gamma-tubulin small complex: implications of its architecture and fexibility for microtubule nucleation.
    Mol Biol Cell. 2008 Jan;19(1):207-215. [PDF]
  • Yoder TJ, McElwain MA, Francis SE, Bagley J, Muller EG, Pak B, O'Toole ET, Winey M, Davis TN. Analysis of a spindle pole body mutant reveals a defect in biorientation and illuminates spindle forces. Mol Biol Cell. 2005 Jan;16(1):141-52. [PDF]
  • Flory MR, Davis TN. The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Genomics. 2003 Sep;82(3):401-5. [PDF]
  • Yoder TJ, Pearson CG, Bloom K, Davis TN. The Saccharomyces cerevisiae spindle pole body is a dynamic structure. Mol Biol Cell. 2003 Aug;14(8):3494-505. [PDF]
  • Vinh DB, Kern JW, Hancock WO, Howard J, Davis TN. Reconstitution and characterization of budding yeast gamma-tubulin complex. Mol Biol Cell. 2002 Apr;13(4):1144-57. [PDF]
  • Flory MR, Morphew M, Joseph JD, Means AR, Davis TN. Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Cell Growth Differ. 2002 Feb;13(2):47-58. [PDF]
  • Friedman DB, Kern JW, Huneycutt BJ, Vinh DB, Crawford DK, Steiner E, Scheiltz D, Yates J 3rd, Resing KA, Ahn NG, Winey M, Davis TN. Yeast Mps1p phosphorylates the spindle pole component Spc110p in the N-terminal domain. J Biol Chem. 2001 May 25;276(21):17958-67. [PDF]
  • Flory MR, Moser MJ, Monnat RJ Jr, Davis TN. Identification of a human centrosomal calmodulin-binding protein that shares homology with pericentrin. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5919-23. [PDF]
  • Nguyen T, Vinh DB, Crawford DK, Davis TN. A genetic analysis of interactions with Spc110p reveals distinct functions of Spc97p and Spc98p, components of the yeast gamma-tubulin complex. Mol Biol Cell. 1998 Aug;9(8):2201-16. [PDF]
  • Sundberg HA, Davis TN. A mutational analysis identifies three functional regions of the spindle pole component Spc110p in Saccharomyces cerevisiae. Mol Biol Cell. 1997 Dec;8(12):2575-90. [PDF]
  • Sundberg HA, Goetsch L, Byers B, Davis TN. Role of calmodulin and Spc110p interaction in the proper assembly of spindle pole body components. J Cell Biol. 1996 Apr;133(1):111-24. [PDF]
  • Friedman DB, Sundberg HA, Huang EY, Davis TN. The 110-kD spindle pole body component of Saccharomyces cerevisiae is a phosphoprotein that is modified in a cell cycle-dependent manner. J Cell Biol. 1996 Mar;132(5):903-14. [PDF]
  • Geiser JR, Sundberg HA, Chang BH, Muller EG, Davis TN. The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Dec;13(12):7913-24. [PDF]


  • Shimogawa MM, Wargacki MM, Muller EG, Davis TN. Laterally attached kinetochores recruit the checkpoint protein Bub1, but satisfy the spindle checkpoint. Cell Cycle. 2010 Sep;9(17):3619-28. [PDF]
  • Wargacki MM, Tay JC, Muller EG, Asbury CL, Davis TN. Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase. Cell Cycle. 2010 Jul;9(13):2579-86. [PDF]
  • Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol. 2010 May;189(4):713-23.
  • Powers AF, Franck AD, Gestaut DR, Cooper J, Graczyk B, Wei RR, Wordeman L, Davis TN, Asbury CL. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell. 2009 Mar;136(5):865-75. [PDF]
  • Shimogawa MM, Widlund PO, Riffle M, Ess M, Davis TN. Bir1 is required for the tension checkpoint. Mol Biol Cell. 2009 Feb;20(3):915-23. [PDF]
  • Gestaut DR, Graczyk B, Cooper J, Widlund PO, Zelter A, Wordeman L, Asbury CL, Davis TN. Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat Cell Biol. 2008 Apr;10(4):407-14. [PDF]
  • Franck AD, Powers AF, Gestaut DR, Gonen T, Davis TN, Asbury CL. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat. Cell. Biol. 2007 Jul;9(7):832-7. [PDF]
  • Shimogawa MM, Graczyk B, Gardner MK, Francis SE, White EA, Ess M, Molk JN, Ruse C, Niessen S, Yates JR 3rd, Muller EG, Bloom K, Odde DJ, Davis TN. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr Biol. 2006 Aug 8;16(15):1489-501. [PDF] (PDF includes Supplemental Material except movies.) Supplemental Quicktime movie, Spindle A
  • Asbury CL, Gestaut DR, Powers AF, Franck AD, Davis TN. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9873-8. [PDF] [Supplemental Material]
  • Widlund PO, Lyssand JS, Anderson S, Niessen S, Yates JR 3rd, Davis TN. Phosphorylation of the chromosomal passenger protein Bir1 is required for localization of Ndc10 to the spindle during anaphase and full spindle elongation. Mol Biol Cell. 2006 Mar;17(3):1065-74. [PDF]

Yeast Resource Center FRET and Localization
Go to the YRC
  • Mathieson EM, Suda Y, Nickas M, Snydsman B, Davis TN, Muller EG, Neiman AM. Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell. 2010 Nov;21(21):3693-707 [PDF]
  • Choy RM, Kollman JM, Zelter A, Davis TN, Agard DA. Localization and orientation of the gamma-tubulin small complex components using protein tags as labels for single particle EM. J Struct Biol. 2009 Dec;168(3):571-4 [PDF]
  • Kollman JM, Zelter A, Muller EG, Fox B, Rice LM, Davis TN, Agard DA.The structure of the gamma-tubulin small complex: implications of its architecture and fexibility for microtubule nucleation.
    Mol Biol Cell. 2008 Jan;19(1):207-215. [PDF]
  • McIntyre J., Muller EGD, Weltzer S, Snydsman BE, Davis TN, Uhlmann F. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J. 2007 Aug 22;26(16):3783-93. [PDF]
  • Rosenberg JA, Tomlin GC, McDonald WH, Snydsman BE, Muller EG, Yates JR, Gould KL. Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body. Mol Biol Cell. 2006 Sep;17(9):3793-805. [PDF]
  • Muller EG, Snydsman BE, Novik I, Hailey DW, Gestaut DR, Niemann CA, O'Toole ET, Giddings TH Jr, Sundin BA, Davis TN. The organization of the core proteins of the yeast spindle pole body. Mol Biol Cell. 2005 Jul;16(7):3341-52. [PDF] [Supplemental Material]
  • Flory MR, Carson AR, Muller EG, Aebersold R. An SMC-domain protein in fission yeast links telomeres to the meiotic centrosome. Mol Cell. 2004 Nov 19;16(4):619-30. [PDF]
  • Sundin BA, Chiu CH, Riffle M, Davis TN, Muller EG. Localization of proteins that are coordinately expressed with Cln2 during the cell cycle. Yeast. 2004 Jul 15;21(9):793-800. [PDF]
  • Pot I, Measday V, Snydsman B, Cagney G, Fields S, Davis TN, Muller EG, Hieter P. Chl4p and Iml3p are two new members of the budding yeast outer kinetochore. Mol Biol Cell. 2003 Feb;14(2):460-76. [PDF]
  • Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev. 2002 Jan 1;16(1):101-13. [PDF]

Yeast Resource Center
Go to the YRC
  • Malmstrom L, Riffle M, Strauss CE, Chivian D, Davis TN, Bonneau R, Baker D. Superfamily Assignments for the Yeast Proteome through Integration of Structure Prediction with the Gene Ontology. PLoS Biol. 2007 Mar 20;5(4):e76 [PDF] [Supplementary Materials]
  • Riffle M, Malmstrom L, Davis TN. The Yeast Resource Center Public Data Repository. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D378-82. [PDF]
  • Hazbun TR, Malmstrom L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin BA, Aranda JD, McDonald WH, Chiu CH, Snydsman BE, Bradley P, Muller EG, Fields S, Baker D, Yates JR 3rd, Davis TN. Assigning function to yeast proteins by integration of technologies. Mol Cell. 2003 Dec;12(6):1353-65. [PDF]
  • Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A 3rd, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG. A protein interaction map for cell polarity development. J Cell Biol. 2001 Aug 6;154(3):549-71. [PDF]

Reviews and Methods
  • Graczyk B, Davis TN. An assay to measure the affinity of proteins for microtubules by quantitative fluorescent microscopy. Anal Biochem. In press.
  • Asbury CL, Tien JF, Davis TN. Kinetochores' gripping feat: conformational wave or biased diffusion? Trends Cell Biol. 2011 Jan;21(1):38-46.
  • Zelter A, Hoopmann MR, Vernon R, Baker D, MacCoss MJ, Davis TN. Isotope signatures allow identification of chemically cross-linked peptides by mass spectrometry: a novel method to determine interresidue distances in protein structures through cross-linking. J Proteome Res. 2010 Jul 2;9(7):3583-9.
  • Franck AD, Powers AF, Gestaut DR, Davis TN, Asbury CL. Direct physical study of kinetochore-microtubule interactions by reconstitution and interrogation with an optical force clamp. Methods. 2010 Jun;51(2):242-50.
  • Gestaut DR, Cooper J, Asbury CL, Davis TN, Wordeman L. Reconstitution and functional analysis of kinetochore subcomplexes. Methods Cell Biol. 2010 May;95:641-56.
  • Asbury CL, Davis TN. Insights into the kinetochore. Structure. 2008 Jun;16(6):834-6.
  • Davis TN, Wordeman L. Rings, bracelets, sleeves, and chevrons: new structures of kinetochore proteins. Trends Cell Biol. 2007 Aug;17(8):377-82.
  • Davis TN, Muller EGD. Measuring the proximity of proteins in living cells by fluorescence resonance energy transfer between CFP and YFP.  Meth. Microbiol. 2007;36:269-280.
  • Muller EGD, Davis TN. Protein localization by cell imaging. pp. 137-155. In T. D. Veenstra and J. R. Yates, III, (eds) Proteomics for Biological Discovery. 2006. Wiley-Liss, Inc., Hoboken, New Jersey. [PDF]
  • Widlund PO, Davis TN. A high-efficiency method to replace essential genes with mutant alleles in yeast. Yeast. 2005 Jul 30;22(10):769-74. [PDF]
  • Davis TN. Protein localization in proteomics. Curr Opin Chem Biol. 2004 Feb;8(1):49-53. [PDF]
  • Hailey DW, Davis TN, Muller EG. Fluorescence resonance energy transfer using color variants of green fluorescent protein. Methods Enzymol. 2002;351:34-49. [PDF]
  • Nguyen T, Davis TN. Genetic analysis of yeast spindle pole bodies. Methods Cell Biol. 2001;67:95-111. [PDF]
  • Francis SE, Davis TN. The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components. Curr Top Dev Biol. 2000;49:105-32. [PDF]
  • Flory MR, Davis TN. Localization of calmodulin in budding yeast and fission yeast using GFP.  Meth. Enzymol. 1999;302:87-102.
  • Davis TN. The centrosome on centre stage.  Trends in Cell Biol.  1997;7:508-510. [PDF]
  • Davis TN. Calcium in Saccharomyces cerevisiae. Adv Second Messenger Phosphoprotein Res. 1995;30:339-58.
  • Davis TN. Mutational analysis of calmodulin in Saccharomyces cerevisiae. Cell Calcium. 1992 Jun-Jul;13(6-7):435-44.

Fork Head Proteins
  • Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 2000 Jul 6;406(6791):90-4. [PDF]
  • Zhu G, Davis TN. The fork head transcription factor Hcm1p participates in the regulation of SPC110, which encodes the calmodulin-binding protein in the yeast spindle pole body. Biochim Biophys Acta. 1998 Dec 10;1448(2):236-44. [PDF]
  • Zhu G, Muller EG, Amacher SL, Northrop JL, Davis TN. A dosage-dependent suppressor of a temperature-sensitive calmodulin mutant encodes a protein related to the fork head family of DNA-binding proteins. Mol Cell Biol. 1993 Mar;13(3):1779-87. [PDF]

  • Stevens RC, Davis TN. Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J Cell Biol. 1998 Aug 10;142(3):711-22. [PDF]
  • Brockerhoff SE, Stevens RC, Davis TN. The unconventional myosin, Myo2p, is a calmodulin target at sites of cell growth in Saccharomyces cerevisiae. J Cell Biol. 1994 Feb;124(3):315-23. [PDF]
  • Brockerhoff SE, Davis TN. Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J Cell Biol. 1992 Aug;118(3):619-29. [PDF]

  • Moser MJ, Flory MR, Davis TN. Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation. J Cell Sci. 1997 Aug;110 ( Pt 15):1805-12. [PDF]
  • Moser MJ, Geiser JR, Davis TN. Ca2+-calmodulin promotes survival of pheromone-induced growth arrest by activation of calcineurin and Ca2+-calmodulin-dependent protein kinase. Mol Cell Biol. 1996 Sep;16(9):4824-31. [PDF]
  • Moser MJ, Lee SY, Klevit RE, Davis TN. Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by mutagenesis and NMR spectroscopy. J Biol Chem. 1995 Sep 1;270(35):20643-52. [PDF]
  • Starovasnik MA, Davis TN, Klevit RE. Similarities and differences between yeast and vertebrate calmodulin: an examination of the calcium-binding and structural properties of calmodulin from the yeast Saccharomyces cerevisiae. Biochemistry. 1993 Apr 6;32(13):3261-70. [PDF]
  • Davis TN. A temperature-sensitive calmodulin mutant loses viability during mitosis. J Cell Biol. 1992 Aug;118(3):607-17. [PDF]
  • Brockerhoff SE, Edmonds CG, Davis TN. Structural analysis of wild-type and mutant yeast calmodulins by limited proteolysis and electrospray ionization mass spectrometry. Protein Sci. 1992 Apr;1(4):504-16. [PDF]
  • Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM, Davis TN. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949-59. [PDF]
  • Persechini A, Kretsinger RH, Davis TN. Calmodulins with deletions in the central helix functionally replace the native protein in yeast cells. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):449-52. [PDF]
  • Davis TN, Thorner J. Vertebrate and yeast calmodulin, despite significant sequence divergence, are functionally interchangeable. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7909-13. [PDF]
  • Davis TN, Urdea MS, Masiarz FR, Thorner J. Isolation of the yeast calmodulin gene: Calmodulin is an essential protein.Cell. 1986 Nov 7;47(3):423-31. [PDF]