
1. (a) The algorithm written in C:

int T(int n) {

int sum = 0;

if (n==0 || n==1) return 2;

for(int j=1;j<=n-1;j++)

sum+=T(j)*T(j-1);

return sum;

}

Let N(n) denote the number of operations required to calculate T (n),
from the algorithm we have:

N(n) =

n−1
∑

i=1

2 ∗N(i) −N(n− 1)−N(0) + 2 ∗ (n− 1)

≥ N(n− 1) + N(n − 2) ≥ 2 ∗N(n − 2)

= 2 ∗ 2 ∗N(n − 4) = · · · = 2
n

2 ∗N(0) = 2
n

2

Hence it’s exponential.

(b) (b) An algorithm in C:

T[0]=T[1]=2;

for(j=2;j<=n;j++)

{ T[j] = 0;

for(k=1;k<=j;k++)

T[j]+=T[k]*T[k-1];

}

return T[n];

(c) An algorithm in C:

T[0]=T[1]=2;

for(j=2;j<=n;j++)

T[j]=T[j-1] + T[j-1]*T[j-2];

return T[n];

2. The solution to the problem of the shortest common subsequence for three
strings is essentially identical to the solution with 2 strings. By treating
the T (i, j, k)’s as array entries and updating the table in the appropriate
way we can get the following O(n3) time algorithm.

1

For i=0 to m do T(i,0,0)=0

For j=0 to n do T(0,j,0)=0

For k=0 to o do T(0,0,k)=0

For i=1 to m do

For j= 1 to n do

For k= 1 to o do

if a(i) = b(j) = c(k) then T(i,j,k)=T(i-1,j-1,k-1) + 1

else T(i,j,k)= MAX(T(i, j-1, k), T(i-1, j, k), T(I, j, k-1))

3. We present an algorithm to compute the shortest common super-sequence
of two strings: Let A = a1 . . . am and B = b1 . . . bn. Let M [i, j] denote the
length of the shortest common super-sequence of string a1 . . . ai, b1 . . . bj,
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Note that the last letter in the shortest
super-sequence of a1, . . . , ai and b1, . . . , bj is either ai or bj. If the last
letter is ai then the previous letters are the solution to the subproblem for
a1, . . . , ai−1 and b1, . . . , bj. If the last letter is bj then the previous letters
are the solution to the subproblem for a1, . . . , ai and b1, . . . , bj−1. Hence,
M(i, j) =

min(M(i− 1, j − 1) + 1 ifai = bj, M(i− 1, j) + 1, M(i, j − 1) + 1)

. This table update can be embedded in two nested loops, the first that
goes from i = 1 to m and the second with goes from j = 1 to n. This gives
an Θ(n2) time algorithm. Note that the actual sequence can be computed
by following the updates back from M(m, n). Code follows:

for i = 1 to m do

for j = 1 to n do

if ai = bj then

M [i, j] = M [i− 1, j − 1] + 1
else M [i, j] = min(M [i− 1, j], M [i, j − 1]) + 1

4. To appear

5. We present an algorithm to compute the minimum edit distance of two
strings. Note that:

(a) If it were possible to convert a1, . . . , am−1 into b1, . . . , bn, one could
complete the transformation of A into B by deleting am.

2

(b) If it were possible to convert a1, . . . , am into b1, . . . , bn−1, one could
complete the transformation by adding bn to A.

(c) If it were possible to convert a1, . . . , am−1 into b1, . . . , bn−1, one could
complete the transformation by replacing am with bn.

Now let A[i, j] be the minimum cost of transforming a1, . . . , ai into
b1, . . . , bj. The algorithm is:

MinumumEditDistance(A, B)
for i = 1 to m

for j = 1 to n
if ai = bj then

A[i, j] = A[i− 1, j − 1]
else A[i, j] = min(A[i− 1, j] + 3, A[i, j − 1] + 4, A[i− 1, j − 1] + 5)

Starting from A[m, n], we can trace backwards through the table to de-
termine which operations were performed at each step.

6. To appear.

7. We give a dynamic programming algorithm for the problem of finding the
cheapest path on a checkerboard. Number the columns 1 to n from left
to right, and number the rows 1 to n from the bottom to the top. Define
Q(a, b) to the most profit you can get from moving from square (1, 1) to
square (a, b). Then the obvious recursive algorithm is:

• If a = 1 and b = 1 then Q(a, b) = 0,

• else if a = 1 and b 6= 1 then Q(a, b) = Q(a, b−1)+p((a, b−1), (a, b)),

• else if a 6= 1 and b = 1 then Q(a, b) = Q(a−1, b)+p((a−1, b), (a, b)),

• else if a 6= 1 and b 6= 1 then Q(a, b) = max(Q(a, b − 1) + p((a, b −
1), (a, b)), Q(a−1, b)+p((a−1, b), (a, b)), Q(a−1, b−1)+p((a−1, b−
1), (a, b)))

Turning this into an iterative bottom-up array based algorithm we get:
For a = 1 to n do

For a = 1 to n do

• If a = 1 and b = 1 then Q(a, b) = 0,

• else if a = 1 and b 6= 1 then Q(a, b) = Q(a, b−1)+p((a, b−1), (a, b)),

• else if a 6= 1 and b = 1 then Q(a, b) = Q(a−1, b)+p((a−1, b), (a, b)),

• else if a 6= 1 and b 6= 1 then Q(a, b) = max(Q(a, b − 1) + p((a, b −
1), (a, b)), Q(a−1, b)+p((a−1, b), (a, b)), Q(a−1, b−1)+p((a−1, b−
1), (a, b)))

3

Where now the references to Q are array look ups.

8. The array developed is as follows:

1 2 3 4 5
1 0 200 1200 320 1320
2 0 400 240 640
3 0 200 700
4 0 2000
5 0

In each step, the k is:

M[1][5] k=4
M[1][4] k=1
M[2][4] k=2

Hence the optimal order is (A1(A2(A3(A4)))A5 .

9. We use dynamic programming to formulate an algorithm to compute the
minimum polygon triangulation. Note that after the first “cut” is made,
the original polygon P will be divided into two new polygons P ′ and P ′′.
The triangulations P ′ and P ′′ are completely independent of each other.
The cheapest way to triangulate P is the minimum of:

(a) For 3 ≤ k ≤ n − 2, the length of (v1, vk) plus the cheapest way to
triangulate P ′ = {v1, . . . , vk} plus the cheapest way to triangulate
P ′′ = {vk, . . . vn}.

(b) The length of (v2, vn) plus the cheapest way to triangulate P ′ =
{v2, . . . , vn}.

(c) The length of (v1, vn−1) plus the cheapest way to triangulate P ′ =
{v1, . . . , vn−1}.

Create a two-dimensional array A. A[i, j] = minimum weight of triangu-
lation of the polygon defined by vi, . . . , vj.

for i = 1 to n− 4 do

for j = i + 3 downto 1 do

T [i, j] = min(min
i+2≤k≤j−2

(d(i, k) + d(k, j) + A[i, k] + A[k, j]),

d(j, i + 1) + A[i + 1, j], d(i, j − 1) + A[i, j − 1])

10. We strengthen the inductive hypothesis to compute not only the balance
factor but the height for each node. Begin at the root r.

Compute-Balance(r)
{

4

If RChild(n) And LChild(n) == NULL,
Height(r) = 0

Else
Height(r) = max[Compute-Balance(LChild(r)),Compute-Balance(RChild(r))]+1

Balance(r) = |Height(LChild(r)) −Height(RCHild(r))|
Return Height (r)
}

Obviously this algorithm runs in linear time.

11. We present an algorithm to compute the maximum consecutive sum of n
integers x1, . . . , xn. We define two functions:

• MCS(i) = Maximum Consecutive Sum of the first i integers.

• MSS(i) = Maximum Consecutive Sum of the first i integers that uses
xi.

MSS(i) is computed by:
MSS(i) = MAX(0, MSS(i-1)+xi)

And MCS(n) is computed by:
MCS(i) = MAX(MCS(i-1), MSS(i-1)+xi)

By placing the two assignment statements inside a loop where i runs from
1 to n, we get a linear time algorithm.

12. The input to this problem is a tree T with weights on the edges. The
goal is to find the path in T with minimum aggregate weight. An path
is a collection of adjacent vertices, where no vertex is used more than once.

Root the tree at an arbitrary node r, and process the tree in postorder.
We generalize the induction hypothesis to compute not only the shortest
path in each subtree, but also the shortest path with one endpoint being
the root of the subtree. Consider an arbitrary node v with branches to k
descendants w1, w2, . . . , wk. For each such node v the algorithm computes
the following information:

• best(v) = the minimum weight of a path for the subtree rooted at v.

• root-best(v) = the minimum weight of a path ending at v in the
subtree rooted v.

At node v, the algorithm first recursively computes best(wi) and root-
best(wi) for each descendant subtree . It then computes best(v) and root-
best(v) using the following recurrence relations that correspond to the two
cases identified above:

5

rootbest(v) = min(0,
k

min
i=1

(d(v, wi) + rootbest(wi)))

best(v) = min(rootbest(v), min
i

(best(wi)), min
i,j

(rootbest(wi)+rootbest(wj)+d(v, wi)+d(v, wj)))

Its not too hard (but not completely trivial) to see that this can be im-
plemented in linear time.

13. We present an algorithm for the clockwise-Towers-of-Hanoi problem: pro-
cedure Hanoi(n,A,B,C)

Moves n discs from A to B moving only clockwise.

Uses C as an “intermediate” peg.

begin

if n = 0 then

do nothing
else if B is one peg clockwise from A then

Hanoi(n− 1,A,C,B)
Move disc n from A to B
Hanoi(n− 1,C,B,A)

else

Hanoi(n− 1,A,B,C)
Move disc n from A to C
Hanoi(n− 1,B,A,C)
Move disc n from C to B
Hanoi(n− 1,A,B,C)

end

14. We present the following dynamic programming algorithm to compute
the AVL tree with minimum expected access time. The main idea is
to strengthen the inductive hypothesis to compute the AVL tree of each
height with the minimum expected access time. Define A[i,j,h] as the mini-
mized expected depth for a tree with height h on the keys Ki, Ki+1, · · · , Kj.
We then get the following recurrence:

A[i, j, h] = min
i≤r≤j

(

A[i, r − 1, h− 1] + A[r + 1, j, h− 2] +

j
∑

a=i

pa,

A[i, r − 1, h− 1] + A[r + 1, j, h− 1] +

j
∑

a=i

pa,

6

A[i, r − 1, h− 2] + A[r + 1, j, h− 1] +

j
∑

a=i

pa)

Here r is the root of the new tree, and pa is the probability of accessing
key Ka. Note that if the tree is going to be of height h then one of its two
subtrees must be of height h − 1 and the other can be of height at most
h − 1. Since the tree is an AVL tree the heights of the two subtrees can
differ by at most 1. One can then get code by wrapping this assignment
statements in a loop for i from n to 1, a loop for j from i to n, and a loop for
h from 0 to n (actually you can replace n here by something like

√
2 log n

if you know that AVL trees are balanced). The final minimum expected
depth can be found by taking the minimum over all h of A[1, n, h], and
the tree can be recovered the same way that it was for the problem on
computing the binary search tree with minimum expected access time.

15. We give dynamic programming algorithm to compute the non-overlapping
collection of intervals I1, . . . , In with maximum measure. We consider the
intervals by increasing order of their left endpoints. The main idea is
to strengthen the inductive hypothesis to compute the maximum measure
non-overlapping collection of intervals with a particular rightmost interval,
for all possible choices of rightmost interval. Define S[i, j] as the total
length of the longest non-overlapping interval set among the first i intervals
such that the right-most interval in this set is the jth one. Then S[i, j] is
the maximum over all intervals Ik, such that the right endpoint of Ik is
to the left of the left endpoint of Ik, of S[k, k] plus the length of Ij. By
wrapping this in a loop for i from 1 to n, and for j from 1 to i, you get
the algorithm. The maximum measure of a non-overlapping collection of
intervals can then be found by taking the maximum S[n, j] for all j.

16. No solution given.

17. No solution given.

18. We present a solution for the problem of determining if the values of n
items can be added and subtract ed in such a way that

∑n
k=1

(−1)xkvk = L.
We use dynamic programming. As pruning rule we remark that if we have
two solutions with the same value we only need to keep one. Here we
cannot discard solutions with negative values or with values larger than L
since subtraction is allowed. However, if we define S =

∑n
i=1

vi, we know
that any solution will have its value in {−S . . .S}, and thus we will have
at most 2S solutions to keep.

For i = 1 . . .n and j = −S . . .S let A(i, j) be a boolean variable that
indicate whether or not there is a solution with the first i objects that has

7

a value equal to j. That is, A(i, j) is true if there is a solution to

A(i, j) =

i
∑

k=1

(−1)xk vk = j

where each xk is either 1 or 0.

With the initialization A(0, 0) = T and A(0, j) = F for j 6= 0, we can fill
the table row by row using the following rule:

if A(i, j) = T thenA(i + 1, j + vi+1) and A(i + 1, j − vi+1).

That is, if there is a solution for j at level i then there is a solution for
j + vi+1 and j − vi+1 at level i + 1.

At the end, the entry A(n, L) will indicate whether there is a solution for
the problem or not. If you want you can then construct a solution by
tracing a “path” back in the table starting at A(n, L).

The size of the table is nS. The time to fill an entry is constant. Therefore
the total time is O(nS) which is polynomial in n + L if we assume that S
is polynomial in L.

19. We present an algorithm for determining if there is a subset of n items
whose total value is L mod n. We use dynamic programming. As pruning
rule we remark that if we have two solutions with the same value modulo
n we only need to keep one. Therefore there are at most n solutions to
keep at each level.

For i = 1 . . .n and j = 0 . . .n − 1 let A(i, j) be a boolean variable that
indicate whether or not there is a solution with the first i objects that has
a value equal to j mod n. That is, A(i, j) is true if there is a solution to

A(i, j) =

(

i
∑

k=1

xkvk

)

mod n = j

where each xk is either 1 or 0.

With the initialization A(0, 0) = T and A(0, j) = F for j = 1 . . .n− 1, we
can fill the table row by row using the following recurrence relation:

A(i, j) = A(i− 1, j) or A(i− 1, (j − vi) mod n).

That is, there is a solution modulo j at level i if there is a solution for j
at level i − 1 or if you can add vi to a solution at level i − 1 and get j
modulo n.

At the end, the entry A(n, L mod n) will indicate whether there is a solu-
tion for the problem or not. If you want you can then construct a solution
by tracing a “path” back in the table starting at A(n, L mod n).

8

The size of the table is n2. The time to fill an entry is constant. Therefore
the total time is O(n2) which is polynomial in n + L.

20. We use dynamic programming for the problem of obtaining the maximum
value from a subcollection (allowing repetition) of n items, subject to the
restriction that the total weight of the set cannot exceed W . As pruning
rule we remark that if we have two solutions with the same weight we only
need to keep the one with the highest value and that we only need to keep
solutions with weight no greater than W .

For i = 1 . . .n and j = 0 . . .W we compute A(i, j) = the maximum value
of an assignment of the i first objects with weight bounded by j. That is,

A(i, j) = max

i
∑

k=1

xkvk s.t.

i
∑

k=1

xkwk ≤ j

where each xk is a non-negative integer.

Assuming A(0, j) = 0 for j = 0 . . .W , we can fill the table row by row
using the following recurrence relation:

A(i, j) = max
xi=0...j/wi

xivi + A(i− 1, j − xiwi)

We only need to consider values of xi in the range 0 . . . j/wi since any
higher value would make j − xiwi negative. The final solution will be in
A(n, W).

The size of the table is n×W . The time to fill an entry is O(W). Therefore
the total time is O(n×W 2) which is polynomial in n + W .

21. I did this one in class

22. We present a dynamic programming algorithm for the problem of deter-
mining if there are two subsets of n rubies and emeralds that contain the
same number of rubies, the same number of emeralds, and the same total
value. Let ne and nr be the number of emeralds and rubies among the
n = ne + nr gems. If any of ne, nr or L is odd then clearly the problem
has no solution. Otherwise we can determine whether there is a solution
using dynamic programming.

For i = 0 . . .n, j = 0 . . .ne/2, k = 0 . . .nr/2, and ℓ = 0 . . .L let A(i, j, k, ℓ)
be a boolean variable that indicate whether or not there is a subset of the
first i gems that contains exactly j emeralds and k rubies and has value
ℓ. The table is initialized to all False, except for A(0, 0, 0, 0) which is
initialized to True. We can fill the table row by row using the following
code:

for i = 1 . . .n do

for j = 1 . . .ne/2 do

9

for k = 1 . . .nr/2 do

for ℓ = 0 . . .L/2 do

if A(i− 1, j, k, ℓ) then

A(i, j, k, ℓ) = True
if gemi = emerald then

A(i, j + 1, k, ℓ + vi)← True
else

A(i, j, k + 1, ℓ + vi)← True

There is a solution to the problem if at the end A(n, ne/2, nr/2, L/2) is
True. The time taken by the algorithm is O(n3 × L) which is polynomial
in n + L.

23. Solutions for the word-layout problems:

(a) Each word can either be placed at the end of the current last line
or at the beginning of a new line. Therefore, given a layout of the
first i words, there are 2 places to put the i + 1th word. However,
note that the first word can only go at the beginning of the first line.
Since there are exactly two options for the placement of each word
after the first, there are 2n−1 total solutions.

(b) The ith level of the tree contains all possible layouts of the first i
words. The left child of a node v corresponds to the layout achieved
by appending the i+1th word to the last line of the layout in v. The
right child of v corresponds to the layout achieved by beginning a
new line with the i + 1th word.

(c) Obviously, we can eliminate all layouts that would place more than
L characters on a particular line. More helpfully, if there are two
solutions S1 and S2 of the first i words such that both S1 and S2

have k characters on the last line, we only need to keep the one with
the smallest total penalty.

(d) As pruning rule we remark that if we have two layouts of the first i
words that have the same number of characters on the last line we
only need to keep the layout with the smaller maximum line penalty.

For i = 0 . . .n and j = 1 . . .L, let A(i, j) be the smallest maximum
line penalty (not counting the last line) of any layout of the first i
words that has j characters on the last line. Let wi be the length of
the ith word. Given A(i−1, j) for j = 1 . . .L we can compute A(i, j)
by distinguishing three cases:

i. if j < wi then A(i, j) = ∞ since no layout that ends with the
ith word can have less than wi characters on the last line.

ii. if j > wi then A(i, j) = A(i− 1, j−wi) since in this case the ith
word is added on the last line, without starting a new one.

10

iii. if j = wi it means that the ith word starts a new line. The
penalty depends on the number of characters on the (previous)
last line. You want to make the choice that yields the smallest
maximum line penalty:

A(i, wi) = min
k=1...L

{max(A(i− 1, k), L− k)}

Using the above relations it is easy to fill the table. At the end the
optimal maximum line penalty is given by the minimum of A(n, i),
i = 1 . . .L. As usual the actual layout can be reconstructed by tracing
the “path” back in the table starting from this final cell.

24. We use dynamic programming to find a subsequence of maximum aggre-
gate cost (note that there is more than one reasonable way to construct a
dynamic programming algorithm here). We use the pruning method. Let
level l of the tree consist of all subsequences of T that match the first l
letters in the pattern P . The pruning rule is that if you have two solutions
on the same level are of the same length and end at the same letter in T ,
then you can prune the one of lesser cost. So let A[l, s] be the maximum
cost of a subsequence of T equal to p1, . . . , pl, where the last letter of this
subsequence is ts. We then get the following code

for l = 1 . . .n do

for s = 1 . . .n do

if A(l, s) is defined then

for r = s + 1 . . .n do

if tr = pl+1 then

if A[l + 1, r] = min(A[l + 1, r], A[l, s] + cr)

25. We use dynamic programming to compute the optimal solution to the two
taxi cab problem. We first note that when pi is serviced one of the taxi
is in pi while the other taxi is in one of the location p0 . . . pi−1, where p0

denotes the origin. Therefore at stage i we only need to keep one solution
(the best one) for each possible location p0 . . . pi−1 of the second taxi.

For i = 1 . . .n and j = 0 . . . i − 1 let A(i, j) be the minimum cost of a
routing that serves the points p1 . . . pi and leaves one taxi in pi and the
other in pj. Given the best solutions for stage i we can compute the
solutions for stage i + 1 by considering the following two possibilities:

(a) the taxi that was in pi is used to serves pi+1 and the other taxi
remains where it was. That is, for j = 0 . . . i− 1,

A(i + 1, j) = |pipi+1|+ A(i, j).

(b) the taxi in pi remains at pi, and the other taxi serves pi+1. Only the
solution with minimum cost is kept.

A(i + 1, i) = min
k=0...i−1

|pkpi+1|+ A(i, k),

11

Using the above relations it is easy to fill the table. At the end the
minimum routing cost is given by the minimum of A(n, i), i = 0 . . .n− 1.
The actual routing can be reconstructed by tracing the “path” back in the
table starting from the final cell.

Since there are n stages and each stage takes O(n) time, the total time is
O(n2) which is polynomial in n.

26. I did this one in class.

12

