University of Washington, Tacoma

TCSS 342, Winter 2006, Section B (Hong)

Assignment #7 solution version 1.0

Due: Thursday, March 9, 2006, 4:15 PM

Please show your work and explain your reasoning.  Write legibly (or type) and organize your answers.  Turn in your own work, and acknowledge in writing any sources or help you receive.

* * *
1. First, let's compute how many nodes on average are examined in the one tree scheme. 

Let n = 50,000. 

We need to compute the average depth of the nodes in the tree, which is just the internal path length of the tree divided by n. 

To simplify our calculations, we assume that half the nodes are at depth (log n) - 1, one-fourth are at depth (log n) - 2, etc. (This is a simplifying assumption because a real tree with 50,000 nodes won't be a perfect tree, and so not all the leaves would be at the same depth. Also, log n is not an exact integer when n is 50,000. However, the numbers we get will be very close to what we would get if we computed it exactly. 

Exercise: compute the exact average depth of a complete tree with 50,000 nodes.

The average depth of nodes in the one tree scheme is: 

      log n 

(1/n) sum (n/(2^i))(log n - i) 

      i=1 

n/(2^i) is the number of nodes at depth (log n - i).

Cancelling the n's and breaking up the summation, this quantity is 

log n                   log n

 sum (1/(2^i))(log n) - sum i/(2^i) 

 i=1                    i=1

~= (log n) - 2

(Note that we let the summations go to infinity, but again that is very close to the actual value.) 

Plugging in 50,000 for n, we see that the average depth of a node is about 13.6, which means that the average number of nodes examined is about 14.6. (Why?) 

For the two tree scheme, we need to examine two cases: (1) the key we are looking for is in the high-frequency tree, and (2) the key is in the low-frequency tree. 

For (1), we calculate exactly as in the one tree case, except that n=10,000. The average number of nodes examined in case (1) is about 12.3. 

For (2), we know that we have to examine nodes all the way down to the leaves of the high-frequency tree. This means we examine (log 10,000)-1 + 1 = 13.3 nodes before even looking in the low-frequency tree. When we look in the low-frequency tree, the search is just like the one tree case, except with n=40,000. The number of nodes we examine is about 14.3. So, in case (2), we examine an average of about 27.6 nodes. 

We know that 75% of the time we are in case (1) and 25% of the time we are in case (2). So, the average number of nodes we examine in the two tree scheme is 0.75 * 12.3 + 0.25 * 27.6 = 16.12.

This means that on average, the two tree scheme will take more time than the one tree scheme. Also, the two tree scheme is more complicated because of the extra tests to determine whether to go to the low-frequency tree.  This means that the two tree scheme is even slower (only slightly, though) than the number of nodes examined would indicate. 

==== 

By the way, the idea of storing high-frequency items into a small data structure is actually useful under the correct circumstances. Such a structure is often called a cache. It turns out in this case, however, caching the high-frequency items doesn't help. (What if instead of 75%-25%, the percentages were 90%-10%? Would the two-tree scheme be better?)

2. It is not a good hash function, because it does not evenly distribute the numbers into the buckets. You can see that adding the numbers will generate a normal distribution, which is peaks at about 25*6= 300, and is small at the tails  (with values close to 1+2+3+4+5+6  or  44+45+46+47+48+49). Another way of looking at this is that there will be values ranging from 21 up through 279, which is not a wide range seeing as there are millions of buyers of these tickets. A much better method would be to calculate the mod function as:

 h(x1, x2, x3, x4, x5, x6) = (x1 * 495 + x2 * 494 + x3 * 493 + x4 * 492 + x5 * 49 + x6) mod m. This is a weighted sum, and distributes all the different combinations evenly over a large range.

3a. Assuming an array implementation of heaps H1 and H2, append the array representing H2 onto the array representing H1.  This would mean copying the contents located at indices 0...n2-1 in the array for H2 into the indices n1..n2+n1-1 in the array representing H1. If there is enough capacity to insert the items into H1, this will clearly take O(n2) time.
  This works because everything in H2 is bigger than everything in H1, so putting the items at the bottom of the tree in H1  would satisfy the ordering constraints between the items in the two heaps. There will be no ordering constraints between items formerly in H2 when they are in their new position in H1 because they will all be leaf nodes. The fact that n1 ≥ n2 ensures that they are all leaf nodes.

3b. Consider the two heaps (represented by arrays) :

  H1 = [ 2 4 8 ]

  H2 = [ 9 23 10 25 32 11 12 ]

Both H1 and H2 satisfy the heap ordering property, and all items in H2 are bigger than those in H1. Using the above technique, you a result array of

  [ 2 4 8 9 23 10 25 32 11 12 ]

This is not a heap, because 23 > 11 and 23 > 12, but 11 and 12 are children of 23 in the heap. Note that I have not included the “empty” index 0 in the arrays representing heaps above. 

4. Here I “draw” the tree one at a time after each insertion. Parenthesis enclose nodes, and I use spacing to distinguish where the various children are of each node.  

     (2)

--------------------------

     (2 8)

--------------------------

     (2 8 12)

--------------------------

        (8)

      (2) (12 16)

(Note that the (2 8 12) node is split, and then the 16 inserted).

--------------------------

        (8)

      (2) (10 12 16)

--------------------------

        (8   12)

      (2) (10) (16)  (first split, then insert (next tree)

        (8       12)

      (2) (10  11) (16)  

--------------------------

         (8       12)

    (1  2) (10  11) (16)  

--------------------------

         (8       12)

    (1 2 5) (10  11) (16)  

--------------------------

         (2   8       12)

       (1) (5) (10  11) (16)   (first (1 2 5) is split, then insert)

         (2     8       12)

       (1) (5 6) (10  11) (16)   

5. Final tree. R= red, B = Black.

                   8-B

          2-R              12-R

     1-B      5-B      10-B    16-B

                6-R      11-R

(Note: you could also put 6 at depth 2 as a black node with 5 as its red left child. Likewise for 11 & 10).







