
Lab 3
Convolution

EE 235: Continuous-Time Linear Systems
Department of Electrical Engineering

University of Washington

This work1 was written by Amittai Axelrod, Jayson Bowen, and Maya Gupta,
and is licensed under the Creative Commons Attribution License.2

1 Introduction

In this lab you will review the concept of convolution, and learn how to convolve signals in
matlab.

Because you are working on a computer, you are necessarily working with finite-length,
discrete-time versions of continuous-time signals. It is important to note that convolution in
continuous-time systems cannot be exactly replicated in a discrete-time system. However,
you can still explore the basic effects of convolution and gain some insight by using the
matlab function conv.

You will learn more about discrete-time convolution and discrete-time methods in mat-
lab when you take EE 341. One visual difference is that discrete-time signals are often
plotted with the stem command. You may want to look at some of your plots – especially
step functions– with stem for debugging purposes. However, to preserve the course’s focus
on continuous-time signals, always use the plot command when you submit your work or
demo it to the lab instructor.

One artifact of using plot over stem is that discontinuities, such as the transition in
a step function, do not appear instantaneous: you may see a slope or ramp in the plot
instead of the vertical jump that you expect. Bear this in mind when explaining your output
diagrams. You will also need to represent impulses in such a way that the height in the
discrete-time representation is the same as the area in the continuous-time version.

Finally, there is one other difference regarding how you use discrete-time (DT) signals.
When you plot or play a continuous-time (CT) signal, as you did in Lab 2, you specify
the sampling frequency Fs. This parameter of the CT signal is used to represent the signal
inside the (digital) computer. However, DT signals have as a parameter the time increment

1Last revision: Wed Apr 28 21:59:01 EDT 2010
2http://www.creativecommons.org/licenses/by/2.0



Ts between consecutive digital samples. Thus to plot a DT signal, you need to will define a
time vector:
t = [0:Ts:end];

Recall that you found the duration of a CT signal by dividing the number of samples by the
sampling rate. For a DT signal, the duration (that is, the correct value for end) is actually:
end = (length(sound) -1) * Ts;

To play a DT sound, you still need to provide Fs, which you calculate from Fs = 1/Ts.

Exercise 1:
• Explain why the above formula for end is correct.

2 Useful matlab Commands

In addition to what you already know about matlab, you may need to use the following
commands. Use help to learn their correct syntax.

• whos – Lists all variables and their dimensions.

• clear – Clears (deletes) all existing variables.

• zeros – Creates a vector (or matrix) of all zeros, as in Lab 2.

• ones – Like zeros, but with 1 instead of 0.

• conv – Convolves two signals.

• soundsc – Normalizes an audio signal to have range within [-1,1] and plays it. You
must specify the sampling rate Fs. Similar to what you implemented in Lab 2.

• pause – pauses the execution of a matlab script until any key is pressed.

• find – returns the indices of particular elements of a vector that satisfy some condition.
In particular, find(X == 0) returns the index of all elements of X that are zero. You
can use any elementwise comparison inside find.

3 Convolution

matlab has a function called conv(x,h) that you can use to convolve two signals x(n) and
h(n). It assumes that the time increment is the same for both signals. The input signals
are finite-length, so the result of the convolution should have a length equal to the sum of
the lengths of the inputs– which turns out to be length(x) + length(h) - 1.

As you have learned in class, a linear time-invariant (LTI) system is completely described
by its impulse response. When working in matlab, this impulse response must also be
discrete. Work through the following example:

2



Exercise 2:
• Consider a system with impulse response h:

h = [1 zeros(1,20) 0.5 zeros(1,10)];

• Suppose the input x to the system is

x = [0 1:10 5.*ones(1,5) zeros(1,40)];

• Convolve x and h as follows:

y = conv(x,h);

• Use subplot to show the impulse response, input, and output of the convolution. In
order to make the plots have identical timing– and thus line up neatly– you will need to
either add zeros to the end of x and h to make them the same length as y, or define a
specific time vector for each signal.

Every non-zero coefficient of the impulse response h creates an echo of the original input.
When you convolve the input x and the impulse response h, you are adding up all the scaled
and time-shifted echoes.

Exercise 3:
• In the system you just made, change the second coefficient of the impulse response to
be negative.
• How does this change the system output? Redo the plots.

3.1 Convolution and Echo

Much like you did in Lab 2, download the jazz trumpet lick fall from the course website3,
load it into matlab using load(‘fall’), and plot it against time. Make a single matlab
script that executes all of the following exercise; use the pause to prevent the script from
playing all the sounds at once.

Exercise 4:
• Load fall and set the sampling frequency Fs to be 8000Hz.
• Create the following impulse response:

h = [1 zeros(1,10000) 0.25 zeros(1,1000)];

3http://cnx.org/content/m14109/latest/fall.mat

3



• Convolve the trumpet lick with h:

y = conv(fall, h);

plot(y)

soundsc(y,Fs)

• Make a second impulse response h2 that is the same as h except that the echo has a
negative coefficient. This corresponds to a change in phase.
• What’s the difference in how the new output y2 sounds using h2 versus h?
• Build a third system that delays the echo for a half second, by inserting Fs/2 zeros
before the second impulse:

h3 = [1 zeros(1,round(Fs/2)) 0.25 zeros(1,10000)];

• Pass fall through the new system to get a third output y3, then plot and play the
result. How do the input and output signals compare?
• There are several built-in matlab sounds, such as chirp, gong, handel, laughter,

splat and train. These sounds are built-in *.mat files that define the sound to appear
in a vector named y, and also define the sample rate for that sound to be in Fs. To use
these sounds, you will need to do the following:

>> load(’soundName’);

soundVariableName = y;

soundVariableFs = Fs;

Pick two of those sounds, and do the following for each of them:
load the sound, generate a new system response that echos and/or delays the input,
and pass the sound through the system.
Play both the input and output, and plot the input, impulse response, and the output.

3.2 Convolution and Smoothing

Exercise 5:
• Build an impulse response in the shape of a rectangular pulse:

hpulse = [ones(1,50)/50 zeros(1,20)];

• Create a new signal ypulse by convolving hpulse with fall.
• Plot the input, system response, and output.
How does the output sound different from the input?
• Visually, the input signal fall looks like it’s centered around value 0, and the output
ypulse looks like it is more positive. Find the average value of the output signal, using:

4



avgYPulse = sum(ypulse)./length(ypulse);

Now find the average value of the input. How do they compare? Can you explain?

Let’s look at the input and output signals more closely in order to better see what the system
is doing to the input:

Exercise 6:
• Zoom in on a piece of the signals:

subplot(2,1,1), plot(6400:6500, fall(6400:6500))

subplot(2,1,2), plot(6400:6500, ypulse(6400:6500))

• How do the plots differ? Can you explain?

The impulse response hpulse applies a low-pass filter to the signal. You will work more
with filters later, but the basic idea here is that the original signal is made up of many
different frequencies. The system hpulse is letting the lower frequencies pass through, but
the higher frequencies are being attenuated. This affects both how the signal looks when it
is plotted, and how it sounds.

3.3 Convolution and the Box Function

Rectangular pulses (or ‘box functions’) are very useful when building system responses. You
defined a box function in the previous section, but it would be good to have a function that
could build arbitrary box functions without needing to count how many ones and zeros to
use each time.

Remember to structure your function files correctly, as in Lab 2: Include the function
definition, the help comment specifying the syntax, comment your code, and with the footer
with your name and information.

Exercise 7:
• Create a new function called unitstep to produce the unit step function u(t):

u(t) = 0 for t < 0, and u(t) = 1 for t ≥ 0.
The function should take two parameters:
a time vector Time that specifies the finite range of t for the whole signal,
and a time-shift value tshift that indicates where the unit step function changes value.
Time can be any range, such as 0:25, -5:0.1:5, or linspace(-2,8,1000).
The output should have the same dimensions as Time.

5



tshift can be any scalar value (positive or negative).
unitstep(Time, 0) should produce the unit step function as defined above.
unitstep(Time, 4) should be equivalent to the delayed unit step u(t− 4),
unitstep(Time, -4) should produce u(t + 4).
• Demonstrate that your unitstep function works by creating unit step functions over
different time vectors, and plotting the results. Show at least one positive, negative, and
zero shift.

Exercise 8:
• Write a function called boxt that creates a rectangular pulse. It should take three
parameters: a start time t1, an end time t2, and a time vector Time.
t1 and t2 are scalar values.
Time is defined identically as for unitstep.
The output should have the same dimensions as Time.
boxt(t1, t2, Time) is a box function that is 0 for all t < t1 and t ≥ t2, and 1 for
t1 ≤ t < t2.
To simplify the calculation, use your unitstep function to make your boxt function.
How can you describe a box function in terms of two unit steps?
• Demonstrate that your unitstep function works by creating box functions over
different time vectors, and plotting the results.

Convolution affects the duration of the output signal. Suppose we have two signals: s1

is non-zero between t1 and t2, and s2 is non-zero between t3 and t4. Then their convolution
s1 ∗ s2 is non-zero between (t1 + t3) and (t2 + t4). However, convolution also affects the
duration of the time vector over which the signals are defined!
If signals u and v are defined over time vectors with identical increments, such as:

TimeU = t1:ts:t2;

TimeV = t3:ts:t4;

Then conv(u,v) will be defined over TimeConv = (t1+t3):ts:(t2+t4).

Exercise 9:
• Use your boxt function to generate two box signals over the time span [-5,10]: One
box should be nonzero over [0,4], and the other one should be nonzero over [-1,1].
Pick an appropriately small time increment.
• What should their convolution look like, and over what range is it non-zero?
• Verify your answer by convolving the two box functions.

6



• Plot the two inputs and the output using appropriate time vectors.
• Are the plots accurate?

Exercise 10:
• The built-in convolution function assumes that the step sizes are integers, so it thinks
that the true length (in time) of a box signal is the number of vector elements used to
construct it. However, the correct duration is really just length × ts. This discrepancy
affects the area computation in convolution. Because the length of the output is fixed,
this means that the height of the output is off.
• Repeat the previous exercise, but scale the output correctly.
• Demonstrate that the output is now correct.

eof

7


