Lecture 9: Kernel (Variance Component) Tests and Omnibus Tests for Rare Variants

Timothy Thornton and Michael Wu

Summer Institute in Statistical Genetics 2021

Lecture Overview

- 1. Variance Component Tests
- 2. Omnibus Tests
- 3. Weights

Recall: Region Based Analysis of Rare Variants

- Single variant test is not powerful to identify rare variant associations
- Strategy: Region based analysis
 - ► Test the joint effect of rare/common variants in a gene/region while adjusting for covariates.

Major Classes of Tests

- Burden/Collapsing tests
- Supervised/Adaptive Burden/Collapsing tests
- Variance component (similarity) based tests
- Omnibus tests: hedge against difference scenarios

Rare variants test: Variance component test

Variance component test

- Burden tests are not powerful, if there exist variants with different association directions or many non-causal variants
- ▶ Variance component tests have been proposed to address it.
- "Similarity" based test

C-alpha test

Neale BM, et al.(2011). Plos Genet.

- Case-control studies without covariates.
- Assume the jth variant is observed n_{j1} times, with r_{j1} times in cases.

	а	Α	Total
Case	r_{j1}	r _{j2}	r
Control	s_{j1}	s_{j2}	S
Total	n_{j1}	n_{j2}	n

▶ Under H₀

$$r_{i1} \sim Binomial(n_{i1}, q) \quad (q = r/n)$$

C-alpha test

Risk increasing variant:

$$r_{j1}-qn_{j1}>0$$

Risk decreasing variant:

$$r_{j1}-qn_{j1}<0$$

Test statistic:

$$T_{\alpha} = \sum_{j=1}^{p} (r_{j1} - q n_{j1})^2 - \sum_{j=1}^{p} n_{j1} q (1-q)$$

► This test is robust in the presence of the opposite association directions.

C-alpha test

Weighting scheme

$$T_{\alpha} = \sum_{j=1}^{p} w_j (r_{j1} - q n_{j1})^2 - \sum_{j=1}^{p} w_j n_{j1} q (1-q)$$

- ► Test for the over-dispersion due to genetic effects
 - ▶ Neyman's $C(\alpha)$ test.

C-alpha test, P-value calculation

 Using normal approximation, since the test statistic is the sum of random variables.

$$T_{lpha} = \sum_{j=1}^{p} (r_{j1} - q n_{j1})^2 - \sum_{j=1}^{p} n_{j1} q (1-q)$$

- ▶ Doesn't work well when *p* is small (or moderate).
 - P-value is computed using permutation.

Rare variants test: Variance component test

C-alpha test

- C-alpha test is robust in the presence of the different association directions
- ► Disadvantages:
 - Permutation is computationally expensive.
 - Cannot adjust for covariates.

Sequence Kernal Association Test (SKAT)

Wu et al.(2010, 2011). AJHG

Recall the original regression models:

$$\mu_i/logit(\mu_i) = \alpha_0 + \mathbf{X}_i^T \boldsymbol{\alpha} + \mathbf{G}_i^T \boldsymbol{\beta}$$

- Variance component test:
 - Assume $\beta_j \sim dist.(0, w_i^2 \tau)$.
 - $H_0: \beta_1 = \cdots = \beta_p = 0 <=> H_0: \tau = 0.$

Sequence Kernel Association Test (SKAT)

- ▶ $β_j \sim dist.(0, w_j^2 τ)$: τ = 0 is on the boundary of the hypothesis.
- Score test statistic for $\tau = 0$:

$$Q_{SKAT} = (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{K} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0),$$

▶ $\mathbf{K} = \mathbf{GWWG}'$: weighted linear kernel $(\mathbf{W} = diag[w_1, \dots, w_p])$.

Sequence Kernel Association Test (SKAT)

- ► The C-alpha test is a special case of SKAT
 - ▶ With no covariates and flat weights:

$$Q_{SKAT} = \sum_{j=1}^{p} (r_{j1} - q n_{j1})^2$$

SKAT

Q_{SKAT} is a weighted sum of single variant score statistics

$$\begin{aligned} Q_{SKAT} &= (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{GWWG}' (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0) \\ &= \sum_{j=1}^{p} w_j^2 [\boldsymbol{g}_j' (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)] = \sum_{j=1}^{p} w_j^2 U_j^2 \end{aligned}$$

where $U_j = \sum_{i=1}^n g_{ij}(y_i - \widehat{\mu}_{0i})$.

 $ightharpoonup U_i$ is a score of individual SNP j only model:

$$\mu_i/logit(\mu_i) = \alpha_0 + \mathbf{X}_i^T \boldsymbol{\alpha} + \mathbf{g}_{ij}\beta_j$$

SKAT

▶ Q_{SKAT} (asymptotically) follows a mixture of χ^2 distribution under the NULL.

$$\begin{split} Q &= (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{K} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0) \\ &= (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \widehat{\mathbf{V}}^{-1/2} \widehat{\mathbf{V}}^{1/2} \mathbf{K} \widehat{\mathbf{V}}^{1/2} \widehat{\mathbf{V}}^{-1/2} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0) \\ &= \sum_{j=1}^p \lambda_j [\mathbf{u}_j' \widehat{\mathbf{V}}^{-1/2} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)]^2 \\ &\approx \sum_{j=1}^p \lambda_j \chi_{1,j}^2 \end{split}$$

SKAT

 λ_j and \mathbf{u}_j are eigenvalues and eigenvectors of $\mathbf{P}^{1/2}\mathbf{K}\mathbf{P}^{1/2}$. where $\mathbf{P} = \widehat{\mathbf{V}}^{-1} - \widehat{\mathbf{V}}^{-1}\widetilde{\mathbf{X}}(\widetilde{\mathbf{X}}'\widehat{\mathbf{V}}^{-1}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}'\widehat{\mathbf{V}}^{-1}$ is the project matrix to account that α is estimated.

SKAT: P-value calculation

- P-values can be computed by inverting the characteristic function using Davies' method (1973, 1980)
 - Characteristic function

$$\varphi_{\mathsf{x}}(t) = \mathsf{E}(e^{it\mathsf{x}}).$$

▶ Characteristic function of $\sum_{j=1}^{p} \lambda_{j} \chi_{1,j}^{2}$

$$\varphi_{\mathsf{x}}(t) = \prod_{i=j}^{p} (1 - 2\lambda_{j}it)^{-1/2}.$$

Inversion Formula

$$P(X < u) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{Im[e^{-itu}\varphi_X(t)]}{t} dt.$$

- When the sample size is small and the trait is binary, asymptotics does not work well.
- SKAT test statistic:

$$egin{aligned} Q_{SKAT} &= (\mathbf{y} - \widehat{\mu}_0)' \mathbf{K} (\mathbf{y} - \widehat{\mu}_0) \ &= \sum_{v=1}^p \lambda_v \eta_v^2, \end{aligned}$$

 \triangleright η_v s are asymptotically independent and follow N(0,1).

Rare variants test: Variance component test

Small sample adjustment

- ▶ When the trait is binary and the sample size is small:
 - $Var(\eta_v) < 1$.
 - η_v s are negatively correlated.

▶ Mean and variance of the Q_{SKAT}

	Mean	Variance
Large Sample Small Sample	$\sum_{\sum \lambda_j} \lambda_j$	$\sum_{j} \lambda_{j}^{2} \\ \sum_{j} \lambda_{j} \lambda_{k} c_{jk}$

▶ Adjust null distribution of *Q_{SKAT}* using the estimated small sample variance.

- Variance adjustment is not enough to accurately approximate far tail areas.
- Kurtosis adjustment:
 - ► Estimate the kurtosis of *Q_{SKAT}* using parametric bootstrapping:
 - $ightharpoonup \widehat{\gamma}$ (estimated kurtosis)
 - ▶ D.F. estimator: $\widehat{df} = 12/\hat{\gamma}$
 - Null distribution

$$(Q_{SKAT} - \sum \lambda_j^2) rac{\sqrt{2 \widehat{df}}}{\sqrt{\sum \lambda_j \lambda_k c_{jk}}} + \widehat{df} \sim \chi_{\widehat{df}}^2$$

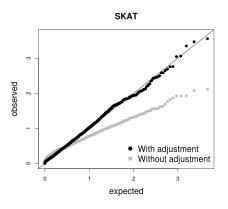


Figure: ARDS data (89 samples)

General SKAT

► General SKAT Model:

$$\mu_i/logit(\mu_i) = \alpha_0 + X_i\alpha + h_i$$

where $h_i \sim GP(0, \tau K)$.

▶ Kernel $K(\mathbf{G}_i, \mathbf{G}_{i'})$ measures genetic similarity between two subjects.

General SKAT

- Examples:
 - ► Linear kernel=linear effect

$$K(\mathbf{Z}_{i},\mathbf{Z}_{i'}) = w_{1}^{2} Z_{i1} Z_{i'1} + \cdots + w_{p}^{2} Z_{ip} Z_{i'p}$$

▶ IBS Kernel (Epistatic Effect: SNP-SNP interactions)

$$K(\mathbf{Z}_i, \mathbf{Z}_j) = \frac{\sum_{k=1}^{p} w_k^2 IBS(Z_{ik}, Z_{jk})}{2p}$$

Omnibus Tests

- Questions:
 - Which group of variants test? I.e. what is the threshold for "rare"?
 - Which type of test should I use? Variance component or burden?
- ► Truth is unknown: depends on the situation
- Omnibus tests: work well across situation

Variable threshold (VT) test

- ► Most methods use a fixed threshold for rare variants: < 0.5%, < 1%, ... < 5%?
- ► Choosing an appropriate threshold can have a huge impact on power: prefer to restrict analysis to meaningful variants

Variable threshold (VT) test

Price AL, Kryukov GV, et al.(2010) AJHG

- Find the optimal threshold to increase the power.
 - ▶ Weight:

$$w_j(t) = \begin{cases} 1 & \text{if } maf_j \leq t \\ 0 & \text{if } maf_i > t \end{cases}$$

- $ightharpoonup C_i(t) = \sum w_j(t)g_{ij}$
- ► Test statistics:

$$Z_{max} = max_t Z(t)$$

where Z(t) is a Z-score of C_i .

P-value Calculations of Variable threshold (VT) test

- ▶ Price et al.proposed to use permutation to get a p-value
- ► Lin and Tang (2011) showed that the p-values can be calculated through numerical integration using normal approximation

Variable threshold (VT) test

- More robust than using a fixed threshold.
- Provide information on the MAF ranges of the causal variants.
- ► Lose power if there exist variants with opposite association directions.

SKAT vs. Collapsing

- ► Collapsing tests are more powerful when a large % of variants are causal and effects are in the same direction.
- SKAT is more powerful when a small % of variants are causal, or the effects have mixed directions.
- ▶ Both scenarios can happen when scanning the genome.
- Best test to use depends on the underlying biology.
 - ightarrow Difficult to choose which test to use in practice.

We want to develop a unified test that works well in both situations. → Omnibus tests

Combine p-values of Burden and SKAT

Derkach A et al.(2013) Genetic Epi, 37:110-121

Fisher method:

$$Q_{Fisher} = -2\log(P_{Burden}) - 2\log(P_{SKAT})$$

- ▶ Q_{Fisher} follows χ^2 with 4 d.f when these two p-values are independent
- Since they are not independent, p-values are calculated using resampling
- ▶ Mist (Sun et al. 2013) modified the SKAT test statistics to make them independent

Combine Test Statistics: Unified Test Statistics

Lee et al.(2012). Biostatistics

Combined Test of Burden tests and SKAT

$$Q_{
ho} = (1 -
ho)Q_{SKAT} +
ho Q_{Burden}, \quad 0 \le
ho \le 1.$$

- Q_{ρ} includes SKAT and burden tests.
 - $\rho = 0$: SKAT
 - $\rho = 1$: Burden

Derivation of the Unified Test Statistics

► Model:

$$g(\mu_i) = \mathbf{X}_i \alpha + \mathbf{G}_i \beta$$

where β_j/w_j follows any arbitrary distribution with mean 0 and variance τ and the correlation among β_j 's is ρ .

Special cases:

▶ SKAT: $\rho = 0$

• Burden: $\rho = 1$

▶ Combined: $0 \le \rho \le 1$

Derivation of the Unified Test Statsitics

- Q_{ρ} is a test statistic of the SKAT with $corr(\beta) = \mathbf{R}(\rho)$:
 - $\mathbf{R}(\rho) = (1 \rho)\mathbf{I} + \rho \underline{1}\underline{1}'$ (compound symmetric)
 - $ightharpoonup K_{\rho} = GWR(\rho)WG'.$

$$egin{aligned} Q_{
ho} &= (\mathbf{y} - \hat{oldsymbol{\mu}})' \mathbf{K}_{
ho} (\mathbf{y} - \hat{oldsymbol{\mu}}) \ &= (1 -
ho) Q_{ extit{SKAT}} +
ho Q_{ extit{Burden}} \end{aligned}$$

Adaptive Test (SKAT-O)

• Use the smallest p-value from different ρ s:

$$T = \inf_{0 \le \rho \le 1} P_{\rho}.$$

where P_{ρ} is the p-value of Q_{ρ} for given ρ .

► Test statistic:

$$T = minP_{\rho_b}, \quad 0 = \rho_1 < \ldots < \rho_B = 1.$$

Adaptive Test (SKAT-O)

 $ightharpoonup Q_{
ho}$ is a mixture of two quadratic forms.

$$\begin{aligned} Q_{\rho} &= (1 - \rho)(\mathbf{y} - \hat{\boldsymbol{\mu}})' GWWG'(\mathbf{y} - \hat{\boldsymbol{\mu}})' \\ &+ \rho(\mathbf{y} - \hat{\boldsymbol{\mu}})' GW \underline{1} \underline{1}' WG'(\mathbf{y} - \hat{\boldsymbol{\mu}}) \\ &= (1 - \rho)(\mathbf{y} - \hat{\boldsymbol{\mu}})' K_1(\mathbf{y} - \hat{\boldsymbol{\mu}})' + \rho(\mathbf{y} - \hat{\boldsymbol{\mu}})' K_2(\mathbf{y} - \hat{\boldsymbol{\mu}}) \end{aligned}$$

 $ightharpoonup Q_{
ho}$ is asymptotically equivalent to

$$(1-\rho)\kappa + a(\rho)\eta_0,$$

where and $\eta_0 \sim \chi_1^2$, κ approximately follows a mixture of χ^2 .

SKAT-O

 $ightharpoonup Q_{
ho}$ is the asymptotically same as the sum of two independent random variables.

$$(1-\rho)\kappa + a(\rho)\eta_0$$

- Approximate κ via moments matching.
- P-value of T:

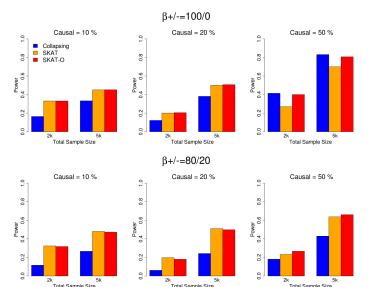
$$\begin{aligned} 1 - Pr \left\{ Q_{\rho_{1}} < q_{\rho_{1}}(T), \dots, Q_{\rho_{b}} < q_{\rho_{b}}(T) \right\} \\ &= 1 - E \left[Pr \left\{ (1 - \rho_{1})\kappa + \mathsf{a}(\rho_{1})\eta_{0} < q_{\rho_{1}}(T), \dots | \eta_{0} \right\} \right] \\ &= 1 - E \left[P \left\{ \kappa < \min \left\{ (q_{\rho_{v}}(T)) - \mathsf{a}(\rho_{v})\eta_{0})/(1 - \rho_{v}) \right\} | \eta_{0} \right\} \right], \end{aligned}$$

where $q_{
ho}(T)=$ quantile function of $Q_{
ho}$

Simulation

- Simulate sequencing data using COSI
- 3kb randomly selected regions.
- ▶ Percentages of causal variants = 10%, 20%, or 50%.
- $(\beta_i > 0)\%$ among causal variants = 100% or 80%.
- ▶ Three methods
 - ▶ Burden test with beta(1,25) weight
 - SKAT
 - ► SKAT-O

Simulation



Simulation

- ► SKAT is more powerful than Burden test (Collapsing) when
 - ▶ Existence of $+/-\beta$ s
 - Small percentage of variants are causal variants
- Burden test is more powerful than SKAT when
 - All βs were positive and a large proportion of variants were casual variants
- SKAT-O is robustly powerful under different scenarios.

Summary

- Region based tests can increase the power of rare variants analysis.
- Relative performance of rare variant tests depends on underlying disease models
- ► The combined test (omnibus test), e.g, SKAT-O, is robust and powerful in different scenarios

MAF based weighting

- ▶ It is generally assumed that rarer variants are more likely to be causal variants with larger effect sizes.
- Simple thresholding is widely used.

$$w(MAF_j) = \begin{cases} 1 & \text{if} \quad MAF_j < c \\ 0 & \text{if} \quad MAF_j \ge c \end{cases}$$

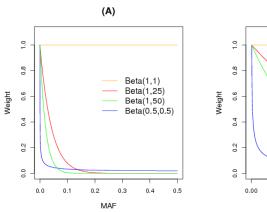
MAF based weighting

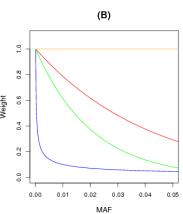
- Instead of thresholding, continuous weighting can be used to upweight rarer variants.
- Ex: Flexible beta density function.

$$w(MAF_j) = (MAF_j)^{\alpha-1}(1 - MAF_j)^{\beta-1}$$

- $(\alpha = 0.5, \beta = 0.5)$: Madsen and Browning weight
- $(\alpha = 1, \beta = 1)$: Flat weight

MAF based weighting- beta weight

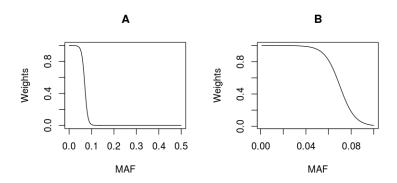




MAF based weighting- logistic weight

Soft-thresholding.

$$w(maf_j) = exp((\alpha - maf_j)\beta)/\{1 + exp((\alpha - maf_j)\beta)\}$$



Weighting Using Functional information

- Variants have different functionalities.
 - Non-synonymous mutations (e.g. missense and nonsense mutations) change the amino-acid (AA) sequence.
 - Synonymous mutations do not change AA sequence.

Weighting Using Functional information

- Bioinformatic tools to predict the functionality of mutations.
 - Polyphen2 (http://genetics.bwh.harvard.edu/pph2/)
 - SIFT (http://sift.jcvi.org/)
- Test only functional mutations can increase the power.