Lecture 10: Power and Sample Size, Design Considerations, Emerging Issues

Timothy Thornton and Michael Wu

Summer Institute in Statistical Genetics 2019

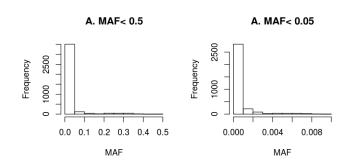
Lecture Overview

- 1. Omnibus tests
 - 1.1 Variable Threshold Test
 - 1.2 SKAT-0
- 2. Weighting and Prior Knowledge
- 3. Design Considerations
 - 3.1 Platforms
 - 3.2 Extreme Phenotype Sampling
 - 3.3 Power and Sample Size

Power/Sample Size calculation

- Power/Sample size calculation is essential to design future sequencing studies.
- Input information:
- ► Region information
 - ▶ LD structure and MAF spectrum.
 - Region size to test.

Power/Sample Size calculation


- Causal variant Information
 - Effect size (continuous traits), or Odds ratio (binary traits).
 - % of rare variants be causal.
 - % of causal variants with negative association direction.
- ► Binary traits
 - ► Case/Control Ratio.
 - Prevalence

Practical Points: SKAT Power Calculations

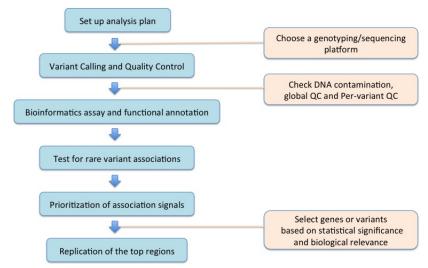
- ► Region information
 - Either simulated haplotypes or sample haplotypes from preliminary data.
 - ► The SKAT package provides 10,000 haplotypes over a 200 kb region generated by the coalescent simulator (COSI).

MAF spectrum

- MAF spectrum of the simulated haplotypes
- Most of SNPs have very low MAFs.

Practical Points: Power/Sample Size calculations

- Causal Variant Information:
 - ▶ To use \log_{10} function $(-c \log_{10}(MAF))$ for the effect sizes or log odds ratio.
 - c is a parameter to determine the strength of association.
 - Ex: c = 1 $\beta = 2$ or $\log(OR) = 2$ for a variant with MAF=0.01 $\beta = 4$ or $\log(OR) = 4$ for a variant with MAF= 10^{-4} .


Practical Points: Power/Sample Size calculations

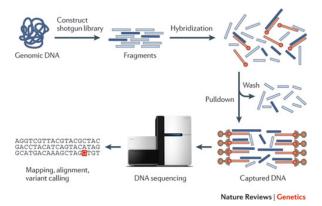
▶ In SKAT package, you can set c using the MaxOR (OR for MAF = 10^{-4}) or MaxBeta (β for MAF = 10^{-4}).

Practical Points: Power/Sample Size calculations

- Power depends on LD structure of the region and MAFs of the causal variants.
- We are interested in estimating power in multiple regions and multiple sets of causal variants selected from a certain disease model.
 - We estimate an average power.
 - Approximately $100 \sim 500$ sets of regions/causal variants are needed to estimate the average power stably.

Data Processing and Analysis Flowchart

Genotyping Platforms


- ► High depth whole genome sequencing is the most informative, however it is currently expensive.
- Alternative sequencing designs and genotyping platforms
 - Low depth sequencing
 - Exome sequencing
 - ► High coverage microarrays (Exome chip)
 - Imputation

Low depth whole genome sequencing

- ▶ Sequencing $7 \sim 8$ samples at low depth (4x) instead of 1 sample at high depth (30x)
- Low depth sequencing
 - ► Relatively affordable
 - ▶ LD based genotyping: leverage information across individuals to improve genotype accuracy.
 - ▶ 1000 Genome (4x) and UK 10K (6x) originally used low depth sequencing.
- Cons:
 - Subject to appreciable sequencing errors

Exome sequencing

▶ Restrict to the protein coding region (1 \sim 2% of genome (30 Mbps)).

Exome sequencing

- Focus on the high value portion of the genome
- Relatively cost effective
- Cons: Only focus on the exome
 - Most of GWAS hits lie in non-exomic regions
 - Many non-coding regions have biological functions

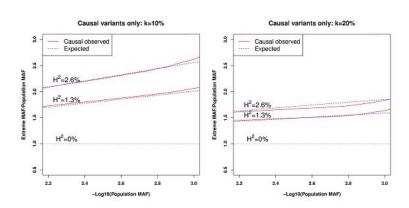
Exome array

- Using variants discovered in 12,000 sequenced exome
- ▶ Low cost $(10 \sim 20x$ less than Exome sequencing)
 - ▶ 250K non-synonymous variants
 - ▶ 12K splicing variants
 - ► 7K stop altering variants
- ► Cons:
 - Cannot investigate very rare variants.
 - Limited coverages for non-European populations

GWAS chip + Imputation

- ▶ Imputation: Estimate genotypes using reference samples
 - Imputation accuracy increases as the number of reference samples increases
- No additional experiment cost
- ► Cons:
 - Low accuracy of imputed rare variants

Summary


	Advantage	Disadvantage
High-depth WGS	Can identify nearly all variants	Currently very expensive.
	in genome with high confidence.	
Low-depth WGS	Cost-effective, useful approach	Limited accuracy
	for association mapping.	
Whole exome	Can identify all exomic variants;	Limited to the exome.
sequencing	less expensive than WGS.	
GWAS chip +	Low cost.	Lower accuracy of imputed rare
Imputation		variants.
Exome chip	Much cheaper than exome	Limited coverage for very rare
(custom array)	sequencing.	variants and for non-Europeans.
		Limited to target regions.

Extreme phenotype sampling

- ► Rare causal variants can be enriched in extreme phenotypic samples
- Given the fixed budget, increase power by sequencing extreme phenotypic samples.

Enrichment of causal rare variants in phenotypic extremes

▶ Estimated folds increase of the observed MAFs of causal variants (k% high/low sampling, H^2 =Heritability).

Extreme phenotypic sampling

► Continuous traits:

Select individuals with extreme trait values after adjusting for covariates.

► Binary traits:

Select individuals on the basis of known risk factors

► Ex. T2D : family history, early onset, low BMI

Extreme phenotypic sampling

- Extreme continuous phenotype (ECP) can be dichotomized, and then any testing methods for binary traits can be used.
- But dichotomization can cause a loss of information and can decrease the power.
- Methods modeling ECP as truncated normal distribution has been developed (Barnett, et al, 2013, Gen. Epid).

Case Only Analysis

- Case only analysis: sequencing only cases (sporadic or familial)
- ► Rationale:
 - Expense
- ► Typical *n*:
 - **▶** 100 − 1000
 - ightharpoonup < 100 or even < 50

When Sample Size "Sufficient"

- ► Can use reference controls: 1000 Genomes, exome sequencing project, etc.
- Caution:
 - ▶ Batch effects, sequencing artifacts, processing differences
 - Relevant population: must be comparable
 - ► Covariate adjustment
 - Potential cases among reference

Case Only Analysis with Modest n

- ▶ Small sample sizes: n = 25
- Potentially strong effects? High penetrance? Extremes?
- Standard case control testing may be under powered
- Basic strategy: Screening, filtering and bioinformatics

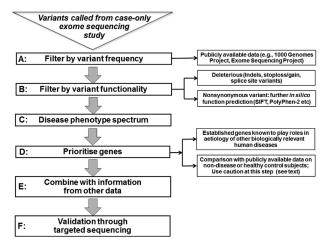
Reference: L. Wu, et al. (2015) J. Med. Genet..

Modest n: Variant Filtering

Idea: Prioritize variants from large scale screen

Variant Frequency Filtering

- ▶ Use reference data, e.g. 1000 Genomes
- Remove variants with higher MAF:
 - ► MAF >1%
 - or Variants that appear at all in reference
- ► Rationale: 85% of non-synonymous and 90% of stop-gain/splice-disrupting variants are rare


Variant Functionality Filtering

- Functionality scores for individual variants
- ▶ SIFT PolyPhen-2, others.
- High sensitivity, but low specificity

Modest n: Further Prioritization

- Disease Phenotype Spectrum:
- ► **Gene Prioritization:** knowledge on which genes play role in etiology of same or related disease
- ▶ Publicly Available Controls: Similar to reference data, but actual association analysis; same cautions
- Other Genomic Data: Integration with multiple sources of evidence
- ► Validation: Targeted sequencing of new cases and controls is only way to statistically validate findings

Filtering Summary

Reference: L. Wu, et al. (2015) J. Med. Genet..

Additional Concerns

- Quality control:
 - Are the observed variants really variants?
 - Batch effects
 - Some standard pipelines now in place
- ▶ Population stratification:
 - Common strategy: just use same PCs from common variant analysis to correct for PS
 - Some evidence that rare variants require special accommodation (much larger number of PCs)
- Accommodating common variants:
 - What do you do with common variants?
 - ▶ (a) Assess joint effect with rare variants
 - (b) Adjust for effect of common variants

Additional Concerns

- Prediction
 - ▶ In a new population (sample), we're unlikely to see the same variants and we're likely to see a lot of variants not previously observed
- Prioritization of individual variants
 - How to choose individual causal variants?
 - Some work on variable selection methods, but no ability to control type I error.
 - Bioinformatics and functionality tools may be useful
- Incorporation of functional information and other genomic data

Additional Concerns

- Design Choices
 - Want to enrich for variants (extreme phenotypes)
 - Some of these designs require specialized methods
 - Stuck with the design chosen
- Dealing with admixed populations
- Related individuals
- Tim: what is a "rare variant"?
- (Statistically) complex phenotypes