Lecture 9: Kernel (Variance Component) Tests and Omnibus Tests for Rare Variants

Timothy Thornton and Michael Wu

Summer Institute in Statistical Genetics 2017

Lecture Overview

- 1. Variance Component Tests
- 2. Omnibus Tests
- 3. Weights

Recall: Region Based Analysis of Rare Variants

- Single variant test is not powerful to identify rare variant associations
- Strategy: Region based analysis
 - Test the joint effect of rare/common variants in a gene/region while adjusting for covariates.

Major Classes of Tests

- Burden/Collapsing tests
- Supervised/Adaptive Burden/Collapsing tests
- Variance component (similarity) based tests
- Omnibus tests: hedge against difference scenarios

Variance component test

- Burden tests are not powerful, if there exist variants with different association directions or many non-causal variants
- Variance component tests have been proposed to address it.
- "Similarity" based test

C-alpha test

Neale BM, et al.(2011). Plos Genet.

- Case-control studies without covariates.
- ► Assume the *j*th variant is observed n_{j1} times, with r_{j1} times in cases.

	а	А	Total
Case	r_{j1}	r _{j2}	r
Control	s_{j1}	<i>s</i> _{j2}	S
Total	n _{j1}	n _{j2}	п

Under H₀

$$r_{j1} \sim Binomial(n_{j1},q) \quad (q = r/n)$$

C-alpha test

Risk increasing variant:

$$r_{j1}-qn_{j1}>0$$

Risk decreasing variant:

$$r_{j1}-qn_{j1}<0$$

Test statistic:

$$T_{lpha} = \sum_{j=1}^{p} (r_{j1} - qn_{j1})^2 - \sum_{j=1}^{p} n_{j1}q(1-q)$$

This test is robust in the presence of the opposite association directions.

C-alpha test

Weighting scheme

$$T_{\alpha} = \sum_{j=1}^{p} w_j (r_{j1} - qn_{j1})^2 - \sum_{j=1}^{p} w_j n_{j1} q(1-q)$$

Test for the over-dispersion due to genetic effects

• Neyman's $C(\alpha)$ test.

C-alpha test, P-value calculation

 Using normal approximation, since the test statistic is the sum of random variables.

$$T_{lpha} = \sum_{j=1}^{p} (r_{j1} - qn_{j1})^2 - \sum_{j=1}^{p} n_{j1}q(1-q)$$

- Doesn't work well when p is small (or moderate).
 - P-value is computed using permutation.

C-alpha test

- C-alpha test is robust in the presence of the different association directions
- Disadvantages:
 - Permutation is computationally expensive.
 - Cannot adjust for covariates.

Sequence Kernal Association Test (SKAT)

Wu et al.(2010, 2011). AJHG

Recall the original regression models:

$$\mu_i / logit(\mu_i) = \alpha_0 + \mathbf{X}_i^T \boldsymbol{\alpha} + \mathbf{G}_i^T \boldsymbol{\beta}$$

- Variance component test:
 - Assume $\beta_j \sim dist.(0, w_i^2 \tau)$.
 - $H_0: \beta_1 = \cdots = \beta_p = 0 <=> H_0: \tau = 0.$

Sequence Kernel Association Test (SKAT)

- ► $\beta_j \sim dist.(0, w_j^2 \tau)$: $\tau = 0$ is on the boundary of the hypothesis.
- Score test statistic for $\tau = 0$:

$$Q_{SKAT} = (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0)' \mathbf{K} (\mathbf{y} - \widehat{\boldsymbol{\mu}}_0),$$

► K = GWWG' : weighted linear kernel (W = diag[w₁,...,w_p]).

Sequence Kernel Association Test (SKAT)

The C-alpha test is a special case of SKAT

With no covariates and flat weights:

$$Q_{SKAT} = \sum_{j=1}^{p} (r_{j1} - qn_{j1})^2$$

SKAT

► *Q*_{SKAT} is a weighted sum of single variant score statistics

$$egin{aligned} Q_{\mathcal{SKAT}} &= (\mathbf{y} - \widehat{\mu}_0)' \mathbf{GWWG}'(\mathbf{y} - \widehat{\mu}_0) \ &= \sum_{j=1}^p w_j^2 [m{g}_j'(\mathbf{y} - \widehat{\mu}_0)] = \sum_{j=1}^p w_j^2 U_j^2 \end{aligned}$$

where $U_j = \sum_{i=1}^n g_{ij}(y_i - \widehat{\mu}_{0i})$.

U_j is a score of individual SNP j only model:

 $\mu_i/logit(\mu_i) = \alpha_0 + \mathbf{X}_i^{\mathsf{T}} \boldsymbol{\alpha} + \mathbf{g}_{ij}\beta_j$

SKAT

• Q_{SKAT} (asymptotically) follows a mixture of χ^2 distribution under the NULL.

$$Q = (\mathbf{y} - \widehat{\mu}_0)' \mathbf{K} (\mathbf{y} - \widehat{\mu}_0)$$

= $(\mathbf{y} - \widehat{\mu}_0)' \widehat{\mathbf{V}}^{-1/2} \widehat{\mathbf{V}}^{1/2} \mathbf{K} \widehat{\mathbf{V}}^{1/2} \widehat{\mathbf{V}}^{-1/2} (\mathbf{y} - \widehat{\mu}_0)$
= $\sum_{j=1}^p \lambda_j [\mathbf{u}_j' \widehat{\mathbf{V}}^{-1/2} (\mathbf{y} - \widehat{\mu}_0)]^2$
 $\approx \sum_{j=1}^p \lambda_j \chi_{1,j}^2$

SKAT

λ_j and u_j are eigenvalues and eigenvectors of P^{1/2}KP^{1/2}. where P = V⁻¹ − V⁻¹X̃(X̃'V⁻¹X̃)⁻¹X̃'V⁻¹ is the project matrix to account that α is estimated.

SKAT: P-value calculation

- P-values can be computed by inverting the characteristic function using Davies' method (1973, 1980)
 - Characteristic function

$$\varphi_x(t)=E(e^{itx}).$$

• Characteristic function of $\sum_{j=1}^{p} \lambda_j \chi_{1,j}^2$

$$\varphi_x(t) = \prod_{i=j}^p (1-2\lambda_j it)^{-1/2}.$$

Inversion Formula

$$P(X < u) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{Im[e^{-itu}\varphi_x(t)]}{t} \, \mathrm{d}t.$$

Small sample adjustment

```
Lee et al.(2012). AJHG
```

- ► When the sample size is small and the trait is binary, asymptotics does not work well.
- SKAT test statistic:

$$egin{aligned} \mathcal{Q}_{SKAT} &= (\mathbf{y} - \widehat{\mu}_0)' \mathbf{K} (\mathbf{y} - \widehat{\mu}_0) \ &= \sum_{
u=1}^p \lambda_{
u} \eta_{
u}^2, \end{aligned}$$

• η_v s are asymptotically independent and follow N(0,1).

Small sample adjustment

- When the trait is binary and the sample size is small:
 - $Var(\eta_v) < 1.$
 - η_v s are negatively correlated.

Small sample adjustment

Mean and variance of the Q_{SKAT}

	Mean	Variance
Large Sample Small Sample	$\sum_{j} \lambda_j$ $\sum_{j} \lambda_j$	$\sum_{j} \lambda_j^2 \lambda_j \lambda_k c_{jk}$

 Adjust null distribution of Q_{SKAT} using the estimated small sample variance.

Small sample adjustment

- Variance adjustment is not enough to accurately approximate far tail areas.
- Kurtosis adjustment:
 - Estimate the kurtosis of Q_{SKAT} using parametric bootstrapping:
 - $\hat{\gamma}$ (estimated kurtosis)
 - D.F. estimator: $\widehat{df} = 12/\hat{\gamma}$
 - Null distribution

$$(Q_{SKAT} - \sum \lambda_j^2) rac{\sqrt{2 \widehat{df}}}{\sqrt{\sum \lambda_j \lambda_k c_{jk}}} + \widehat{df} \sim \chi^2_{\widehat{df}}$$

Small sample adjustment

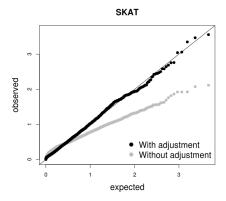


Figure: ARDS data (89 samples)

General SKAT Model:

```
\mu_i/logit(\mu_i) = \alpha_0 + X_i \alpha + h_i
```

where $h_i \sim GP(0, \tau K)$.

Kernel K(G_i, G_i) measures genetic similarity between two subjects.

General SKAT

- Examples:
 - Linear kernel=linear effect

$$\mathcal{K}(\mathbf{Z}_i,\mathbf{Z}_{i'}) = w_1^2 Z_{i1} Z_{i'1} + \cdots + w_p^2 Z_{ip} Z_{i'p}$$

IBS Kernel (Epistatic Effect: SNP-SNP interactions)

$$\mathcal{K}(\mathbf{Z}_i,\mathbf{Z}_j) = \frac{\sum_{k=1}^{p} w_k^2 IBS(Z_{ik},Z_{jk})}{2p}$$

Omnibus Tests

- Questions:
 - Which group of variants test? I.e. what is the threshold for "rare"?
 - Which type of test should I use? Variance component or burden?
- Truth is unknown: depends on the situation
- Omnibus tests: work well across situation

Variable threshold (VT) test

- ▶ Most methods use a fixed threshold for rare variants: $\leq 0.5\%$, $\leq 1\%$, ... $\leq 5\%$?
- Choosing an appropriate threshold can have a huge impact on power: prefer to restrict analysis to meaningful variants

Variable threshold (VT) test

Price AL, Kryukov GV, et al.(2010) AJHG

- Find the optimal threshold to increase the power.
 - Weight:

$$w_j(t) = \left\{egin{array}{ccc} 1 & ext{if} & maf_j \leq t \ 0 & ext{if} & maf_j > t \end{array}
ight.$$

•
$$C_i(t) = \sum w_j(t)g_{ij}$$

Test statistics:

$$Z_{max} = max_t Z(t)$$

where Z(t) is a Z-score of C_i .

P-value Calculations of Variable threshold (VT) test

- Price et al.proposed to use permutation to get a p-value
- Lin and Tang (2011) showed that the p-values can be calculated through numerical integration using normal approximation

Variable threshold (VT) test

- More robust than using a fixed threshold.
- Provide information on the MAF ranges of the causal variants.
- Lose power if there exist variants with opposite association directions.

SKAT vs. Collapsing

- Collapsing tests are more powerful when a large % of variants are causal and effects are in the same direction.
- SKAT is more powerful when a small % of variants are causal, or the effects have mixed directions.
- Both scenarios can happen when scanning the genome.
- Best test to use depends on the underlying biology.

 \rightarrow Difficult to choose which test to use in practice.

We want to develop a unified test that works well in both situations. \rightarrow Omnibus tests

Combine p-values of Burden and SKAT

Derkach A et al.(2013) Genetic Epi, 37:110-121

Fisher method:

 $Q_{Fisher} = -2\log(P_{Burden}) - 2\log(P_{SKAT})$

- ► Q_{Fisher} follows χ^2 with 4 d.f when these two p-values are independent
- Since they are not independent, p-values are calculated using resampling
- Mist (Sun et al. 2013) modified the SKAT test statistics to make them independent

Combine Test Statistics: Unified Test Statistics

Lee et al.(2012). Biostatistics

Combined Test of Burden tests and SKAT

 $\label{eq:Q_rho} \mathcal{Q}_{
ho} = (1ho) \mathcal{Q}_{\mathit{SKAT}} +
ho \mathcal{Q}_{\mathit{Burden}}, \quad 0 \leq
ho \leq 1.$

- *Q*_ρ includes SKAT and burden tests.
 - ▶ *ρ* = 0: SKAT
 - $\rho = 1$: Burden

Derivation of the Unified Test Statistics

► Model:

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{lpha} + \mathbf{G}_i \boldsymbol{eta}$$

where β_j/w_j follows any arbitrary distribution with mean 0 and variance τ and the correlation among β_j 's is ρ .

Special cases:

- ► SKAT: ρ = 0
- Burden: $\rho = 1$
- Combined: $0 \le \rho \le 1$

Derivation of the Unified Test Statsitics

Q_ρ is a test statistic of the SKAT with corr(β) = R(ρ):
 R(ρ) = (1 − ρ)I + ρ<u>11</u>' (compound symmetric)
 K_ρ = GWR(ρ)WG'.

$$egin{aligned} & \mathcal{Q}_{
ho} = (\mathbf{y} - \hat{oldsymbol{\mu}})' \mathbf{K}_{
ho} (\mathbf{y} - \hat{oldsymbol{\mu}}) \ & = (1 -
ho) \mathcal{Q}_{SKAT} +
ho \mathcal{Q}_{Burden} \end{aligned}$$

Adaptive Test (SKAT-O)

• Use the smallest p-value from different ρ s:

$$T = \inf_{0 \le \rho \le 1} P_{\rho}.$$

where P_{ρ} is the p-value of Q_{ρ} for given ρ .

Test statistic:

$$T = \min P_{\rho_b}, \quad 0 = \rho_1 < \ldots < \rho_B = 1.$$

Adaptive Test (SKAT-O)

• Q_{ρ} is a mixture of two quadratic forms.

$$egin{aligned} \mathcal{Q}_{
ho} &= (1-
ho)(\mathbf{y}-\hat{oldsymbol{\mu}})' extsf{GWWG}'(\mathbf{y}-\hat{oldsymbol{\mu}})' \ &+
ho(\mathbf{y}-\hat{oldsymbol{\mu}})' extsf{GW} extsf{MU} extsf{1} extsf{1}' extsf{WG}'(\mathbf{y}-\hat{oldsymbol{\mu}}) \ &= (1-
ho)(\mathbf{y}-\hat{oldsymbol{\mu}})' extsf{K}_1(\mathbf{y}-\hat{oldsymbol{\mu}})' +
ho(\mathbf{y}-\hat{oldsymbol{\mu}})' extsf{K}_2(\mathbf{y}-\hat{oldsymbol{\mu}}) \end{aligned}$$

• Q_{ρ} is asymptotically equivalent to

$$(1-
ho)\kappa+a(
ho)\eta_0,$$

where and $\eta_0 \sim \chi_1^2$, κ approximately follows a mixture of χ^2 .

Lecture 9: Kernel (Variance Component) Tests and Omnibus Tests for Rare Variants

SKAT-O

 Q_ρ is the asymptotically same as the sum of two independent random variables.

$$(1-
ho)\kappa + a(
ho)\eta_0$$

► P-value of T:

$$\begin{aligned} &1 - \Pr\left\{Q_{\rho_{1}} < q_{\rho_{1}}(T), \dots, Q_{\rho_{b}} < q_{\rho_{b}}(T)\right\} \\ &= 1 - E\left[\Pr\left\{(1 - \rho_{1})\kappa + \mathsf{a}(\rho_{1})\eta_{0} < q_{\rho_{1}}(T), \dots |\eta_{0}\}\right] \\ &= 1 - E\left[P\left\{\kappa < \min\{(q_{\rho_{v}}(T)) - \mathsf{a}(\rho_{v})\eta_{0})/(1 - \rho_{v})\}|\eta_{0}\}\right], \end{aligned}$$

where $q_{
ho}(T) =$ quantile function of $Q_{
ho}$

Simulation

- Simulate sequencing data using COSI
- 3kb randomly selected regions.
- Percentages of causal variants = 10%, 20%, or 50%.
- $(\beta_j > 0)$ % among causal variants = 100% or 80%.
- Three methods
 - Burden test with beta(1,25) weight
 - SKAT
 - SKAT-0

Simulation



 $\beta + / - = 100 / 0$

Total Comple Size

Simulation

- SKAT is more powerful than Burden test (Collapsing) when
 - Existence of $+/-\beta s$
 - Small percentage of variants are causal variants
- Burden test is more powerful than SKAT when
 - ► All βs were positive and a large proportion of variants were casual variants
- SKAT-O is robustly powerful under different scenarios.

- Region based tests can increase the power of rare variants analysis.
- Relative performance of rare variant tests depends on underlying disease models
- The combined test (omnibus test), e.g, SKAT-O, is robust and powerful in different scenarios

Lecture 9: Kernel (Variance Component) Tests and Omnibus Tests for Rare Variants
Weighting and Thresholding

MAF based weighting

- It is generally assumed that rarer variants are more likely to be causal variants with larger effect sizes.
- Simple thresholding is widely used.

$$w(MAF_j) = \left\{ egin{array}{cc} 1 & ext{if} & MAF_j < c \ 0 & ext{if} & MAF_j \geq c \end{array}
ight.$$

Lecture 9: Kernel (Variance Component) Tests and Omnibus Tests for Rare Variants
Weighting and Thresholding

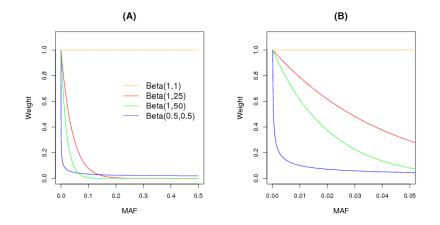
MAF based weighting

- Instead of thresholding, continuous weighting can be used to upweight rarer variants.
- Ex: Flexible beta density function.

 $w(MAF_j) = (MAF_j)^{\alpha-1}(1 - MAF_j)^{\beta-1}$

• $(\alpha = 0.5, \beta = 0.5)$: Madsen and Browning weight • $(\alpha = 1, \beta = 1)$: Flat weight

MAF based weighting- beta weight

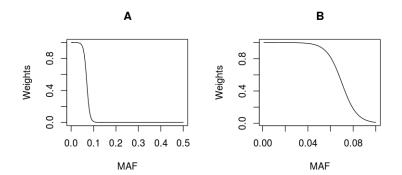


Lecture 9: Kernel (Variance Component) Tests and Omnibus Tests for Rare Variants Weighting and Thresholding

MAF based weighting- logistic weight

Soft-thresholding.

$$w(maf_j) = exp((\alpha - maf_j)\beta)/\{1 + exp((\alpha - maf_j)\beta)\}$$



Weighting Using Functional information

Variants have different functionalities.

- Non-synonymous mutations (e.g. missense and nonsense mutations) change the amino-acid (AA) sequence.
- Synonymous mutations do not change AA sequence.

Weighting Using Functional information

- Bioinformatic tools to predict the functionality of mutations.
 - Polyphen2 (http://genetics.bwh.harvard.edu/pph2/)
 - SIFT (http://sift.jcvi.org/)
- Test only functional mutations can increase the power.