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Lecture 7: Interaction Analysis

Lecture Outline

Beyond main SNP effects

I Introduction to Concept of Statistical Interaction

I Standard Gene-Environment Interaction Testing

I Some More Sophisticated GxE Tests

I Even Fancier Methods – High order Interactions
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“Interaction”

I “Interaction” means different things to different people:
I Biological
I Mechanistic
I Additive
I Synergism and Antogonisms
I Statistical (Primarily “Multiplicative”)
I Others — a lot of general vagueness

I Statistical (multiplicative) interactions: effect modification
(one variable changes the effect of the other on outcome);
deviation from additivity
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Statistical Interaction
Multiplicative interactions: combined effect exceeds the additive
effects of individual variables

Example
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GxE Testing

Gene-Environment Interactions (G × E )

Complex diseases are caused by interplay of genes & environment.
Identification of G × E aids in disease prevention.
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GxE Testing

What is environment (E)?

I “Environment” is just as loaded as “Interaction”

I NIEHS (NIH): Basically, chemical exposures or objective
measures (e.g. metabolites) – not primary smoking but
second hand is OK

I Anything that is not genetics (G): BMI, race, education,
gender, diet, etc.

I Treatment?

I Another SNP (Gene-gene interaction, epistasis): main
difference between this and GxE is issue of scale (number of
pair-wise tests)

I Operationally: often doesn’t matter, but particular scenarios
can change assumptions (e.g. independence between E and G)
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GxE Testing

Marginal Analysis of GxE Interactions

I Idea: Assess statistical interaction between a single exposure
of interest and each SNP

I Testing Approaches:
I Two-way interaction in regression model (standard)
I Alternative designs
I Testing joint G and GxE effects
I Others.

I Multiple comparisons correction: FDR or Bonferroni
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GxE Testing

Standard 2-way interaction analysis:
Model (quantitative trait):

yi = β0 + βgGi + βeEi + βixGiEi + εi

Then to test for interaction effect:

H0 : βix = 0.

If H0 is true, then G and E can have effects (in the presence of
each other), but their effects do not modify each other:

Gi = 0→ E [yi ] = β0 + βeEi

Gi = 1→ E [yi ] = β0 + βg1 + βeEi

If H0 is false (reject null), then total effect of G and E differs
depending on other variable:

Gi = 0→ E [yi ] = β0 + βeEi

Gi = 1→ E [yi ] = β0 + βg + (βe + βix)Ei
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GxE Testing

Standard 2-way interaction analysis:

Operationally

Regress y on G , E and product of G and E . Then can test
H0 : βix = 0 using any 1-df test.

Things to be careful...

I Scale: particularly for continuous y

I Interaction testing is harder because the null model still has
genetics in it. Under H0

yi = β0 + βgGi + βeEi + εi

If this model is not correctly specified or captured, then there
can be considerable inflation of type I error.
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GxE Testing

Power of GxE Tests is Low

Power is bad for GxE analysis: Needs many times as many subjects
to test for interaction that is equally powerful.
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GxE Testing

Alternative Strategies?

I Exploit additional assumptions

I Case-only analysis

I Multi-SNP by E Testing (extension of gene/pathway analysis,
but harder)

I Intelligently selecting which SNPs to test

I Many more fancy things constantly being developed
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Advanced GxE Testing

Joint G and GxE Testing

Joint Test of G + GxE

Main Idea
Instead of testing just H0 : βix = 0, we test H0 : βg = βix = 0 via
2-df test. Primarily useful for gene discovery: significance does not
explicitly inform interaction analysis.

References

I Gauderman and Siegmund (2001) Hum Herid 52:34–46.

I Selinger-Leneman et al. (2003) Gen Epi 24:200–7.

I Kraft et al. (2007) Hum Herid 63:111-9.

I Huang et al. (2011) Genome Med 3:42.
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Advanced GxE Testing

Joint G and GxE Testing

Joint G and GxE Testing: Toy data

Consider the data - a binary response Y , a binary environmental
variable E and a binary gene G :

Y = 1 Y = 0
G = 1 G = 0 G = 1 G = 0

E = 1 112 64 E = 1 100 100
E = 0 112 112 E = 0 100 100
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Advanced GxE Testing

Joint G and GxE Testing

Joint G and GxE Testing

logit(Pr(Y = 1|G ,E )) = α0 + α1G + α2E

P-value for H0 : α1 = 0 is 0.070. Not significant!

logit(Pr(Y = 1|G ,E )) = β0 + β1G + β2E + β3GE

P-value for H0 : β3 = 0 is 0.051. Not significant!
But....
P-value for H0 : β1 = β3 = 0 is 0.029. Significant!
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Advanced GxE Testing

Case-Only Analysis

Case-Only Analysis

I Suppose we have case-control study.

I Case-Only Analysis involves analyzing *only* the cases.
I Key Assumption: Genotype MUST be independent of

environment
I Almost necessarily true for randomized treatment E
I Often true for traditional exposures (e.g. toxicants, pollution),

but can be weird confounding issues
I Need to be careful for some E like BMI, alcohol use, smoking,

etc.
I Generally: need to consider this situationally and with care

I Assuming the above, then case-only analysis proceeds by
looking at the odds-ratio relating environment to genotype.
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Advanced GxE Testing

Case-Only Analysis

Case-Only Analysis

G = 0 G = 1
E = 0 E = 1 E = 0 E = 1

Y = 0 p01 p02 p03 p04
Y = 1 p11 p12 p13 p14

For multiplicative interaction:

logitP(Y = 1|G ,E ) = β0 + βgG + βeE + βixG × E

exp(βix) =
OR11

OR10OR01

=
p11p14
p12p13

/
p01p04
p02p03

=
GxE odds ratio in cases

GxE odds ratio in controls
GxE odds ratio in controls = 1 under G-E independence!!!
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Advanced GxE Testing

Case-Only Analysis

Case-Only Analysis

Instead, we model dependency between genotype and environment:

P(G = 1|E ,Y = 1)

P(G = 0|E ,Y = 1)

=
P(Y = 1|G = 1,E )/P(Y = 0|G = 1,E )

P(Y = 1|G = 0,E )/P(Y = 0|G = 0,E )

P(Y = 0,G = 1,E )

P(Y = 0,G = 0,E )

=
exp(β0 + βg + βeE + βixE )

exp(β0 + βeE )

P(G = 1|Y = 0,E )

P(G = 0|Y = 0,E )

= exp(βg + βixE )
P(G = 1)

P(G = 0)

with last line holding due to G-E independence (in controls).
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Advanced GxE Testing

Case-Only Analysis

Power of Case-Only Analysis
Case-only analysis can lead to improved power, but be careful of
assumptions.

18 / 39



Lecture 7: Interaction Analysis

Advanced GxE Testing

Multi-SNP by E Interactions

Multi-SNP by E Interactions

I Instead of looking at one-SNP at a time, can we again
conduct analysis at multi-SNP level?

I Idea:

1. Group SNPs in gene/pathway/region
2. Test joint interaction between all SNPs and an environmental

variable

I Many approaches for main SNP effects are intuitively
applicable, but fail!

I Interaction term = G × E is correlated with both E and G ;
this makes permutation methods more challenging

I We have to correctly capture null model
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Advanced GxE Testing

Multi-SNP by E Interactions

Multi-SNP by E Interactions
Consider the following generalized linear model:

g (µi ) = Xᵀ
i α1 + α2Ei + Gᵀ

i α3 + EiG
ᵀ
i β

I Outcome: Yi , has distribution from exponential family and
µi = E (Yi |X̃i ).

I q non-genetic covariates: Xi .

I environmental factor: Ei .

I group of p variants: Gi = (Gi1, · · · ,Gip)ᵀ.

I p G × E interaction terms: Si = (EiGi1, · · · ,EiGip)ᵀ.

We are interested in testing if there is any G × E :

H0 : β = 0.
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Advanced GxE Testing

Multi-SNP by E Interactions

Averaging/Collapsing Tests for Interactions
Idea: let G ∗ be a (weighted) average of genotypes within a
gene/region/pathway.

To test for main effects:

H1m : g (µi ) = α∗
1 + α∗

2Ei + α∗
3G

∗
i

H0m : α∗
3 = 0

Can we use it to test for interactions?

H1x : g (µi ) = α∗
1 + α∗

2Ei + α∗
3G

∗
i + β∗EiG

∗
i

H0x : β∗ = 0
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Advanced GxE Testing

Multi-SNP by E Interactions

Bias analysis for Collapsing G × E tests

Intuition

Null model has to be correctly specified for valid inference.
Collapsing G × E tests may not give valid inference as main

effects of the SNVs may not be sufficiently accounted for.

Continuous Outcome: No, even if G ⊥ E .

I G and E are independent:
Model for mean of Y is valid;
Model for variance of Y is not valid.

I G and E not independent:
Model for mean of Y is not valid;
Model for variance of Y is not valid.
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Advanced GxE Testing

Multi-SNP by E Interactions

Bias analysis for Collapsing G × E tests

Binary Outcome: Yes if disease is rare and G ⊥ E .

I G and E are independent:
Model for mean of Y is valid;
Model for variance of Y is valid approximately.

I G and E not independent:
Model for mean of Y is not valid;
Model for variance of Y is valid approximately.
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Advanced GxE Testing

Multi-SNP by E Interactions

GESAT: Model
To test if there is any G × E (H0 : β = 0):

H0 : logit [P(Yi = 1|Ei ,Xi ,Gi )] = Xᵀ
i α1 + α2Ei + Gᵀ

i α3

HA : logit [P(Yi = 1|Ei ,Xi ,Gi )] = Xᵀ
i α1 + Gᵀ

i (α3 + Eiβ) + α2Ei

In principle, we can do the same thing as with SKAT, but ...

Difficulties
Need to fit null model:

I Need to estimate main effect of variants

I Lots of variants

I LD and rarity make fitting difficult

Modifications are necessary.

GESAT: Extension of SKAT (global test) for GxE
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Advanced GxE Testing

Multi-SNP by E Interactions

GESAT: Test Statistic

I Assume (β1, · · · , βp)ᵀ are random and independent with mean zero
and common variance τ .

I Testing H0 reduces to testing H0 : τ = 0.

I Following Lin (1997), the score test statistic is

T = (Y − µ̂)ᵀ SSᵀ (Y − µ̂) = [Y − µ (α̂)]ᵀ SSᵀ [Y − µ (α̂)] .

I µ̂ = µ (α̂) is estimated under the null model,

g (µi |Xi ,Ei ,Gi ) = X
ᵀ
i α1 + α2Ei + G

ᵀ
i α3 = X̃

ᵀ
i α.

I Use ridge regression to estimate α, impose a penalty only on α3.

I Under H0, T ∼
∑p

v=1 dvχ
2
1 approximately.

I Invert characteristic function to get p-value (Davies, 1980).
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Advanced GxE Testing

Pre-Screening

Which SNPs to Test?

I Genome-wide analysis: screen association between all SNPs
and outcome

I Candidate genes or pathways (functional groups)

I SNPs with significant main effects

I More sophisticated algorithms: data adaptive procedures that
use two-stage screening

Which set to use can influence multiple testing adjustments. Not
always clear how many tests to adjust for if considering main
effects too.
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Advanced GxE Testing

Additional Structure on Problem

Additional Work

I Already a lot of work assuming independence
I Can model E better: multi-E analysis

I Not always clear which E to use: smoking can be yes/no,
never/ever, pack-years, cotinine etc.

I Mixtures of toxicants: many toxicants or exposures happen in
conjunction

I Monotonicity constraints

I Omnibus strategies

I Weighted hypothesis testing

I Innovative screening strategies
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High Order Interactions

Higher order interactions

Given that 2-order interactions are already hard to fine, why are we
interested in higher order interactions?

I power,

I computational, and

I interpretation,

we should only be interested in higher order interactions when we
focus attention on a few targeted regions (e.g. genes), selected
because of

I studies (carried out on other data sets),

I biology,

I . . .
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High Order Interactions

It is not a surprise that. . .

I The power is small.

I As such we may want to see these methods as “hypothesis
generating” - i.e. we may identify a limited number of
interactions that we can follow up on in new studies.

29 / 39



Lecture 7: Interaction Analysis

High Order Interactions

Models

I SNPs as 3 level categorical variables:
low low low
high low high
low high high

I Decision tree models.

True False

B False True False

True A B False

D A

C

I Boolean rules like:
You are at increased risk if you have at least one
mutant for SNP1 or two mutants for SNP2.

I Classical interaction model

g [E (Y |G)] = β0 + β1G1 + β2G2 + β3G3 + β4G1G2

+β5G1G3 + β6G2G3 + β7G1G2G3,

Issues: interpretation, computation, power.....
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High Order Interactions

Models

MDR SNPs as 3 level categorical variables:
low low low
high low high
low high high

CART Decision tree models.

True False

B False True False

True A B False

D A

C

Logic Regression Boolean rules like:

You are at increased risk if you have at least one
mutant for SNP1 or two mutants for SNP2.

I Classical interaction model

g [E (Y |G)] = β0 + β1G1 + β2G2 + β3G3 + β4G1G2

+β5G1G3 + β6G2G3 + β7G1G2G3,

Issues: interpretation, computation, power.....
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High Order Interactions

MDR

Multifactor Dimensionality Reduction
[Ritchie et al. (2001) Am J Hum Gen 69:138–47]

[Hahn et al. (2003) Bioinformatics 19:376–82]

modification of
[Nelson et al. (2001) Genome Res 11:458–70]

I Complex interactions are hard to detect because of sparse
data via standard parametric models

I Inaccurate parameter estimates and large standard errors with
relatively small sample sizes.

I Reduce the dimensionality and identify SNP combinations
that lead to high risk of disease.

Hunting for:
low low low
high low high
low high high
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High Order Interactions

MDR

MDR
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High Order Interactions

MDR

MDR

For a particular model with M SNPs (or environmental factors):
I 10-fold Cross-validation

1. Consider each “cell” (if factors are SNPs, there are 3M).
2. On 9/10th of the data decide whether a cell is “high” or “low”

risk (for a case-control study the typical cut-off in each cell
would be the case/control ratio in the study).

3. Evaluate the prediction on the remaining 1/10th of the data.
4. Check how many of the MDR models are the same. Not entirely

clear how this is done - if each cell should be consistent, this would work

against models that have (m)any cells that are close to 50/50.

I Repeat this a number of times - to achieve stability of the
cross-validation. If you have enough computing power, always a good idea.

I Select the model with the lowest prediction error, provided the
consistency is better than by chance.
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High Order Interactions

MDR

Sporadic breast cancer
200 women with sporadic primary invasive breast cancer with
age-matched hospital based controls, 10 estrogen metabolism
SNPs

35 / 39



Lecture 7: Interaction Analysis

High Order Interactions

MDR

Issues

I While making things binary helps, computation can explode if
the number of SNPs in the study is substantial.

I The selected models do not adhere to the usual parsimony
that we like in statistics: if a model with, say, 4 factors is ε
better than a model with 3 factors, MDR will pick 4 factors.
Usually we would prefer 3. Conceivably this could be changed
fairly easy. The MDR implementation of cross-validation
makes this worse, however (next slide).

I The models are very hard to interpret.

I To me, it would make more sense to identify a smaller number
of cells with “extreme high” or “extreme low” risk.
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High Order Interactions

MDR

Bias in their implementation of Cross Validation

I Consider the number of models with M SNPs out of a total T .

0 1 2 3 4 5 6 7 8 · · ·
10 1 10 45 120 210 252 210 120 45 · · ·
25 1 30 435 4060 27405 142506 593775 2035800 5852925 · · ·

I Imagine what happens if there is no signal, and every model is
equally likely, which size would we most likely end up with. . .

I The consistency reduces this problem a little, but not by
much. Think about the situation where there is one SNP with
a strong effect. . .
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High Order Interactions

MDR

Take home message well beyond MDR

When using cross-validation for model selection, if the number of
models of size M is different for different M, you can use cross-
validation to find the best model of each size, but you cannot use
it to find the best size. You need another test dataset for that!

Even more generally: beware of fancy methods, particularly
anything for interaction analysis!!
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High Order Interactions

MDR

A sobering note

There likely have been more papers written about methods to
identify GxE and GxG interactions, than the number of
interactions that have successfully been identified.
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