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Lecture 7: Interaction Analysis

Lecture Outline

Beyond main SNP effects
» Introduction to Concept of Statistical Interaction
» Standard Gene-Environment Interaction Testing
» Some More Sophisticated GxE Tests

» Even Fancier Methods — High order Interactions
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Lecture 7: Interaction Analysis

“Interaction”

» “Interaction” means different things to different people:
Biological

Mechanistic

Additive

Synergism and Antogonisms

Statistical (Primarily “Multiplicative”)

Others — a lot of general vagueness

vV vy vy VY VY

» Statistical (multiplicative) interactions: effect modification
(one variable changes the effect of the other on outcome);
deviation from additivity
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Lecture 7: Interaction Analysis

Statistical Interaction

Multiplicative interactions: combined effect exceeds the additive
effects of individual variables

Example

Additive Effects (Not interaction) Multiplicative Effects (interaction)
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Individuals with Particular Exposures Individuals with Particular Exposures
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Lecture 7: Interaction Analysis
LG><E Testing

Gene-Environment Interactions (G x E)

WHAT CAN | SAY? T WAS
CURSED WITR BAD GENET\CS.

Complex diseases are caused by interplay of genes & environment.
Identification of G x E aids in disease prevention.



Lecture 7: Interaction Analysis

L GxE Testing

What is environment (E)?

v

“Environment” is just as loaded as “Interaction”

NIEHS (NIH): Basically, chemical exposures or objective
measures (e.g. metabolites) — not primary smoking but
second hand is OK

Anything that is not genetics (G): BMI, race, education,
gender, diet, etc.
Treatment?

Another SNP (Gene-gene interaction, epistasis): main
difference between this and GxE is issue of scale (number of
pair-wise tests)

Operationally: often doesn't matter, but particular scenarios
can change assumptions (e.g. independence between E and G)

6
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Lecture 7: Interaction Analysis
LGXE Testing

Marginal Analysis of GxE Interactions

> Idea: Assess statistical interaction between a single exposure
of interest and each SNP
» Testing Approaches:
» Two-way interaction in regression model (standard)
Alternative designs
Testing joint G and GxE effects
Others.

» Multiple comparisons correction: FDR or Bonferroni

vV vVvYyy
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Lecture 7: Interaction Analysis
LG><E Testing

Standard 2-way interaction analysis:
Model (quantitative trait):
Yi = Bo+ BgGi + BeEi + BixGiE; + ¢;
Then to test for interaction effect:
Ho : Bix = 0.

If Ho is true, then G and E can have effects (in the presence of
each other), but their effects do not modify each other:

Gi =0 — Elyi] = o+ BeEi

Gi =1— Elyi] = o+ Bgl + BeEi

If Ho is false (reject null), then total effect of G and E differs
depending on other variable:

Gi =0 — Elyi] = Bo + BeEi
G =1— Elyi] = Bo + Bg + (Be + Bix)E;
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Lecture 7: Interaction Analysis
LGXE Testing

Standard 2-way interaction analysis:

Operationally

Regress y on G, E and product of G and E. Then can test
Hp : Bix = 0 using any 1-df test.

Things to be careful...

» Scale: particularly for continuous y

> Interaction testing is harder because the null model still has
genetics in it. Under Hy

Yi = Bo + BgGi + BeEi + €

If this model is not correctly specified or captured, then there
can be considerable inflation of type | error.
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Lecture 7: Interaction Analysis
LG><E Testing

Power of GxE Tests is Low

Power is bad for GxE analysis: Needs many times as many subjects
to test for interaction that is equally powerful.

Power
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Power as function of sample size:
a = 0.05 level, disease pop. risk
of 0.01%, SNP with MAF of
0.25, environment with
prevalence of 20%, both main
SNP and interaction effect are
1.25 (OR).
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Lecture 7: Interaction Analysis
LGXE Testing

Alternative Strategies?

v

Exploit additional assumptions

v

Case-only analysis

v

Multi-SNP by E Testing (extension of gene/pathway analysis,
but harder)

Intelligently selecting which SNPs to test

v

» Many more fancy things constantly being developed
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
L Joint G and GxE Testing

Joint Test of G 4+ GxE

Main ldea

Instead of testing just Hp : Bix = 0, we test Hp : Bz = Bix = 0 via
2-df test. Primarily useful for gene discovery: significance does not
explicitly inform interaction analysis.

References

» Gauderman and Siegmund (2001) Hum Herid 52:34-46.
» Selinger-Leneman et al. (2003) Gen Epi 24:200-7.

» Kraft et al. (2007) Hum Herid 63:111-9.

» Huang et al. (2011) Genome Med 3:42.
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Lecture 7: Interaction Analysis
L Advanced GxE Testing
LJoint G and GxE Testing

Joint G and GxE Testing: Toy data

Consider the data - a binary response Y, a binary environmental
variable E and a binary gene G:

Y =1 Y=0
G=1 G=0 G=1 G=0
E=1[ 112 | 64 E=1[ 100 | 100
E=0[ 112 | 112 | E=0/[ 100 | 100
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Lecture 7: Interaction Analysis
L Advanced GxE Testing
L Joint G and GxE Testing

Joint G and GxE Testing

logit(Pr(Y = 1|G,E)) = ap + a1 G + apE
P-value for Hy : a3 = 0 is 0.070. Not significant!
Iogit(Pr(Y = 1’G, E)) = Bo+ P1G + BE + B3GE

P-value for Hy : 3 = 0 is 0.051. Not significant!
But....
P-value for Hy : 81 = B3 = 0is 0.029. Significant!
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
L Case-Only Analysis

Case-Only Analysis

» Suppose we have case-control study.

» Case-Only Analysis involves analyzing *only* the cases.

» Key Assumption: Genotype MUST be independent of
environment

» Almost necessarily true for randomized treatment E

» Often true for traditional exposures (e.g. toxicants, pollution),
but can be weird confounding issues

> Need to be careful for some E like BMI, alcohol use, smoking,
etc.

» Generally: need to consider this situationally and with care

» Assuming the above, then case-only analysis proceeds by
looking at the odds-ratio relating environment to genotype.
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Lecture 7: Interaction Analysis
L Advanced GxE Testing
LCase-OnIy Analysis

Case-Only Analysis

P11 P12 P13 P14

For multiplicative interaction:
logitP(Y =1|G,E) = o+ BgG + BeE + BixG x E

OR11

OR100Ro1
P11P14 ,P01P04

P12P13  P02pP03
GxE odds ratio in cases

GxE odds ratio in controls
GxE odds ratio in controls = 1 under G-E independence!!!

exp(/BiX) -
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
L Case-Only Analysis

Case-Only Analysis

Instead, we model dependency between genotype and environment:

P(G=1|E,Y =1)
P(G=0lE,Y =1)
P(Y =1|G =1,E)/P(Y =0|G =1,E) P(Y =0,G = 1,E)
P(Y =1|G =0,E)/P(Y =0|G =0,E) P(Y =0,G =0, E)
exp(Bo + Bg + BeE + BixE) P(G = 1]Y =0, E)

exp(fo + BeE) P(G=0]Y =0,E)

= exp(ﬁgw,-xE)ﬁggj

with last line holding due to G-E independence (in controls).
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Lecture 7: Interaction Analysis
L Advanced GxE Testing
L Case-Only Analysis

Power of Case-Only Analysis

Case-only analysis can lead to improved power, but be careful of
assumptions.

ny=n;=500 «=0.05

Power
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|
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L

18/39



Lecture 7: Interaction Analysis
LAdvanced GxE Testing
LMulti—SNP by E Interactions

Multi-SNP by E Interactions

> Instead of looking at one-SNP at a time, can we again
conduct analysis at multi-SNP level?
> Idea:
1. Group SNPs in gene/pathway/region
2. Test joint interaction between all SNPs and an environmental
variable
» Many approaches for main SNP effects are intuitively
applicable, but fail!
» Interaction term = G x E is correlated with both E and G;
this makes permutation methods more challenging
» We have to correctly capture null model
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
LMulti—SNP by E Interactions

Multi-SNP by E Interactions

Consider the following generalized linear model:

g(pi) = Xlou+ azEi+Glasz + EG]3

» Outcome: Y, has distribution from exponential family and
i = E(Yi|X;).

> g non-genetic covariates: X;.

» environmental factor: E;.

» group of p variants: G; = (Gj1,---, Gjp)T.

» p G x E interaction terms: S; = (E,'G,']_7 e 7E,'G,'p)T.

We are interested in testing if there is any G x E:
Ho: B8=0.
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Lecture 7: Interaction Analysis
L Advanced GxE Testing
L Multi-sNP by E Interactions

Averaging/Collapsing Tests for Interactions

Idea: let G* be a (weighted) average of genotypes within a
gene/region/pathway.

To test for main effects:

Him : g (pi) = o] + a3Ei + o35G/
Hom : a3 =0

Can we use it to test for interactions?

Hix @ g (pi) = of + a3Ei + a3G + B7E; G}
H()X . ﬂ* =0
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
LMulti—SNP by E Interactions

Bias analysis for Collapsing G x E tests

Intuition

Null model has to be correctly specified for valid inference.
Collapsing G x E tests may not give valid inference as main
effects of the SNVs may not be sufficiently accounted for.

Continuous Qutcome: No, even if G L E.

» G and E are independent:
Model for mean of Y is valid;
Model for variance of Y is valid.

» G and E not independent:
Model for mean of Y is not valid;
Model for variance of Y is valid.



Lecture 7: Interaction Analysis
L Advanced GxE Testing
L Multi-SNP by E Interactions

Bias analysis for Collapsing G x E tests

Binary Outcome: Yes if disease is rare and G L E.

» G and E are independent:
Model for mean of Y is valid;
Model for variance of Y is valid approximately.

» G and E not independent:
Model for mean of Y is valid;
Model for variance of Y is valid approximately.
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
LMulti—SNP by E Interactions

GESAT: Model
To test if there is any G X E (Hp : B =0):
Ho : logit[P(Y; = 1|E;, X, Gj)] = X[ o + azEj + Gl a3
Ha : logit [P(Y; = 1|Ej, Xi, Gj)] = X] a1 + G (a3 + EiB) + anE;
In principle, we can do the same thing as with SKAT, but ...

Difficulties
Need to fit null model:

» Need to estimate main effect of variants
» Lots of variants
» LD and rarity make fitting difficult

Modifications are necessary.

GESAT: Extension of SKAT (global test) for GxE

24 /39



Lecture 7: Interaction Analysis
LAdvanced GxE Testing
LMulti—SNP by E Interactions

GESAT: Test Statistic

>

Assume (31, -+, 3,)" are random and independent with mean zero
and common variance 7.

Testing Hp reduces to testing Hp : 7 = 0.

Following Lin (1997), the score test statistic is
T=(Y - @) SST(Y i) = [Y — w(&)]" SSTY — u(&)].
1= p (@) is estimated under the null model,
g (il X, E, G;) = X[ o + a2E; + Gl oz = X[ .
Use ridge regression to estimate «, impose a penalty only on as.

Under Ho, T ~ >""_, d,x? approximately.

Invert characteristic function to get p-value (Davies, 1980).
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
L Pre-Screening

Which SNPs to Test?

» Genome-wide analysis: screen association between all SNPs
and outcome

» Candidate genes or pathways (functional groups)
» SNPs with significant main effects
» More sophisticated algorithms: data adaptive procedures that

use two-stage screening

Which set to use can influence multiple testing adjustments. Not
always clear how many tests to adjust for if considering main
effects too.

26
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Lecture 7: Interaction Analysis
LAdvanced GxE Testing
L Additional Structure on Problem

Additional Work

» Already a lot of work assuming independence
» Can model E better: multi-E analysis
» Not always clear which E to use: smoking can be yes/no,
never/ever, pack-years, cotinine etc.
» Mixtures of toxicants: many toxicants or exposures happen in
conjunction
» Monotonicity constraints
» Omnibus strategies
» Weighted hypothesis testing
> Innovative screening strategies
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Lecture 7: Interaction Analysis

LHigh Order Interactions

Higher order interactions

Given that 2-order interactions are already hard to fine, why are we
interested in higher order interactions?

> power,

» computational, and

> interpretation,
we should only be interested in higher order interactions when we
focus attention on a few targeted regions (e.g. genes), selected
because of

» studies (carried out on other data sets),
> biology,

> ..
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Lecture 7: Interaction Analysis
LHigh Order Interactions

It is not a surprise that. ..

» The power is small.

> As such we may want to see these methods as “hypothesis
generating” - i.e. we may identify a limited number of
interactions that we can follow up on in new studies.
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Lecture 7: Interaction Analysis
LHigh Order Interactions

Models
fow fow fow

» SNPs as 3 level categorical variables: [high | Tow | high
low | high | high

» Decision tree models. A A

True False

» Boolean rules like:
You are at increased risk if you have at least one
mutant for SNP1 or two mutants for SNP2.

» Classical interaction model

g[E(Y|G)] = Bo+ PG+ 5262+ $3G3 4 aG1Go
+B5G1G3 + B G2G3 + 8761 G2 G,
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Lecture 7: Interaction Analysis
LHigh Order Interactions

Models

low low low

MDR SNPs as 3 level categorical variables: | high | low | high

low | high | high

CART Decision tree models. ~ ™® False

True False

Logic Regression Boolean rules like:

You are at increased risk if you have at least one
mutant for SNP1 or two mutants for SNP2.

» Classical interaction model
glE(YIG)] = Bo+ 5161+ PG+ B3Gs + BaGiGo

N R N R R
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Lecture 7: Interaction Analysis
LHigh Order Interactions
L mDR

Multifactor Dimensionality Reduction
[Ritchie et al. (2001) Am J Hum Gen 69:138-47]

[Hahn et al. (2003) Bioinformatics 19:376-82]

modification of

[Nelson et al. (2001) Genome Res 11:458-70]

» Complex interactions are hard to detect because of sparse
data via standard parametric models

» Inaccurate parameter estimates and large standard errors with
relatively small sample sizes.

» Reduce the dimensionality and identify SNP combinations
that lead to high risk of disease.

low | low | low
Hunting for: | high | low | high
low | high | high
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Lecture 7: Interaction Analysis
LHigh Order Interactions
L mDR

MDR

STEP 1 : Sclect Polymorphisms — STEP 2 : Calculate Case- ——® STEP 3 : Identify High- Q

Polymorphism 1
Polymorphism 2

Control Ratios for Each
Multilocus Genotype

Polymorphism 1
AA Aa aa

Risk Multilocus Genotypes

AA Aa aa
Polymorphism 3 %
Polymorphism 4 & Bt ; & 7- T- BB

£

g‘ Bb| Is 2 12 9 Bb

g [ | 2 mm
Polymorphism 10 E ==

I

bb 14 11 2 13 bb 7
== ]

& 5
Train 9/10
Test 1/10

STEP 4 : Cross Validation
10__1
9,

8 3

7 4
& 5
Train 9/10
Test 1/10

& 5
Train 9/10
Test 1/10

High-Risk
Low-Risk
Empty Cell
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Lecture 7: Interaction Analysis
LHigh Order Interactions
L mDR

MDR

For a particular model with M SNPs (or environmental factors):

» 10-fold Cross-validation

1. Consider each “cell” (if factors are SNPs, there are 3M).

2. On 9/10th of the data decide whether a cell is “high” or “low”
risk (for a case-control study the typical cut-off in each cell
would be the case/control ratio in the study).

3. Evaluate the prediction on the remaining 1/10th of the data.

4. Check how many of the MDR models are the same. Not entirely
clear how this is done - if each cell should be consistent, this would work
against models that have (m)any cells that are close to 50/50.

> Repeat this a number of times - to achieve stability of the
cross-validation. If you have enough computing power, always a good idea.

» Select the model with the lowest prediction error, provided the
consistency is better than by chance.
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Lecture 7: Interaction Analysis
LHigh Order Interactions
L mpr

Sporadic breast cancer

200 women with sporadic primary invasive breast cancer with
age-matched hospital based controls, 10 estrogen metabolism
SNPs

Summary of Results for Breast Cancer

No. of Cross-Validation Prediction
Loci Consistency Error . |%
2 7.00 51.06 33
3 417 5135 <
4 9.800 46.73
5 4.71 50.26 3 s E
6 5.00 48.61 5|3 E
7 8.60 4715 E[7[3
8 8.20 52.55
9 7.10 53.40 .z
NOTE.—The multilocus model with maximum % §
cross-validation consistency and minimum predic- S8

tion error is indicated in boldface italic type.
s P 001




Lecture 7: Interaction Analysis

LHigh Order Interactions

L mDR

Issues

While making things binary helps, computation can explode if
the number of SNPs in the study is substantial.

The selected models do not adhere to the usual parsimony
that we like in statistics: if a model with, say, 4 factors is €
better than a model with 3 factors, MDR will pick 4 factors.
Usually we would prefer 3. Conceivably this could be changed
fairly easy. The MDR implementation of cross-validation
makes this worse, however (next slide).

The models are very hard to interpret.

To me, it would make more sense to identify a smaller number
of cells with “extreme high” or “extreme low" risk.

36
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LHigh Order Interactions

L mDR

Bias

in their implementation of Cross Validation

» Consider the number of models with M SNPs out of a total T.

01 2 3 4 5 6 7 8 -
10| 1 10 45 120 210 252 210 120 45 ...
25 | 1 30 435 4060 27405 142506 593775 2035800 5852925 - - -

» Imagine what happens if there is no signal, and every model is
equally likely, which size would we most likely end up with. ..

» The consistency reduces this problem a little, but not by
much. Think about the situation where there is one SNP with
a strong effect. . .
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Lecture 7: Interaction Analysis
LHigh Order Interactions
L mDR

Take home message well beyond MDR

When using cross-validation for model selection, if the number of
models of size M is different for different M, you can use cross-
validation to find the best model of each size, but you cannot use
it to find the best size. You need another test dataset for that!
Even more generally: beware of fancy methods, particularly
anything for interaction analysis!!
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Lecture 7: Interaction Analysis
|—High Order Interactions
L MDR

A sobering note

There likely have been more papers written about methods to
identify GxE and GxG interactions, than the number of
interactions that have successfully been identified.

39/39



	GxE Testing
	Advanced GxE Testing
	Joint G and GxE Testing
	Case-Only Analysis
	Multi-SNP by E Interactions
	Pre-Screening
	Additional Structure on Problem

	High Order Interactions
	MDR


