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Lecture Overview

1. Omnibus tests

1.1 Variable Threshold Test
1.2 SKAT-O

2. Weighting and Prior Knowledge

3. Design Considerations

3.1 Platforms
3.2 Extreme Phenotype Sampling
3.3 Power and Sample Size
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SKAT vs. Collapsing

I Collapsing tests are more powerful when a large % of variants
are causal and effects are in the same direction.

I SKAT is more powerful when a small % of variants are causal,
or the effects have mixed directions.

I Both scenarios can happen when scanning the genome.

I Best test to use depends on the underlying biology.

→ Difficult to choose which test to use in practice.

We want to develop a unified test that works well in both
situations.→ Omnibus tests

3 / 44



Lecture 9: Omnibus Tests, Weighting, Design Considerations

Omnibus Tests

Variable threshold (VT) test

I Previous methods use a fixed threshold for rare variants:
≤ 0.5%, ≤ 1%, ... ≤ 5%?

I Choosing an appropriate threshold can have a huge impact on
power
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Omnibus Tests

Variable threshold (VT) test

Price AL, Kryukov GV, et al.(2010) AJHG

I Find the optimal threshold to increase the power.
I Weight:

wj(t) =

{
1 if mafj ≤ t
0 if mafj > t

I Ci (t) =
∑

wj(t)gij
I Test statistics:

Zmax = maxtZ (t)

where Z (t) is a Z-score of Ci .
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Omnibus Tests

P-value Calculations of Variable threshold (VT) test

I Price et al.proposed to use permutation to get a p-value

I Lin and Tang (2011) showed that the p-values can be
calculated through numerical integration using normal
approximation
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Omnibus Tests

Variable threshold (VT) test

I More robust than using a fixed threshold.

I Provide information on the MAF ranges of the causal variants.

I Lose power if there exist variants with opposite association
directions.
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Omnibus Tests

Unified Burden-VC Test

I Burden tests are more powerful when a large % of variants are
causal, and all causal variants are harmful (or protective).

I SKAT is more powerful when a small % of variants are causal,
or there exist mixed effects.

I Both scenarios can happen across the genome and the
underling biology is unknown in advance.
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Omnibus Tests

Combine p-values of Burden and SKAT

Derkach A et al.(2013) Genetic Epi, 37:110-121

I Fisher method:

QFisher = −2 log(PBurden)− 2 log(PSKAT )

I QFisher follows χ2 with 4 d.f when these two p-values are
independent

I Since they are not independent, p-values are calculated using
resampling

I Mist (Sun et al. 2013) modified the SKAT test statistics to
make them independent
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Omnibus Tests

Combine Test Statistics: Unified Test Statistics

Lee et al.(2012). Biostatistics

I Combined Test of Burden tests and SKAT

Qρ = (1− ρ)QSKAT + ρQBurden, 0 ≤ ρ ≤ 1.

I Qρ includes SKAT and burden tests.
I ρ = 0: SKAT
I ρ = 1: Burden
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Omnibus Tests

Derivation of the Unified Test Statistics

I Model:

g(µi ) = Xiα + Giβ

where βj/wj follows any arbitrary distribution with mean 0
and variance τ and the correlation among βj ’s is ρ.

I Special cases:
I SKAT: ρ = 0
I Burden: ρ = 1
I Combined: 0 ≤ ρ ≤ 1
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Omnibus Tests

Derivation of the Unified Test Statsitics

I Qρ is a test statistic of the SKAT with corr(β) = R(ρ):
I R(ρ) = (1− ρ)I + ρ1

¯
1
¯
′ (compound symmetric)

I Kρ = GWR(ρ)WG′.

Qρ = (y − µ̂)′Kρ(y − µ̂)

= (1− ρ)QSKAT + ρQBurden
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Omnibus Tests

Adaptive Test (SKAT-O)

I Use the smallest p-value from different ρs:

T = inf
0≤ρ≤1

Pρ.

where Pρ is the p-value of Qρ for given ρ.

I Test statistic:

T = minPρb , 0 = ρ1 < . . . < ρB = 1.
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Omnibus Tests

Adaptive Test (SKAT-O)

I Qρ is a mixture of two quadratic forms.

Qρ = (1− ρ)(y − µ̂)′GWWG ′(y − µ̂)′

+ ρ(y − µ̂)′GW 1
¯

1
¯
′WG ′(y − µ̂)

= (1− ρ)(y − µ̂)′K1(y − µ̂)′ + ρ(y − µ̂)′K2(y − µ̂)

I Qρ is asymptotically equivalent to

(1− ρ)κ+ a(ρ)η0,

where and η0 ∼ χ2
1, κ approximately follows a mixture of χ2.
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Omnibus Tests

SKAT-O

I Qρ is the asymptotically same as the sum of two independent
random variables.

(1− ρ)κ+ a(ρ)η0

I η0 ∼ χ2
1

I Approximate κ via moments matching.

I P-value of T:

1− Pr {Qρ1 < qρ1(T ), . . . ,Qρb < qρb(T )}
= 1− E [Pr {(1− ρ1)κ + a(ρ1)η0 < qρ1(T ), . . . |η0}]
= 1− E [P {κ < min{(qρv (T ))− a(ρv )η0)/(1− ρv )}|η0}] ,

where qρ(T ) = quantile function of Qρ
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Omnibus Tests

Simulation

I Simulate sequencing data using COSI

I 3kb randomly selected regions.

I Percentages of causal variants = 10%, 20%, or 50%.

I (βj > 0)% among causal variants = 100% or 80%.
I Three methods

I Burden test with beta(1,25) weight
I SKAT
I SKAT-O
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Omnibus Tests

Simulation

Figure: Continuous traits, α = 2.5× 10−6

17 / 44



Lecture 9: Omnibus Tests, Weighting, Design Considerations

Omnibus Tests

Simulation

I SKAT is more powerful than Burden test (Collapsing) when
I Existence of +/− βs
I Small percentage of variants are causal variants

I Burden test is more powerful than SKAT when
I All βs were positive and a large proportion of variants were

casual variants

I SKAT-O is robustly powerful under different scenarios.
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Omnibus Tests

Summary

I Region based tests can increase the power of rare variants
analysis.

I Relative performance of rare variant tests depends on
underlying disease models

I The combined test (omnibus test), e.g, SKAT-O, is robust
and powerful in different scenarios
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Weighting and Thresholding

MAF based weighting

I It is generally assumed that rarer variants are more likely to be
causal variants with larger effect sizes.

I Simple thresholding is widely used.

w(MAFj) =

{
1 if MAFj < c
0 if MAFj ≥ c
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Weighting and Thresholding

MAF based weighting

I Instead of thresholding, continuous weighting can be used to
upweight rarer variants.

I Ex: Flexible beta density function.

w(MAFj) = (MAFj)
α−1(1−MAFj)

β−1

I (α = 0.5, β = 0.5) : Madsen and Browning weight
I (α = 1, β = 1) : Flat weight
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Weighting and Thresholding

MAF based weighting- beta weight
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Weighting and Thresholding

MAF based weighting- logistic weight
I Soft-thresholding.

w(mafj) = exp((α−mafj)β)/{1 + exp((α−mafj)β}
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Weighting and Thresholding

Weighting Using Functional information

I Variants have different functionalities.
I Non-synonymous mutations (e.g. missense and nonsense

mutations) change the amino-acid (AA) sequence.
I Synonymous mutations do not change AA sequence.
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Weighting and Thresholding

Weighting Using Functional information

I Bioinformatic tools to predict the functionality of mutations.
I Polyphen2 (http://genetics.bwh.harvard.edu/pph2/)
I SIFT (http://sift.jcvi.org/)

I Test only functional mutations can increase the power.
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Design Considerations

Data Processing and Analysis Flowchart
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Design Considerations

Study Design: Platform Choices

Genotyping Platforms

I High depth whole genome sequencing is the most informative,
however it is currently expensive.

I Alternative sequencing designs and genotyping platforms
I Low depth sequencing
I Exome seqeuncing
I High coverage microarrays (Exome chip)
I Imputation
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Design Considerations

Study Design: Platform Choices

Low depth whole genome sequencing

I Sequencing 7 ∼ 8 samples at low depth (4x) instead of 1
sample at high depth (30x)

I Low depth sequencing
I Relatively affordable
I LD based genotyping: leverage information across individuals

to improve genotype accuracy.
I 1000 Genome (4x) and UK 10K (6x) used low depth

sequencing.

I Cons:
I Subject to appreciable sequencing errors
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Design Considerations

Study Design: Platform Choices

Exome sequencing
I Restrict to the protein coding region (1 ∼ 2% of genome (30

Mbps)).

Bamshad et al. (2011), NRG
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Design Considerations

Study Design: Platform Choices

Exome sequencing

I Focus on the high value portion of the genome

I Relatively cost effective
I Cons: Only focus on the exome

I Most of GWAS hits lie in non-exomic regions
I Many non-coding regions have biological functions
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Design Considerations

Study Design: Platform Choices

Exome array

I Using variants discovered in 12,000 sequenced exome
I Low cost (10 ∼ 20x less than Exome sequencing)

I 250K non-synonymous variants
I 12K splicing variants
I 7K stop altering variants

I Cons:
I Cannot investigate very rare variants.
I Limited coverages for non-European populations
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Design Considerations

Study Design: Platform Choices

GWAS chip + Imputation

I Imputation: Estimate genotypes using reference samples
I Imputation accuracy increases as the number of reference

samples increases

I No additional experiment cost
I Cons:

I Low accuracy of imputed rare variants
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Design Considerations

Study Design: Platform Choices

Summary
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Design Considerations

Study Design: Extreme Phenotype Sampling

Extreme phenotype sampling

I Rare causal variants can be enriched in extreme phenotypic
samples

I Given the fixed budget, increase power by sequencing extreme
phenotypic samples.
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Design Considerations

Study Design: Extreme Phenotype Sampling

Enrichment of causal rare variants in phenotypic extremes

I Estimated folds increase of the observed MAFs of causal
variants (k% high/low sampling, H2=Heritability).
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Design Considerations

Study Design: Extreme Phenotype Sampling

Extreme phenotypic sampling

I Continuous traits:
Select individuals with extreme trait values after adjusting for
covariates.

I Binary traits:
Select individuals on the basis of known risk factors

I Ex. T2D : family history, early onset, low BMI
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Design Considerations

Study Design: Extreme Phenotype Sampling

Extreme phenotypic sampling

I Extreme continuous phenotype (ECP) can be dichotomized,
and then any testing methods for binary traits can be used.

I But dichotomization can cause a loss of information and can
decrease the power.

I Methods modeling ECP as truncated normal distribution has
been developed (Barnett, et al, 2013, Gen. Epid).
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Power/Sample Size calculation

Power/Sample Size calculation

I Power/Sample size calculation is essential to design future
sequencing studies.

I Input information:

I Region information
I LD structure and MAF spectrum.
I Region size to test.
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Power/Sample Size calculation

Power/Sample Size calculation

I Causal variant Information

I Effect size (continuous traits), or Odds ratio (binary traits).
I % of rare variants be causal.
I % of causal variants with negative association direction.

I Binary traits
I Case/Control Ratio.
I Prevalence
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Power/Sample Size calculation

Practical Points: SKAT Power Calculations

I Region information
I Either simulated haplotypes or sample haplotypes from

preliminary data.

I The SKAT package provides 10,000 haplotypes over a 200 kb
region generated by the coalescent simulator (COSI).
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Power/Sample Size calculation

MAF spectrum

I MAF spectrum of the simulated haplotypes

I Most of SNPs have very low MAFs.
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Power/Sample Size calculation

Practical Points: Power/Sample Size calculations

I Causal Variant Information:
I To use log10 function (−c log10(MAF )) for the effect sizes or

log odds ratio.
I c is a parameter to determine the strength of association.

I Ex: c = 1
β = 2 or log(OR) = 2 for a variant with MAF=0.01
β = 4 or log(OR) = 4 for a variant with MAF=10−4.
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Power/Sample Size calculation

Practical Points: Power/Sample Size calculations

I In SKAT package, you can set c using the MaxOR (OR for
MAF = 10−4) or MaxBeta (β for MAF = 10−4).
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Power/Sample Size calculation

Practical Points: Power/Sample Size calculations

I Power depends on LD structure of the region and MAFs of
the causal variants.

I We are interested in estimating power in multiple regions and
multiple sets of causal variants selected from a certain disease
model.

I We estimate an average power.
I Approximately 100 ∼ 500 sets of regions/causal variants are

needed to estimate the average power stably.
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