[Lecture 1: Case-Control Association Testing](#page-29-0)

Lecture 1: Case-Control Association Testing

Timothy Thornton and Michael Wu

Summer Institute in Statistical Genetics 2015

1 / 30

 Ω

K ロ 에 세 @ 에 K 할 에 K 할 에 있을 것

Introduction

- \triangleright Association mapping is now routinely being used to identify loci that are involved with complex traits.
- \blacktriangleright Technological advances have made it feasible to perform case-control association studies on a genome-wide basis with hundreds of thousands of markers in a single study.
- \triangleright We consider testing a genetic marker for association with a disease in a sample of unrelated subjects.
- \triangleright Case-control association methods essentially test for independence between trait and allele/genotype.

Case-Control Association Testing

- \blacktriangleright Allelic Association Tests
	- \triangleright Allele is treated as the sampling unit
	- \triangleright Typically make an assumption of Hardy-Weinberg equilibrium (HWE). Alleles within an individual are conditionally independent, given the trait value.

3 / 30

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경

- \blacktriangleright Genotypic Association Tests
	- \blacktriangleright Individual is the sampling unit
	- Does not assume HWE

Pearson's χ^2 Test for Allelic Association

- \blacktriangleright The classical Pearson's χ^2 test is often used for allelic association testing.
- \triangleright This test looks for deviations from independence between the trait and allele.
- \triangleright Consider a single marker with 2 allelic types (e.g., a SNP) labeled "1" and "2"
- Exect N_{ca} be the number of cases and N_{co} be the number of controls with genotype data at the marker.

Pearson's χ^2 Test for Allelic Association

Below is a 2×2 contingency table for trait and allelic type

- \blacktriangleright n_1^{ca} is the number of type 1 alleles in the cases and $n_1^{ca} = 2 \times$ the number of homozygous $(1, 1)$ cases $+$ the number of heterozygous (1,2) cases
- \blacktriangleright n_2^{co} is the number of type 2 alleles in the controls and $n_2^{co} = 2$ \times the number of homozygous (2, 2) controls + the number of heterozygous (1,2) controls
- \blacktriangleright Hypotheses
	- \blacktriangleright H₀: there is no association between the row variable and column variable
	- H_a : t[he](#page-3-0)re is an association bet[w](#page-5-0)een the tw[o](#page-3-0) [va](#page-4-0)[ri](#page-5-0)[abl](#page-0-0)[es](#page-29-0)

5 / 30

Pearson's χ^2 Test for Allelic Association

 \blacktriangleright Can use Pearson's χ^2 test for independence. The statistic is:

$$
X^{2} = \sum_{\text{all cells}} \frac{\left(\text{Observed cell} - \text{Expected cell}\right)^{2}}{\text{Expected cell}}
$$

 \triangleright What is the the expected cell number under H_0 ? For each cell, we have

Expected Cell Count =
$$
\frac{\text{row total} \times \text{col total}}{\text{total count}}
$$

 \blacktriangleright Under H_0 , the X^2 test statistic has an approximate χ^2 distribution with $(r - 1)(c - 1) = (2 - 1)(2 - 1) = 1$ degree of freedom

▶ From Phasukijwattana et al. (2010), Leber Hereditary Optic Neuropathy (LHON) disease and genotypes for marker rs6767450:

Corresponding 2 \times 2 contingency table for allelic type and case-control status

- Intuition for the test: Suppose H_0 is true, allelic type and case-control status are independent, then what counts would QQ we expect to observe? 7 / 30^I Recall that under the independence assumption
	-

In Let n be the total number of alleles in the study. Assuming independence, the expected number of case alleles that are of type T is:

 $n \times P$ (Allele is from a Case and Allelic type is T)

$$
= nP(\text{Allele is from a Case})P(\text{Allelic type is T})
$$

= 656 $\left(\frac{178}{656}\right)\left(\frac{550}{656}\right) = \frac{(178)(550)}{656} = 149.2378$

 \blacktriangleright Fill in the remaining cells for the expected counts

• Calculate the X^2 statistic

$$
X^{2} = \frac{(158 - 149.2378)^{2}}{149.2378} + \cdots + \frac{(86 - 77.2378)^{2}}{77.2378} = 4.369
$$

 \triangleright What is the *p*-value?

$$
P(\chi_1^2 \ge 4.369) = .037
$$

9 / 30

イロト イ団 トメ ミト スミト 一毛

 \blacktriangleright Fill in the remaining cells for the expected counts

• Calculate the X^2 statistic

$$
X^{2} = \frac{(158 - 149.2378)^{2}}{149.2378} + \cdots + \frac{(86 - 77.2378)^{2}}{77.2378} = 4.369
$$

 \triangleright What is the *p*-value?

$$
P(\chi_1^2 \ge 4.369) = .037
$$

10 / 30

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

- \triangleright For contingency tables that have cells with less than 5 observations
- \triangleright Consider the table below

- \triangleright The marginal counts of the table are fixed: There are 24 case alleles, 24 control alleles, 35 T alleles, and 13 C alleles
- Exect Let X be the number of case alleles that are of type T . A test based on X can be constructed.
- \triangleright Under the null hypothesis, X will have a hypergeometric distribution where the probability that $X = x$ is

$$
\binom{35}{x}\binom{13}{24-x}\Bigg/\binom{48}{24}+\text{where } x \geq x \implies x \geq 0
$$

 \triangleright Obtain the probability distribution for X

x 11 12 13 14 15 16 17 18 19 20 21 22 23 24 P(X=x)

 \blacktriangleright $P(X = 11)$ is

$$
\binom{35}{11}\binom{13}{13} / \binom{48}{24} = .00001
$$

 \blacktriangleright $P(X = 12)$ is

$$
\binom{35}{12}\binom{13}{12} / \binom{48}{24} = .0003
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 900 12 / 30

 \triangleright Obtain the probability distribution for X

- ► Construct a rejection region for a two-sided test with $\alpha = .05$.
- \triangleright Can the null hypothesis be rejected at the .05 level for the observed value $X = 21$?

 \triangleright Obtain the probability distribution for X

- ► So, a rejection region for a two-sided test with $\alpha = .05$ would consist of the following values for X: 11, 12, 13, 14, 21, 22, 23, and 24.
- \triangleright The observed X value of 21 for the data falls in this region, so the test would reject at the level .05. Ω

The Armitage Trend Test for Genotypic Association

- \triangleright The most common genotypic test for unrelated individuals is the Armitage trend test (Sasieni 1997)
- \triangleright Consider a single marker with 2 allelic types (e.g., a SNP) labeled "1" and "2"
- In Let $Y_i = 2$ if individual *i* is homozygous $(1,1)$, 1 if the *i* is heterozygous, and 0 if i is homozygous (2,2)
- In Let $X_i = 1$ if i is a case and 0 if i is a control.
- \triangleright A simple linear regression model of

$$
Y=\beta_0+\beta_1X+\epsilon
$$

15 / 30

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

 H_0 : $\beta_1 = 0$ vs. H_a : $\beta_1 \neq 0$

The Armitage Trend for Genotypic Association

 \triangleright To test this hypothesis, the Armitage trend test statistic is

$$
A_r = \frac{\hat{\beta}_1^2}{VAR(\hat{\beta}_1)} = Nr_{xy}^2
$$

where r_{xy}^2 is the squared correlation between genotype variable Y and phenotype variable X .

- \triangleright Note that the variance estimate for Y that is used in the calculation of the Armitage trend test is the sum of the squared deviations of Y from the fitted values of Y for regression with only an intercept term.
- \blacktriangleright Under the null hypothesis, A_r will follow an approximate χ^2 distribution with 1 degree of freedom.
- \triangleright The Armitage trend test can be shown to be valid when HWE does not hold. **KORK CRANEY KEY CRANE**

LHON Example: Armitage Trend Test

 \blacktriangleright Leber Hereditary Optic Neuropathy (LHON) disease and genotypes for marker rs6767450:

 \triangleright The Armitage test statistic for this data is

$$
A_r = Nr_{xy}^2 = 328(.0114) = 3.74
$$

 \blacktriangleright The *p*-value is

$$
P(\chi_1^2 \geq 3.743) = .053
$$

17 / 30

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

- ▶ What are odds? Really just probability...
- \triangleright Odds are a [gambling-friendly] measure of chance;

B

メロメ メ部 メメ きょうくきょう **E** 299 19 / 30

20 / 30

 QQQ

E

イロト イ押 トイヨ トイヨ トー

– so what are odds ratios?

 \blacktriangleright Typically choose a reference genotype.

 OR_{TT} = odds of disease in an individual with the TT genotype odds of disease in an individual with the CC genotype

 $OR_{CT} = \frac{\text{odds of disease in an individual with the CT genotype}}{\text{odds of disease in an individual with the CC searches}}$ odds of disease in an individual with the CC genotype

- $OR_{TT} = 1$ implies no association with and disease. Similarly for OR_{CT} .
- \triangleright \triangleright \triangleright OR_{TT} > 1 or OR_{TT} < 1 implies associ[ati](#page-19-0)[on](#page-21-0)[wit](#page-20-0)h [th](#page-0-0)[e](#page-29-0) [dis](#page-0-0)[ea](#page-29-0)[se](#page-0-0)[.](#page-29-0)

- \triangleright Logistic regression is generally used to get odds ratios and confidence intervals for genotypes.
- Exect π_i be the probability that individual *i* is affected with the disease and let G_i be the genotype for individual i at the SNP:

 $log($ odds of disease for individual $i|G_i$)

$$
= \log \left(\frac{\pi_i}{1 - \pi_i} \Big| G_i \right)
$$

$$
= \beta_0 + \beta_{CT} I \{ G_i = CT \} + \beta_{TT} I \{ G_i = TT \}
$$

where $I\{G_i = CT\}$ is 1 if $G_i = CT$ and 0 otherwise, and similarly for $I\{G_i = TT\}$.

 \blacktriangleright The coefficient estimates for $\hat\beta_{\textsf{CT}}$ and $\hat\beta_{\textsf{TT}}$ can be used to calculate odds ratios:

$$
OR_{CT} = \exp(\hat{\beta}_{CT})
$$

$$
OR_{TT} = \exp(\hat{\beta}_{TT})
$$

▶ 95% CI for OR_{CT} is

$$
\exp(\hat{\beta}_{\text{CT}} \pm 1.96 \times \text{s.e.}(\hat{\beta}_{\text{CT}}))
$$

23 / 30

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Odds Ratios for LHON Example

 \blacktriangleright Leber Hereditary Optic Neuropathy (LHON) disease and genotypes for marker rs6767450:

- \triangleright We will use the R software package to obtain odds ratios and confidence intervals for this data set (as well as Pearson's χ^2 test and Armitage Trend tests).
- \triangleright Exercises and some commands for analyzing the LHON data with R can be found on the following webpage:

http://faculty.washington.edu/tathornt/SISG MODULE8.html

Odds Ratios (ORs) based on Allele Counting

- \triangleright We can also obtain allelic odds ratios
- \triangleright Odds ratios based on an allele counting model essentially assumes an additive model
- Genotype TT has twice the risk (or protection) of heterozygous genotype CT.
- \triangleright Same risk (or protection) for the comparison of heterozygous CT genotype and homozygous CC genotype.

 $OR_T = \frac{\text{odds of disease with T allele}}{\text{odds of disease with } C \text{ allele}}$ odds of disease with C allele $=\frac{(n_A/n_B)}{(1-n_B)^2}$ $\frac{(n_A/n_B)}{(n_C/n_D)} = \frac{n_A \times n_D}{n_B \times n_C}$ $n_B \times n_C$ $n_B \times n_C$ ^(\Box) (\Box) (Ξ) (Ξ) Ξ) Ξ (\Im

Odds Ratios (ORs) Allele Counting

- $OR_T = 1$ implies no association with and disease
- $OR_T > 1$ or $OR_T < 1$ implies association with the disease

26 / 30

K ロ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q ⊙

Confidence Intervals for Odds Ratios (ORs)

$$
OR = \frac{n_A \times n_D}{n_B \times n_C}
$$

$$
s.e.(log(OR)) = \sqrt{\frac{1}{n_A} + \frac{1}{n_B} + \frac{1}{n_C} + \frac{1}{n_D}}
$$

 \blacktriangleright Lower limit of 95% CI

$$
= exp(log(OR) - 1.96 \times s.e.(log(OR)))
$$

 \blacktriangleright Upper limit of 95% CI

$$
= \exp(\textit{log}(\textit{OR})+1.96\times s.e.(\textit{log}(\textit{OR})))
$$

 Ω 27 / 30

B

Confidence Intervals for Odds Ratios (ORs)

$$
OR = \frac{n_A \times n_D}{n_B \times n_C}
$$

$$
s.e.(log(OR)) = \sqrt{\frac{1}{n_A} + \frac{1}{n_B} + \frac{1}{n_C} + \frac{1}{n_D}}
$$

 \blacktriangleright Lower limit of 95% CI

$$
= exp(log(OR) - 1.96 \times s.e.(log(OR)))
$$

 \blacktriangleright Upper limit of 95% CI

$$
= \exp(\log(\mathit{OR}) + 1.96 \times s.e. (\log(\mathit{OR})))
$$

 Ω 28 / 30

LHON Example: Confidence Intervals for Odds Ratios (ORs)

$$
OR = \frac{158 \times 86}{392 \times 20} = 1.7332
$$

$$
s.e.(log(OR)) = \sqrt{\frac{1}{158} + \frac{1}{392} + \frac{1}{20} + \frac{1}{86}}
$$

 \blacktriangleright Lower limit of 95% CI

$$
= exp(log (OR) - 1.96 \times s.e.(log (OR)))
$$

= exp(log(1.7332) - 1.96 × 0.2665) = 1.03
▶ Upper limit of 95% CI = 2.92

References

- \triangleright Phasukijwattana N, Kunhapan B, Stankovich J, Chuenkongkaew WL, Thomson R, Thornton T, Bahlo M, Mushiroda T, Nakamura Y, Mahasirimongkol S, et al. (2010). Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand. Hum. Genet. 128, 39-49.
- \triangleright Sasieni P (1997). From genotypes to genes: doubling the sample size. *Biometrics* 5, 1254-1261.