Timothy Thornton and Michael Wu

Summer Institute in Statistical Genetics 2015

## Lecture Overview

- 1. Omnibus tests
  - 1.1 Variable Threshold Test
  - 1.2 SKAT-O
- 2. Weighting and Prior Knowledge
- 3. Design Considerations
  - 3.1 Platforms
  - 3.2 Extreme Phenotype Sampling
  - 3.3 Power and Sample Size

## SKAT vs. Collapsing

- Collapsing tests are more powerful when a large % of variants are causal and effects are in the same direction.
- SKAT is more powerful when a small % of variants are causal, or the effects have mixed directions.
- Both scenarios can happen when scanning the genome.
- Best test to use depends on the underlying biology.

 $\rightarrow$  Difficult to choose which test to use in practice.

We want to develop a unified test that works well in both situations.  $\rightarrow$  Omnibus tests

# Variable threshold (VT) test

- ▶ Previous methods use a fixed threshold for rare variants:  $\leq 0.5\%$ ,  $\leq 1\%$ , ...  $\leq 5\%$ ?
- Choosing an appropriate threshold can have a huge impact on power

## Variable threshold (VT) test

Price AL, Kryukov GV, et al.(2010) AJHG

- Find the optimal threshold to increase the power.
  - Weight:

$$w_j(t) = \begin{cases} 1 & \text{if } maf_j \leq t \\ 0 & \text{if } maf_j > t \end{cases}$$

• 
$$C_i(t) = \sum w_j(t)g_{ij}$$

Test statistics:

$$Z_{max} = max_t Z(t)$$

where Z(t) is a Z-score of  $C_i$ .

## P-value Calculations of Variable threshold (VT) test

- Price et al.proposed to use permutation to get a p-value
- Lin and Tang (2011) showed that the p-values can be calculated through numerical integration using normal approximation

# Variable threshold (VT) test

- More robust than using a fixed threshold.
- Provide information on the MAF ranges of the causal variants.
- Lose power if there exist variants with opposite association directions.

## Unified Burden-VC Test

- Burden tests are more powerful when a large % of variants are causal, and all causal variants are harmful (or protective).
- SKAT is more powerful when a small % of variants are causal, or there exist mixed effects.
- Both scenarios can happen across the genome and the underling biology is unknown in advance.

## Combine p-values of Burden and SKAT

Derkach A et al.(2013) Genetic Epi, 37:110-121

Fisher method:

 $Q_{Fisher} = -2\log(P_{Burden}) - 2\log(P_{SKAT})$ 

- ►  $Q_{Fisher}$  follows  $\chi^2$  with 4 d.f when these two p-values are independent
- Since they are not independent, p-values are calculated using resampling
- Mist (Sun et al. 2013) modified the SKAT test statistics to make them independent

#### Combine Test Statistics: Unified Test Statistics

#### Lee et al.(2012). Biostatistics

Combined Test of Burden tests and SKAT

 $\label{eq:Q_rho} \mathcal{Q}_{
ho} = (1ho) \mathcal{Q}_{\mathit{SKAT}} + 
ho \mathcal{Q}_{\mathit{Burden}}, \quad 0 \leq 
ho \leq 1.$ 

- $Q_{\rho}$  includes SKAT and burden tests.
  - $\rho = 0$ : SKAT
  - $\rho = 1$ : Burden

## Derivation of the Unified Test Statistics

► Model:

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{lpha} + \mathbf{G}_i \boldsymbol{eta}$$

where  $\beta_j/w_j$  follows any arbitrary distribution with mean 0 and variance  $\tau$  and the correlation among  $\beta_j$ 's is  $\rho$ .

#### Special cases:

- ► SKAT: ρ = 0
- Burden:  $\rho = 1$
- Combined:  $0 \le \rho \le 1$

### Derivation of the Unified Test Statsitics

Q<sub>ρ</sub> is a test statistic of the SKAT with corr(β) = R(ρ):
 R(ρ) = (1 − ρ)I + ρ<u>1</u>1' (compound symmetric)
 K<sub>ρ</sub> = GWR(ρ)WG'.

$$egin{aligned} \mathcal{Q}_{
ho} &= (\mathbf{y} - \hat{\mu})' \mathbf{K}_{
ho} (\mathbf{y} - \hat{\mu}) \ &= (1 - 
ho) \mathcal{Q}_{SKAT} + 
ho \mathcal{Q}_{Burden} \end{aligned}$$

## Adaptive Test (SKAT-O)

• Use the smallest p-value from different  $\rho$ s:

$$T = \inf_{0 \le \rho \le 1} P_{\rho}.$$

where  $P_{\rho}$  is the p-value of  $Q_{\rho}$  for given  $\rho$ .

Test statistic:

$$T = \min P_{\rho_b}, \quad 0 = \rho_1 < \ldots < \rho_B = 1.$$

## Adaptive Test (SKAT-O)

•  $Q_{\rho}$  is a mixture of two quadratic forms.

$$\begin{aligned} \mathcal{Q}_{\rho} &= (1-\rho)(\mathbf{y}-\hat{\boldsymbol{\mu}})' GWWG'(\mathbf{y}-\hat{\boldsymbol{\mu}})' \\ &+ \rho(\mathbf{y}-\hat{\boldsymbol{\mu}})' GW\underline{1}\underline{1}'WG'(\mathbf{y}-\hat{\boldsymbol{\mu}}) \\ &= (1-\rho)(\mathbf{y}-\hat{\boldsymbol{\mu}})' \mathcal{K}_1(\mathbf{y}-\hat{\boldsymbol{\mu}})' + \rho(\mathbf{y}-\hat{\boldsymbol{\mu}})' \mathcal{K}_2(\mathbf{y}-\hat{\boldsymbol{\mu}}) \end{aligned}$$

•  $Q_{\rho}$  is asymptotically equivalent to

$$(1-
ho)\kappa+a(
ho)\eta_0,$$

where and  $\eta_0 \sim \chi_1^2$ ,  $\kappa$  approximately follows a mixture of  $\chi^2$ .

SKAT-O

 Q<sub>ρ</sub> is the asymptotically same as the sum of two independent random variables.

$$(1-
ho)\kappa + a(
ho)\eta_0$$

► P-value of T:

$$\begin{aligned} &1 - \Pr \left\{ Q_{\rho_1} < q_{\rho_1}(T), \dots, Q_{\rho_b} < q_{\rho_b}(T) \right\} \\ &= 1 - E \left[ \Pr \left\{ (1 - \rho_1) \kappa + \mathsf{a}(\rho_1) \eta_0 < q_{\rho_1}(T), \dots | \eta_0 \right\} \right] \\ &= 1 - E \left[ \Pr \left\{ \kappa < \min\{(q_{\rho_\nu}(T)) - \mathsf{a}(\rho_\nu) \eta_0) / (1 - \rho_\nu)\} | \eta_0 \right\} \right], \end{aligned}$$

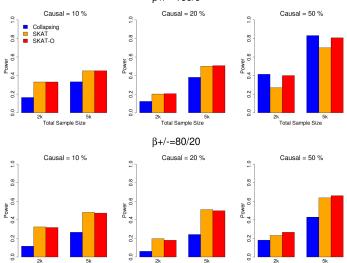
where  $q_{
ho}(T) =$  quantile function of  $Q_{
ho}$ 

#### Simulation

- Simulate sequencing data using COSI
- 3kb randomly selected regions.
- Percentages of causal variants = 10%, 20%, or 50%.
- $(\beta_j > 0)$ % among causal variants = 100% or 80%.
- Three methods
  - Burden test with beta(1,25) weight
  - SKAT
  - SKAT-O

Total Comple Size

Simulation



Total Comple Cize

β+/-=100/0

Total Comple Cize

## Simulation

- SKAT is more powerful than Burden test (Collapsing) when
  - Existence of  $+/-\beta s$
  - Small percentage of variants are causal variants
- Burden test is more powerful than SKAT when
  - All βs were positive and a large proportion of variants were casual variants
- SKAT-O is robustly powerful under different scenarios.



- Region based tests can increase the power of rare variants analysis.
- Relative performance of rare variant tests depends on underlying disease models
- The combined test (omnibus test), e.g, SKAT-O, is robust and powerful in different scenarios

#### MAF based weighting

- It is generally assumed that rarer variants are more likely to be causal variants with larger effect sizes.
- Simple thresholding is widely used.

$$w(MAF_j) = \left\{ egin{array}{cc} 1 & ext{if} & MAF_j < c \ 0 & ext{if} & MAF_j \geq c \end{array} 
ight.$$

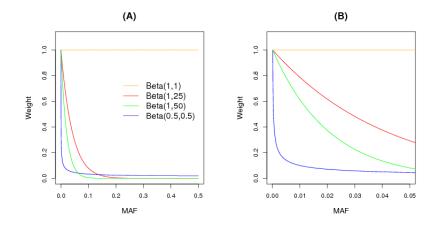
## MAF based weighting

- Instead of thresholding, continuous weighting can be used to upweight rarer variants.
- Ex: Flexible beta density function.

 $w(MAF_j) = (MAF_j)^{\alpha-1}(1 - MAF_j)^{\beta-1}$ 

•  $(\alpha = 0.5, \beta = 0.5)$ : Madsen and Browning weight •  $(\alpha = 1, \beta = 1)$ : Flat weight

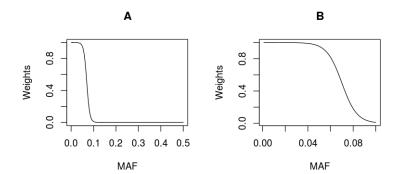
#### MAF based weighting- beta weight



#### MAF based weighting- logistic weight

Soft-thresholding.

$$w(maf_j) = exp((\alpha - maf_j)\beta)/\{1 + exp((\alpha - maf_j)\beta)\}$$



# Weighting Using Functional information

Variants have different functionalities.

- Non-synonymous mutations (e.g. missense and nonsense mutations) change the amino-acid (AA) sequence.
- Synonymous mutations do not change AA sequence.

# Weighting Using Functional information

- Bioinformatic tools to predict the functionality of mutations.
  - Polyphen2 (http://genetics.bwh.harvard.edu/pph2/)
  - SIFT (http://sift.jcvi.org/)
- ► Test only functional mutations can increase the power.

#### Data Processing and Analysis Flowchart



Study Design: Platform Choices

# Genotyping Platforms

- High depth whole genome sequencing is the most informative, however it is currently expensive.
- Alternative sequencing designs and genotyping platforms
  - Low depth sequencing
  - Exome sequencing
  - High coverage microarrays (Exome chip)
  - Imputation

Study Design: Platform Choices

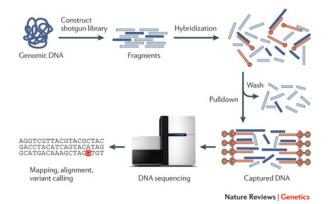
#### Low depth whole genome sequencing

- Sequencing 7 ~ 8 samples at low depth (4x) instead of 1 sample at high depth (30x)
- Low depth sequencing
  - Relatively affordable
  - LD based genotyping: leverage information across individuals to improve genotype accuracy.
  - ▶ 1000 Genome (4x) and UK 10K (6x) used low depth sequencing.
- Cons:
  - Subject to appreciable sequencing errors

Study Design: Platform Choices

#### Exome sequencing

Restrict to the protein coding region (1 ~ 2% of genome (30 Mbps)).



└─Study Design: Platform Choices

#### Exome sequencing

- Focus on the high value portion of the genome
- Relatively cost effective
- Cons: Only focus on the exome
  - Most of GWAS hits lie in non-exomic regions
  - Many non-coding regions have biological functions

Lecture 9: Omnibus Tests, Weighting, Design Considerations — Design Considerations — Study Design: Platform Choices

Exome array

- Using variants discovered in 12,000 sequenced exome
- Low cost ( $10 \sim 20x$  less than Exome sequencing)
  - 250K non-synonymous variants
  - 12K splicing variants
  - 7K stop altering variants
- ► Cons:
  - Cannot investigate very rare variants.
  - Limited coverages for non-European populations

Study Design: Platform Choices

## GWAS chip + Imputation

- Imputation: Estimate genotypes using reference samples
  - Imputation accuracy increases as the number of reference samples increases
- No additional experiment cost
- ► Cons:
  - Low accuracy of imputed rare variants

Design Considerations

LStudy Design: Platform Choices

## Summary

|                | Advantage                         | Disadvantage                    |
|----------------|-----------------------------------|---------------------------------|
| High-depth WGS | Can identify nearly all variants  | Currently very expensive.       |
|                | in genome with high confidence.   |                                 |
| Low-depth WGS  | Cost-effective, useful approach   | Limited accuracy                |
|                | for association mapping.          |                                 |
| Whole exome    | Can identify all exomic variants; | Limited to the exome.           |
| sequencing     | less expensive than WGS.          |                                 |
| GWAS chip +    | Low cost.                         | Lower accuracy of imputed rare  |
| Imputation     |                                   | variants.                       |
| Exome chip     | Much cheaper than exome           | Limited coverage for very rare  |
| (custom array) | sequencing.                       | variants and for non-Europeans. |
|                |                                   | Limited to target regions.      |

Design Considerations

Study Design: Extreme Phenotype Sampling

#### Extreme phenotype sampling

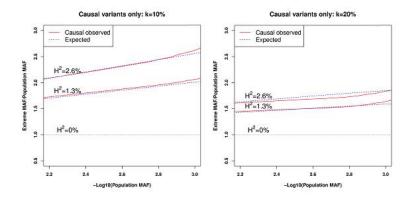
- Rare causal variants can be enriched in extreme phenotypic samples
- Given the fixed budget, increase power by sequencing extreme phenotypic samples.

Design Considerations

Study Design: Extreme Phenotype Sampling

#### Enrichment of causal rare variants in phenotypic extremes

 Estimated folds increase of the observed MAFs of causal variants (k% high/low sampling, H<sup>2</sup>=Heritability).



Design Considerations

Study Design: Extreme Phenotype Sampling

### Extreme phenotypic sampling

#### Continuous traits:

Select individuals with extreme trait values after adjusting for covariates.

#### ► Binary traits:

Select individuals on the basis of known risk factors

► Ex. T2D : family history, early onset, low BMI

- Design Considerations

LStudy Design: Extreme Phenotype Sampling

#### Extreme phenotypic sampling

- Extreme continuous phenotype (ECP) can be dichotomized, and then any testing methods for binary traits can be used.
- But dichotomization can cause a loss of information and can decrease the power.
- Methods modeling ECP as truncated normal distribution has been developed (Barnett, et al, 2013, Gen. Epid).

#### Power/Sample Size calculation

- Power/Sample size calculation is essential to design future sequencing studies.
- Input information:
- Region information
  - LD structure and MAF spectrum.
  - Region size to test.

#### Power/Sample Size calculation

#### Causal variant Information

- Effect size (continuous traits), or Odds ratio (binary traits).
- % of rare variants be causal.
- % of causal variants with negative association direction.

#### Binary traits

- Case/Control Ratio.
- Prevalence

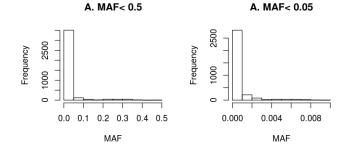
## Practical Points: SKAT Power Calculations

#### ► Region information

- Either simulated haplotypes or sample haplotypes from preliminary data.
- The SKAT package provides 10,000 haplotypes over a 200 kb region generated by the coalescent simulator (COSI).

#### MAF spectrum

- MAF spectrum of the simulated haplotypes
- Most of SNPs have very low MAFs.



## Practical Points: Power/Sample Size calculations

- Causal Variant Information:
  - ► To use log<sub>10</sub> function (-c log<sub>10</sub>(MAF)) for the effect sizes or log odds ratio.
  - *c* is a parameter to determine the strength of association.

• Ex: 
$$c = 1$$
  
 $\beta = 2 \text{ or } \log(OR) = 2 \text{ for a variant with MAF}=0.01$   
 $\beta = 4 \text{ or } \log(OR) = 4 \text{ for a variant with MAF}=10^{-4}$ .

### Practical Points: Power/Sample Size calculations

 In SKAT package, you can set c using the MaxOR (OR for MAF = 10<sup>-4</sup>) or MaxBeta (β for MAF = 10<sup>-4</sup>).

## Practical Points: Power/Sample Size calculations

- Power depends on LD structure of the region and MAFs of the causal variants.
- We are interested in estimating power in multiple regions and multiple sets of causal variants selected from a certain disease model.
  - We estimate an average power.
  - Approximately 100 ~ 500 sets of regions/causal variants are needed to estimate the average power stably.