Part 2

Allele Frequencies and
Hardy-Weinberg Equilibrium

Summer Institute in Statistical Genetics 2014
Module 10
Topic 2

Allele Frequencies and
Genotype Frequencies

How do allele frequencies relate to genotype
frequencies in a population?

If we have genotype frequencies, we can easily get allele
frequencies.
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Example

Cystic Fibrosis is caused by a recessive allele. The CF
locus is on the long arm of chromosome 7 (7931). Of
10,000 Caucasian births, 5 were found to have Cystic
Fibrosis and 442 were found to be heterozygous carriers
of the mutation that causes the disease. Denote the
Cystic Fibrosis allele with cf and the normal allele with N.
Based on this sample, how can we estimate the allele
frequencies in the population? :

In the sample, 10000 € cf, cf
442

10000

9553

10000

arecf, N

are N, N

Example, con’t

So we use 0.0005, 0.0442, and 0.9553 as our estimates
of the genotype frequencies in the population. The only
assumption we have used is that the sample is a random
sample. Starting with these genotype frequencies, we
can estimate the allele frequencies without making any
further assumptions:

Out of 20,000 alleles in the sample,

442+10
m—.OZZG are cf

1-.0226=0.9774 are N
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Hardy-Weinberg Assumptions

In contrast, going from allele frequencies to genotype
frequencies requires more assumptions.

Hardy-Weinberg model

infinite population

* discrete generations

* random mating

* no selection

* no migration in or out of population

* no mutation

e equal initial genotype frequencies in the two sexes

Consider a locus with two alleles A and a

15t generation

genotype frequency
AA u
Aa v
aa w u+v+w=1

From these genotype frequencies, we can quickly calculate allele
frequencies:

P(A)=u+% v
P(a)=w+ % v
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2"d generation

mating type mating expected progeny
frequency*

AA x AA u? AA

AA X Aa 2uv 2 AA + Y Aa
AA X aa 2uw Aa

Aa x Aa V2 YaAA+ Y2 Aa+Ysaa
Aa X aa 2vw 15 Aa + % aa

aa x aa w2 aa

*check that u2+ 2uv + 2uw + v24+2vw + w?= (u+v+w)2=12=1
For generation 2:

P=P(AA)= u?+% (2uv) + % v2= (u + %4 v)?

g=P(Aa)=uv +2uw + % vZ+vw=2(u+ % Vv)( 2 v+ W)

r= P(aa)= % v2+% (2vw) + w2 = (W + %5 v)?
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For generation 3:

P(AA)=(p+ 72 q)*=[ (u+ % v)>+ % 2(u+ % v)( Yo v +w) ]
=[(u+%V)[(u+%hv)+(hv+w)]]?
=[(u+%v)(u+ v+w)]?
=[(u+2%v)(1)]?
=[u + % v]?

=p ... the same as generation 2
Similarly, in generation 3 P(Aa)=q and P(aa)=r.

Equilibrium is reached after one generation of mating under the
Hardy-Weinberg assumptions. Genotype frequencies remain
the same from generation to generation.
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Hardy-Weinberg Genotype Frequencies

When a population is in Hardy-Weinberg equilibrium,
the alleles that comprise a genotype can be thought of
as having been chosen at random from the alleles in a
population. We have the following relationship between
genotype frequencies and allele frequencies for a
population in Hardy-Weinberg equilibrium:

P(AA) = P(A)P(A)
P(Aa) =2P(A)P(a)
P(aa) =P(a)P(a)

For example, consider a diallelic locus with alleles A and
B with frequencies 0.85 and 0.15, respectively. If the
locus is in HWE, then the genotype frequencies are:

P(AA) =0.85 *0.85 =0.7225
P(AB) = 0.85*0.15 + 0.15*0.85 = 0.2550
P(BB) =0.15*0.15 =0.0225
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Example

Establishing the genetics of the ABO blood group system was one
of the first breakthroughs in Mendelian genetics. The locus
corresponding to the ABO blood group has three alleles, A, B and
O and is located on chromosome 9g34. The alleles A and B are
dominant to O. This leads to the following genotypes and

phenotypes:
AA, AO A
BB, BO B
AB AB
00 0

Mendel’s first law allows us to quantify the types of gametes an
individual can produce. For example, an individual with type AB
produces gametes A and B with equal probability (1/2).
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Example, con’t

From a sample of 21,104 individuals from the city of Berlin, allele

frequencies have been estimated to be P(A)=0.2877, P(B)=0.1065
and P(0)=0.6057. If an individual has blood type B, what gametes
can be produced and with what frequency? (Note where HWE is
invoked in the following)

If a person has blood type B, then the genotype is BO or BB.

7, = P(genotype BO|blood type B) = ZpZ%D—E)erZ =0.92
OMB B

2
¥, = P(genotype BB|blood type B) ZZpFF))—BerZ =0.08
OB B

P (B gamete | blood type B)=1xy, +%71 =054
P(O gamete | blood type B)=1-0.54=0.46
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HWE
genotype allele
frequencies frequencies
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Why should we be skeptical of the HW
assumptions?

¢ Small population sizes. Chance events can make a big difference.
e Deviations from random mating.

— Assortive mating. Mating between genotypically simlar individuals
increases homozygosity for the loci involved in mate choice without
altering allele frequencies.

— E.g., Assortive mating has been hypothesized to be a cause of
rising rates of autism (very controversial hypothesis)

— Inbreeding. Mating between close relatives increases homozygosity
for the whole genome without affecting allele frequencies.

— Population sub-structure

— Disassortive mating. Mating between dissimilar individuals
increases heterozygosity without altering allele frequencies.

e Mutation
* Migration
e Selection
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Testing Hardy-Weinberg Equilibrium

When a locus is not in HWE, then this suggests one
or more of the Hardy-Weinberg assumptions is
false. Departure from HWE has been used to infer
the existence of natural selection, argue for the
existence of assortive (non-random) mating, and
infer genotyping errors.

It is therefore of interest to test whether a
population is in HWE at a locus. We will discuss the
two most popular ways of testing HWE

1. Chi-Square test

2. Exact test

Chi-Square Goodness-Of-Fit Test

Compares observed genotype counts with the
values expected under Hardy-Weinberg. For a locus
with two alleles, we might construct a table as
follows:

Genotype Observed Expected
AA Naa np?
Aa Naa 2np(1-p)
aa N,. n(1-p)?

where p = p(A) = (ny, +2 Ny, )/20
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The test statistic is:

X2 — (observed count - expected count)?
gerionypes expected count
HWE true
Naa N(pa)?
Naa N2p,A(1-p,)
N,. N(1-p,)?

In the application to HWE, a convenient form for the test statistic is:

/ 2 2
¥ _ n( 4144 N0 — Ny, )
£ — P C .
(-)”AA £ ”Aa)(zn(m + ”An‘)

The sampling distribution of the test statistic under the null

hypothesis is approximately a x? distribution with 1 degree of
freedom.

There is a rule of thumb for such y? tests: the expected count
should be at least 5 in every cell. If allele frequencies are low,
and/or sample size is small, and/or there are many alleles at a
locus, this may be a problem.
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Exact Test

The Hardy-Weinberg exact test is based on
calculating probabilities

P(genotype counts | allele counts)
under HWE.

Example: Exact Test

Suppose we have a sample of 5 people and we
observe genotypes AA, AA, AA, aa, and aa.

If five individuals have among them 6 ‘A’ alleles
and 4 ‘@’ alleles, what genotype configurations
are possible?
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Permutation Test

* Make a set of five index cards to represent the
5 observed genotypes:

A

A

A

AllA

A

e Tear the cards in half to make a deck of 10
cards, each with one allele. Shuffle the deck
and deal into five pairs, to give five randomly

d

d

d d

paired genotypes.

empirical
Probability theoretical
aa Aa AA (random probability
permutations)
2 0 3 0.048
1 2 2 0.571
0 4 1 0.381

90
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Example

Suppose we have a sample of 100 individuals
and 21 ‘@’ alleles are observed (so 200-21=179

‘A alleles).
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Note that specifying the number of heterozygotes determines the number of

AA and aa genotypes.

aa Aa AA probability
10 1 89 <<.000001
9 3 88 <<.000001
8 5 87 <.000001
7 7 86 .000001
6 9 85 .000047
5 11 84 .000870
4 13 83 .009375
3 15 82 .059283
2 17 81 214465
1 19 80 406355
0 21 79 309604

Wiggington, Cutler, Abecasis, AJHG 2005
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The formula is:

n! 2Man,In,!
Naa !N N1 (20)!

P(n,, | ny n,, HWE) =

If we had actually observed 13 heterozygotes in our
sample, then the exact test p-value would be

=.009375+.000870+.000047+.000001~0.010293

(To get the p-value, we sum the probabilities of all
configurations with probability equal to or less that
the observed configuration.)

How do the exact test and the ¥? test
compare?

Next slide is Figure 1 from Wigginton et al (AJHG
2005). The upper curves give the type | error
rate of the chi-square test; the bottom curves
give the type | error rate from the exact test.
The exact test is always conservative; the chi-
square test can be either conservative or anti-
conservative.
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A. Sample size = 100, « = 0.08 B. Sample size = 100, « = 0.01 C. Sample size = 100, « = 0.001
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Tests of HWE: Which one is best?

e The Exact Test should be preferred for smaller
sample sizes and/or multiallelic loci, since the
x? test is prima facie not valid in these cases
(rule of thumb: must expect at least 5 in each
cell)

* The coarseness of Exact Test means it is
conservative. In Example 4, we reject the null
hypothesis that HWE holds if 13 or fewer
heterozygotes are observed. But the observed
p-value is actually 0.010293. Thus to reject at
the 0.05 level, we actual have to see a p-value
as small as 0.010293.
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Tests of HWE: Which one is best?

* The y%? test can have inflated type | error rates.

Suppose we have 100 genes for which HWE holds.
We conduct 100 y? tests at level 0.05. We expect
to reject the null hypothesis that HWE holds in 5
of the tests. However, the results of Wiggington et
al (AJHG, 2005) say, on average, it can be more
than 5 depending on the minor allele count.
Although it is not desirable for a test to be
conservative (Exact Test), an anti-conservative test
is considered unacceptable.

— Wiggington et al (AJHG, 2005) give an extreme example
with a sample of 1000 individuals. At a nominal
a=0.001, the true type | error rate for the y? test
exceeds 0.06.

Tests of HWE: Which one is best?

The %2 test is a two-sided test. In contrast, the
Exact Test can be made one-sided, if
appropriate. Specifically, one can test for a
deficit of heterozygotes (if one suspects
inbreeding or population stratification); test for
an excess of heterozygotes (which indicate
genotyping errors for some genotyping
technologies).

For both tests, p-values do not have a uniform
distribution under the null hypothesis. This is
problematic for making inference when
conducting lots of tests (e.g. qq plots).
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Tests of HWE: Which one is best?

e Summary/Conclusion: The Exact Test is better,
but it is not great. It tends to be conservative;
has limited power with typical sample sizes;
and p-values are not uniformly distributed.
However, it is valid with small sample sizes.

Power for Testing HWE

The Chi-Square test, though not the preferred
test for small samples, provides a convenient way
to investigate power.

In the two allele case, it can be shown that the
test statistic

X2= % (observed count - expected count)?
geriotypes expected count

is algebraically equal to
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Power for Testing HWE

(O-E)* _

nf 2
genotypes E

X2 =

where 2nxn,,

n,n,

f=1

fis also the “inbreeding coefficient” of the
population (more later).

Power for Testing HWE

When HWE holds, X2 has a chi-square distribution
with 1 df.

When HWE does not hold, X2 has a non-central chi-
square distribution with non-centrality parameter nf?.

The cut-off for significance at the 5% level of a chi-
square with 1 df is 3.84. That is, our p-value will be
less than 0.05 if we observe a test statistic greater
than 3.84.

In order to be at least 90% sure of rejecting HWE
when HWE is false, the non-centrality parameter
should be at least 10.51.
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Power for Testing HWE

nf?>10.51

> 10.51
f2

If f=0.01, then n has to be over 100,000.

Observing Phenotypes

* What if we cannot see genotypes? The
observed data are phenotypes, some of which
correspond to multiple genotyeps.
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Example: HWE and Human Blood Types

Suppose we have a sample of size N from a
population and the data are the counts of the
phenotypes ng, Ny, Ng, and nyg (N + Ny + Ng +
n,s=N). If we had genotypes, it would be easy to
estimate allele frequencies. But we have observed
phenotypes, which are aggregates of genotypes.

Given the phenotype data, how do we estimate the
allele frequenciesr, p, and g?

106

allele o A B
frequency r P
r+p+q=1
genotype frequency
phenotype | genotype under HWE

0 00 r2

A AO or AA 2pr + p?

B BO or BB 2qr + @2
AB AB 2pq

107
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o|f we could observe all genotype counts (i.e.,
Nao @and n,, Not just ny,; ngy and ngg not just
ng), then our estimates of allele frequencies

would be:

2Npp + Ny + Ny

o

2N

G= 2Ngg +Ngo +Npg
2N

P 2Ng +Nyo +Ngg
2N

oOn the other hand, if we knew p,q,r, we could
estimate n,g, Nyp, Ngp and ngg .

Gene-counting algorithm

(an EM algorithm)

Gene-Counting Algorithm:
Select starting estimates p,, q,, Iy
Estimate nyg, Naa s Ngo @nd Ngg

Use estimates of N,y , Naa, Ngo @nd ngg to get new
estimates of p,q,r: py, qy, r;.
Repeat step 2 (estimation step) and step 3 (which is

really a maximization step). Stop when the estimates
of p,q,r do not change more than a tiny amount.

1.
2.
3.

4.

Note that completing step 2 requires assuming HWE.



